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Abstract Optimal fingerprinting has been the most

widely used method for climate change detection and

attribution over the last decade. The implementation of

optimal fingerprinting often involves projecting onto

k leading empirical orthogonal functions in order to

decrease the dimension of the data and improve the esti-

mate of internal climate variability. However, results may

be sensitive to k, and the choice of k remains at least partly

arbitrary. One alternative, known as regularised optimal

fingerprinting (ROF), has been recently proposed for

detection. This is an extension of the optimal fingerprinting

detection method, which avoids the projection step. Here,

we first extend ROF to the attribution problem. This is done

using both ordinary and total least square approaches.

Internal variability is estimated from long control simula-

tions. The residual consistency test is also adapted to this

new method. We then show, via Monte Carlo simulations,

that ROF is more accurate than the standard method, in a

mean squared error sense. This result holds for both

ordinary and total least square statistical models, whatever

the chosen truncation k. Finally, ROF is applied to global

near-surface temperatures in a perfect model framework.

Improvements provided by this new method are illustrated

by a detailed comparison with the results from the standard

method. Our results support the conclusion that ROF pro-

vides a much more objective and somewhat more accurate

implementation of optimal fingerprinting in detection and

attribution studies.

Keywords Detection � Attribution � Climate change �
Optimal fingerprint

1 Introduction

Optimal fingerprinting is currently the most widely used

method for climate change detection and attribution. In

particular, the last two assessment reports by the Inter-

government Panel on Climate Change (IPCC 2001, 2007)

highlighted results from several studies based on this

method.

Optimal fingerprinting involves assessing the contribu-

tion of external forcings via the estimation of so-called

scaling factors, in a linear regression model (Hasselmann

1997; Allen and Tett 1999). Scaling factors correspond to a

regression coefficient that should be applied to the ampli-

tude of the simulated response to a forcing in order to best

fit the observations. In terms of scaling factors, detection

may be carried out by performing a statistical test to assess

whether their values are consistent (no detection) or not

consistent (detection) with zero. Attribution additionally

requires the observed response to be consistent with the

expected response to a combination of external forcings,

and inconsistent with alternative, physically plausible

explanations. In terms of scaling factors, this means that

they have to be consistent with unity, and that the scaling

factor associated with some particular forcing is signifi-

cantly non-zero, even if the response to others forcings has

been underestimated or overestimated. Within such a
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framework, the main statistical issue concerns the estima-

tion of the scaling factors, together with their confidence

intervals.

Estimation and confidence interval computation are

well-known in linear regression models, even when the

residuals are not white noise. Nevertheless, the case of

regression models for climate change studies has rather

special characteristics, in particular because of the typically

high dimension of climate datasets. Its high dimension

makes the covariance matrix of the internal climate vari-

ability very hard to evaluate. It is thus customary to reduce

the dimension of the random vector involved in the sta-

tistical analysis. In particular, this issue arises at the global

scale, where the spatial or spatio-temporal size of climate

datasets is very large and needs to be decreased. The

dimension reduction is achieved partly via data pre-pro-

cessing (e.g. computation of decadal mean, filtering out of

smaller spatial scales, etc). Such a treatment is based on the

assumption that the signal-to-noise ratio is higher on large

scales (Stott and Tett 1998). But the dimension reduction

obtained by the pre-processing is usually insufficient, and

some additional treatment is required (see e.g. Stott et al.

2006; Zhang et al. 2007).

The most popular method for reducing this dimension is

to project data onto the leading EOFs of internal climate

variability (e.g. Hegerl et al. 1996; Allen and Tett 1999,

and many others). This option, however, involves specific

issues related to the choice of the number of retained EOFs

(the truncation). On the one hand, results of the algorithm

in terms of scaling factor estimates and their confidence

intervals are usually at least partly sensitive to this choice.

The presentation of the results must then involve a dis-

cussion regarding the sensitivity of the results to the trun-

cation. This is usually done by assessing the robustness of

the results over quite a wide range of truncations (e.g. Stott

et al. 2006). On the other hand, from a statistical point of

view, there are no optimality results regarding the use of

EOF projections.

One alternative to EOF projection was introduced in

Ribes et al. (2009) and involves the use of a regularised

estimate of the covariance matrix of the internal climate

variability. This version, called regularised optimal finger-

printing (ROF), uses a specific estimate of the covariance

matrix instead of decreasing the dimension via a projection

on EOFs. So far, this version of optimal fingerprinting has

been introduced for detection alone, and has only been

applied to a temperature dataset covering France.

The first aim of this paper is to extend ROF to the

attribution problem. This extension is done for both the

ordinary least squares (Allen and Tett 1999, hereafter

AT99) and the total least squares statistical models (Allen

and Stott 2003, hereafter AS03). The treatment of internal

climate variability is thoroughly revised relative to that

implemented by Ribes et al. (2009). The internal climate

variability is estimated from control simulations here, as in

the approach used by AT99 and AS03. The novelty

regarding the implementation of the fingerprinting method

also comes from a modification of the residual consistency

test (AT99 and AS03). The test procedure is revisited in

order to make it suitable for large-dimension datasets.

The second objective of this paper is to discuss the

properties and the efficiency of ROF with respect to the

EOF projection version (or pseudo inverse version) of

optimal fingerprinting. In particular, regarding global mean

temperatures, Monte Carlo simulations are used to show

that ROF is more accurate than EOF projection, whatever

the truncation chosen.

The third purpose of this paper is to provide a first

illustration of the capabilities of ROF in the analysis of the

recent (1901–2010) evolution of global near-surface mean

temperatures. This is done in a perfect model framework,

that is to say by applying ROF to historical simulations

from the CNRM-CM5 model and using the same model to

evaluate the response pattern to each forcing. Such an

idealised framework ensures the validity of the assumption

that the model is able to reproduce the spatio-temporal

pattern of response to each forcing accurately. It also

allows a comparison between ROF and the commonly used

EOF projection based on realistic data. This comparison

illustrates the attractiveness of ROF in the analysis of

global mean temperature.

The data and its pre-processing are presented in Sect. 2.

In Sect. 3, we introduce ROF for attribution, together with

the other version of the optimal fingerprinting attribution

methodology considered in this study. The results of the

application of these methods to idealised Monte Carlo

simulations and to pseudo-observations from CNRM-CM5

are then discussed in Sect. 4. The application of ROF to

real observations, using estimated responses to forcings

and estimates of internal variability from CMIP5 (Coupled

Model Intercomparison Project version 5) models, will be

discussed in Part II.

2 Data and pre-processing

Because this work is devoted to a perfect model frame-

work, we focus on simulated global near-surface annual

mean temperatures. These data come from two different

sources. First, several ensembles of simulations from the

CNRM-CM5 model are used to perform the perfect model

framework analysis. Second, a much wider ensemble of

simulations from both CMIP3 and CMIP5 are used to

estimate the internal climate variability.
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2.1 Pseudo-observations and forced response patterns

Pseudo-observations and forced response pattern estimates

are derived from simulations performed with CNRM-CM5.

The CNRM-CM5 model is the atmosphere-ocean general

circulation model (AOGCM) designed at CNRM and

CERFACS to participate in CMIP5. A complete, detailed

description of this model can be found in the reference

paper by Voldoire et al. (2011).

We used the global temperatures from historical simu-

lations (HIST, 10 members) as pseudo-observations. These

are transient climate change simulations covering the per-

iod from 1850 to 2012, which include historical variations

of all external forcings. Specifically, we take the following

external forcings into account: anthropogenic variations of

greenhouse gas concentrations (GHG), anthropogenic

variations of aerosol concentrations (AER), and variations

of natural forcing (NAT), which includes variations of

aerosol concentrations due to volcanic eruptions and

changes in solar activity. Note that, strictly speaking, his-

torical forcings are imposed only over the 1850–2005

period. The extension to 2006–2012 involves atmospheric

greenhouse gas and aerosols concentrations from the

RCP8.5 scenario and repetition of solar cycle 23, with no

volcanic eruption over the period. The use of the 10

members from the HIST ensemble allows a virtual analysis

of global temperatures to be reproduced 10 times.

Standard detection and attribution analysis also requires

the use of climate model simulations to provide estimates

of the expected response pattern of the climate system to

each external forcing taken into consideration. Here, we

consider two combinations of external forcings (ANT and

NAT) or, alternatively, three clusters of external forcings

(GHG, AER and NAT). In order to evaluate the response

pattern to each cluster of forcings, three ensembles of

transient climate change simulations covering the

1850–2012 period are used, each with an ‘‘individual’’

forcing: simulations with historical anthropogenic forcings

only (ANT, 10 members), including changes in greenhouse

gas concentrations and anthropogenic aerosol emissions;

simulations with historical greenhouse gas concentrations

(GHG, 6 members); and simulations with natural forcings

only (NAT, 6 members). Note that no simulations were

available with the AER forcing alone. In consequence, the

contribution from the AER forcing was indirectly esti-

mated by the method, based on the difference between

ANT and GHG contributions, assuming the additivity of

the responses to different forcings (see Sect. 3). This means

that AER refers to all anthropogenic forcings except GHG.

The same assumptions as in the HIST ensemble are made

over the 2006–2012 period with regard to forcings. Note

that ANT, GHG and NAT ensembles are used to provide

estimates of the expected response to the corresponding

forcings; consequently, we use only the ensemble mean.

2.2 Internal climate variability

An estimate of internal climate variability is required in

detection and attribution analysis, for both optimal esti-

mation of the scaling factors and uncertainty analysis.

Estimates of internal variability are usually based on cli-

mate simulations, which may be control simulations (i.e. in

the present case, simulations with no variations in external

forcings), or ensembles of simulations with the same pre-

scribed external forcings. In the latter case, m - 1 inde-

pendent realisations of pure internal variability may be

obtained by subtracting the ensemble mean from each

member (assuming again additivity of the responses) and

rescaling the result by a factor
ffiffiffiffiffiffiffi

m
m�1

p

, where m denotes the

number of members in the ensemble. Note that estimation

of internal variability usually means estimation of the

covariance matrix of a spatio-temporal climate-vector, the

dimension of this matrix potentially being high.

We choose to use a multi-model estimate of internal

climate variability, derived from a large ensemble of cli-

mate models and simulations. This multi-model estimate is

subject to lower sampling variability and better represents

the effects of model uncertainty on the estimate of internal

variability than individual model estimates. We then

simultaneously consider control simulations from the

CMIP3 and CMIP5 archives, and ensembles of historical

simulations (including simulations with individual sets of

forcings) from the CMIP5 archive. All control simulations

longer than 220 years (i.e. twice the length of our study

period) and all ensembles (at least 2 members) are used.

The overall drift of control simulations is removed by

subtracting a linear trend over the full period. Details of the

simulations and ensembles involved are given in

‘‘Appendix 1’’. We then implicitly assume that this multi-

model internal variability estimate is reliable.

2.3 Data pre-processing

This paper aims to illustrate the results provided by ROF at

the global scale; therefore, the pre-processing applied to

the data is as similar as possible to that used in previous

studies, in particular Stott et al. (2006, hereafter S06) and

Tett et al. (2002). The main period studied in this paper is

1901–2010. In line with S06, we focus on the period after

1900, and add the past decade to the period they consid-

ered. Note, for instance, that Gillett et al. (2012) recently

chose to focus on a longer period from 1851 to 2010.

In order to base our analysis on pseudo-observations as

close as possible to real observations, the spatio-temporal
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missing data mask from real observations is first applied to

simulated data, at the monthly time-step. The median

HadCRUT4 dataset (Morice et al. 2012) is used to provide

this observational mask. In the case of historical simula-

tions, the same 110-year period is selected and processed.

In the case of pre-industrial simulations, several 110-year

periods (see below) are selected and treated.

Data are then processed as follows. Annual anomalies

are computed from monthly ones if at least 8 months are

available; otherwise, the data are considered missing. In the

case of simulated data, monthly anomalies are computed

with respect to the same period as observations, i.e. the

1961–1990 period. Decadal anomalies are then computed

where at least 5 years are available; otherwise, the data are

again considered missing. A 110-year period thus provides

11 time steps. The temporal mean over these 11 time steps

is then subtracted in order to focus only on temporal

anomalies. Next, the spatial dimension is reduced via

projection on spherical harmonics. Prior to the computation

of spectral coefficients, missing data are set to 0, and the

data are interpolated onto a gaussian grid with a conser-

vative method. The obtained spectral coefficients are then

weighted by 1=
ffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1
p

, where l denotes the total wave

number, in order to give each spatial scale equal weight

(following Stott and Tett, 1998). The highest resolution

used in this paper corresponds to a T4-truncation, i.e.

removing spatial scales below 5,000 km. In such a case,

one global field results in 25 non-zero real coefficients, and

a 110-year period thus finally results in a vector of size

275, which is used in the statistical analysis. Note that other

spherical harmonic truncations are also used in Sect. 4.2.2,

in order to discuss the sensitivity of the result to this choice

(in particular truncation T0 to analyse the global mean

only, and truncations T1 and T2).

Note that some choices within the pre-processing step

are potentially non-optimal (e.g. the computation of spec-

tral coefficients considering missing data as 0) but applying

the same treatment to all data, including those from control

simulations, implies that the whole statistical analysis is

performed in an internally consistent manner.

3 Method

3.1 Classical optimal fingerprinting

The standard statistical model behind the optimal fingerprint

(OF) method was introduced by Hasselmann (1979), (1997);

Hegerl et al. (1997); Allen and Tett (1999, hereafter AT99)

and then Allen and Stott (2003, hereafter AS03), and has

been very widely used since then. Here we review the main

features of both the statistical model and the usual inference

technique before introducing the specifics of ROF.

Standard optimal fingerprinting is based on the gener-

alised linear regression model

y ¼
X

l

i¼1

bixi þ e ð1Þ

where y are the observations, xi is the climate response to

the ith external forcing considered, bi is an unknown

scaling factor and e denotes the internal climate variability.

y, xi, and e consist of spatio-temporal vectors. The basic

principle behind this statistical model is to estimate the

amplitude of the response to each external forcing from the

observations via the estimation of the scaling factors bi. e is

assumed to be a Gaussian random variable, and we write

C ¼ CovðeÞ. Note that this regression model assumes that

the response to several external forcings is additive (see

e.g. Gillett et al. 2004).

Two assumptions have been made regarding the vectors

xi. In the so-called Ordinary Least Square approach (OLS,

see AT99), the vectors xi are assumed to be perfectly known

from climate model simulations. In the so-called Total

Least Square approach (TLS, see AS03), the vectors xi are

unknown and the information provided by the ensemble

mean of climate model simulations is only exi, with

exi ¼ xi þ exi
; ð2Þ

where exi
denotes a random term representing the internal

climate variability within the climate model simulation (or

ensemble mean). In the TLS approach considered here, it is

assumed that the random terms e and exi
are Gaussian and

have the same covariance structure, because they represent

the same internal variability (i.e. Covðexi
Þ ¼ 1

n CovðeÞ,
where n denotes the size of the ensemble of simulations

used to compute exi). In both cases, the underlying

assumption is that climate models accurately reproduce the

shape of the response to an external forcing (both in terms

of space and time) but are potentially inaccurate at repro-

ducing the amplitude of that change (potentially due to

some missing feedback).

The statistical treatment of each approach is presented in

detail in the corresponding papers, AT99 for OLS, and

AS03 for TLS. This treatment includes the estimation of

the internal variability covariance matrix C, the computa-

tion of the optimal estimate of b, the uncertainty analysis

on b and the implementation of a residual consistency test.

Optimal estimation and uncertainty analysis both require

the matrix C to be known, but in practice it must be esti-

mated. Hegerl et al. (1997), AT99 and AS03 suggest

computing two independent estimates of the matrix C : bC1

and bC2. For the estimation procedure to be optimal, the first

estimate bC1 is used for prewhitening the data. The second

estimate bC2 is used for the uncertainty analysis on the

estimated scaling factors bb. bC1 and bC2 are respectively
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based on a sample of y-like vectors Z1 and Z2 (respectively

of size n1 and n2), corresponding to random internal vari-

ability realisations.

Note that among other technical details, we used the

method proposed by Tett et al. (1999) (see in particular,

supplementary material, Sec. 9), to derive scaling factors of

GHG, AER and NAT, when the only available response

patterns are GHG, ANT and NAT. This technique involves

fitting the linear regression model to the available response

patterns as a first step. This provides estimates of

bGHG, bANT and bNAT. Then, in a second step, the desired

scaling factors (here GHG, AER and NAT) are derived

from the first ones, based on the linear additivity assump-

tion (some additional details are referred to in ‘‘Appendix

2’’).

3.2 EOF projection

One specific feature of the statistical models mentioned

above, in the case of climate studies, is the high dimension

of the datasets typically involved. Even after the pre-pro-

cessing described in Sect. 2.3, which strongly decreases

both the temporal and spatial dimensions of the data, the

size of the resulting y-vector is 275. The dimension of the

matrix C is then 275 9 275. The computation of an

accurate estimate bC would need to be based on a sample Z

containing 103–104 realisations. If Z is too small, the effi-

ciency of the full OF algorithm may be reduced due to

imprecise prewhitening, resulting in a deteriorated opti-

misation. In such a case, the eigenspectrum is distort, with

low-order eigenvalues overestimated, high-order eigen-

values underestimated, and eigenvalues above the rank of

bC set to 0. This phenomenon was discussed by AT99,

specifically in regard to the underestimation of the lowest

eigenvalues of bC1. In practice, samples Z of size 103–104

are unreachable: typically, long control simulations cover

103 years and provide less than 10 non-overlapping 110-

year segments. Therefore, the use of the large ensemble of

simulations described in Sect. 2.2 does not provide much

more data than two samples Z with a size of about 102.

The EOF projection version (or pseudo-inverse version)

of OF then proposes the truncation of the estimate bC1 to the

k leading EOFs, thus reducing the size of y to k. This

focuses on the leading modes of variability, which are

usually assumed to represent large-scale signals, and

allows optimal statistics to be performed within a reduced

space of dimension k. However, some disadvantages can

also be highlighted. These are partly discussed in Ribes

et al. (2009, hereafter R09), and are only recalled briefly

here. First, no optimality results are known when such a

projection is applied. Even if the OF algorithm maximises

the signal-to-noise ratio in a given subspace (following

Hasselmann 1993), the projection on the leading EOFs is

equivalent to selecting the directions that maximise the

noise, which is not necessarily favourable to an increase of

the signal-to-noise ratio. In consequence, the choice of the

value of k is not easy from a statistical point of view.

Secondly, the results are usually somewhat sensitive to the

value of k. The use of such a projection then requires a

careful sensitivity analysis. For instance, Stott et al. (2006)

have highlighted a range of values of k over which the

results are stable but the selected values of k are different

for the three climate models considered (see Fig. 4 in S06).

The difficulty implied by the choice of k seems to increase

when we deal with other applications, for example at the

regional scale (e.g. Ribes et al. 2009), or with variables

other than temperature (e.g. Terray et al. 2011), and is not

always discussed. Note that this difficulty regarding the

choice of k was also discussed by Allen et al. (2006), who

pointed out this additional degree of freedom of the anal-

ysis, and the danger of focusing misleadingly on false-

positive detections.

3.3 Regularised optimal fingerprinting

Regularised optimal fingerprinting (ROF) was introduced

in R09. We review the main concept here and refer the

reader to R09 for a complete presentation. More impor-

tantly, we introduce the specifics of the present study with

respect to R09, in order to extend ROF to the attribution

problem. In particular, these concern the treatment of the

internal climate variability and the residual consistency test

(which is discussed in Sect. 3.4).

The basic idea behind ROF is to derive, from a sample

Z, a regularised estimate bCI of C. Regularisation means

here that bCI has the form k bC þ qI, where k and q are real

coefficients while I denotes the identity matrix. Regulari-

sation with the identity matrix, which is proposed here,

avoids the underestimation of the lowest eigenvalues, that

occurs in bC . It also provides a type of interpolation

between the exact optimal fingerprint solution (i.e. the

generalised least-square estimate, which involves the true

matrix C), and the unoptimised fingerprint (i.e. the classical

least square solution, which involves the identity matrix).

Ledoit and Wolf (2004) have provided estimators for the

coefficients k and q, and have shown the resulting estimate

bCI of C (thereafter, the LW estimate) to be more accurate

than the empirical estimate bC with respect to the mean

square error.

It is important to note that other regularisation methods

(e.g. based on a matrix other than the identity matrix, other

estimation techniques, etc) could potentially also be used.

Ledoit and Wolf (2004) noted themselves that the identity

matrix, which is used here to regularise, may be considered

Application of regularised optimal fingerprinting 2821
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a bayesian prior on the matrix C. This prior, however,

ignores some physical knowledge: for instance, the mag-

nitude of the variability (which tends to be higher over land

and at high latitudes) and known features of spatial

dependencies. So the use of another prior could be of

interest. Similarly, the method of estimating k and q could

potentially be improved. The LW estimate, however, has

the advantage of providing a simple regularisation method.

This estimate overestimates the smallest eigenvalues of C

(which are more difficult to estimate accurately). This may

be seen as an additional advantage, as it prevents an excess

of weight being given to small scales (defined as high order

EOFs), which occurs with the sample covariance matrix as

a result of unrealistically low high-order eigenvalues (see

e.g. AT99). Finally, ROF, as presented in this paper (as in

R09), provides one way to use regularisation in optimal

fingerprinting. Alternatives could be of interest, but to our

knowledge, no results on optimality are currently available.

Unlike in R09, we estimate internal climate variability

based on two independent estimates of C, both derived

from control simulations (following AT99 and AS03). In

such a case, regularisation is used for the first estimate,

then denoted bCI1
, which is used for optimisation (or

equivalently, for prewhitening), i.e. for computing the

optimal estimate of b. The projection on the first leading

EOFs is thus not required. The second estimate used in

uncertainty analysis may be regularised or not, which

deserves some comments.

The formulas used in uncertainty analysis [formula (14) in

AT99 for OLS, formulas (36,37) in AS03 for TLS] are only

precisely valid in the case where bC2 follows a Wishart dis-

tribution, i.e. without regularisation. For the sake of simplic-

ity, we prefer not to use a regularised estimate bC2 here,

following AT99 and AS03, in order to use exactly the same

approach for uncertainty analysis. The use of a regularised bC2

(say bCI2
), although potentially attractive, would require the

distributions given in the formulas mentioned above (which

are Fisher distributions in both cases) to be completely re-

derived, which is well-beyond the scope of this paper. Note

that the TLS formula in AS03 was given under the assumption

of a high signal-to-noise ratio. A detailed assessment of the

appropriate signal to noise range is potentially of interest, but

is also beyond the scope of this paper.

We emphasize that, under the same assumptions, the use

of a regularised bCI1
together with a classical empirical

estimate bC2 leaves the full algorithm virtually unchanged.

Some small technical changes appear however, compared

to previous studies, in the preparation of the sample Z1 used

for computing bCI1
.

First, in a 110-year diagnosis, it is quite common to

concatenate spatio-temporal vectors corresponding to

overlapping periods, e.g. from the same control simulation,

into Z1 (see e.g. AS03). This slightly increases the accuracy

of the resulting estimate. In such a case, the columns of Z1

are not independent and the estimation of a number of

equivalent degrees of freedom is required. In the case of

ROF, the LW estimate is designed for independent reali-

sations. If some dependency occurs between the realisa-

tions in Z1, the coefficients k and q are no longer optimally

estimated, and the accuracy of the estimate bCI1
is

decreased. Consequently, we use non-overlapping periods

in Z1 here, and compute the LW estimate assuming these

realisations to be independent. Note that the case of Z2 is

different, and that bC2 may be computed from dependent

realisations, provided that its sampling distribution is cor-

rectly taken into account in the uncertainty analysis. For

the sake of simplicity in the present application, both

samples Z1 and Z2 consist of non-overlapping periods,

which are assumed to be independent. We also choose to

construct two samples of the same size (i.e. n1 = n2), with

the data provided by each CGCM split between both

samples.

Second, the LW estimate is designed for a full-ranked

covariance matrix, because regularisation with the identity

matrix implies that the regularised matrix estimate is

always full-ranked. In the pre-processing described above,

the computation of anomalies with respect to the mean over

the full period means that this condition is broken. More

precisely, for a 110-year period, the dimension of y would

be 275 in truncation T4, but the rank of its covariance

matrix is 250 (computation of anomalies is equivalent to

removing one time-step, i.e. 25 coefficients). So the sta-

tistical analysis will be performed within a subspace of

dimension 250 in order for the covariance matrix to be full-

ranked. The technique used to achieve this dimension

reduction is found to have a very small impact on the

results.

Finally, the full implementation of ROF for both OLS

and TLS statistical models is provided on-line as described

in ‘‘Appendix 2’’.

3.4 Residual consistency test

A residual consistency test was introduced by AT99 to

check that the estimated residuals in statistical model (1) or

(1–2) are consistent with the assumed internal climate

variability. Indeed, as the covariance matrix of internal

variability is assumed to be known in these statistical

models, it is important to check whether the inferred

residuals are consistent with it; i.e., that they are a typical

realisation of such variability. If this test is passed, the

overall statistical model can be considered suitable. If this

test is rejected, then at least one assumption should be
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revised. Rejection may occur if, e.g., the estimated internal

variability is too low, the expected response patterns are

not correct, etc.

Here, we propose to adapt the residual consistency test

introduced by AT99 and AS03, in order to make it more

suitable in the context of ROF. The proposed modification

primarily involves the estimation of the null-distribution of

this hypothesis test. This modification is done with bC1

regularised and bC2 unregularised. The potential benefit of

using two regularised estimates (e.g. in terms of the power

of the statistical test), or other variations, is not assessed

here but would impact the estimation of the null-distribu-

tion presented below.

3.4.1 OLS case

The first residual consistency test for optimal fingerprinting

was introduced by AT99 in the context of the OLS statis-

tical model. Two formulas were provided to implement the

test, corresponding to whether the estimation uncertainty

on bC2 was accounted for [formula (20) in AT99], or not

[formula (18) in AT99].

A careful analysis of formula (20) from AT99, and

numerical simulations, show that this formula is suitable in

the case where n2 � n, where n denotes the dimension of

y. This formula seems less appropriate in other cases,

however. Some evidence supporting this conclusion is

provided in ‘‘Appendix 3’’. This discrepancy with AT99 is

important because n is much closer to n2 with ROF. Even

cases where n [ n2 are encountered in many optimal fin-

gerprinting studies. Strictly speaking, the distribution of the

residual consistency test variable is theoretically not known

with ROF. For instance, the use of the LW estimate for

prewhitening, instead of the exact covariance matrix C,

means that even formula (18) from AT99 is not perfectly

satisfied (see ‘‘Appendix 3’’).

Because parametric formulas are not known, we propose

to evaluate the null distribution D of the statistical variable

used by AT99 via Monte Carlo simulations. The Monte

Carlo algorithm consists of reproducing the whole proce-

dure, and requires y, Z1 and Z2 to be simulated. The input

parameters required for implementing such a Monte Carlo

simulation are X (i.e. the expected response to external

forcings) and C. A difficulty arises here because the true

value of C is not known (the situation is different for X, as

X is assumed to be known in the OLS approach). The

resulting distribution D may depend on the initial value

chosen for C. An illustration of the results from such a

simulation is provided in ‘‘Appendix 3’’. It suggests that

the discrepancies between these formulas are substantial,

and the use of one instead of another may have a strong

impact on the result of the residual consistency test. It also

suggests that the sensitivity of the simulated null-distribu-

tion to the value of C used is weak.

3.4.2 TLS case

Similarly to what was done in AT99, the residual consis-

tency test was extended to the TLS statistical model by

AS03. Inference under the TLS statistical model is based

on the singular value decomposition of the concatenated

matrix M = [Y, X], which is an n 9 (l ? 1) matrix. Let ki

be the sorted singular values of M, and ui the corresponding

singular (l ? 1)-vectors. Two formulas were proposed by

AS03. First, if the estimation uncertainty on bC2 is not taken

into account [formula (26) in AS03], the residual consis-

tency test is based on kmin
2 = kl?1

2 . Second, if the estima-

tion uncertainty on bC2 is taken into account [formula (35)

in AS03], the residual consistency test is based on a cor-

rected singular value bk2
lþ1 (see formula (34) in AS03).

AS03 used the notation bk2
min, which is potentially ambig-

uous here because bk2
min (i.e. the smallest bk2

i ) does not

necessarily correspond to bk2
lþ1 (i.e. the corrected singular

value corresponding to the last singular vector ul?1 of M).

We based our computations on bk2
lþ1.

Demonstrations of these formulas were not provided by

AS03. However, based on numerical simulations, it seems

that the assumption of a high signal-to-noise ratio is still

required here. It is also fairly clear that, similarly to the

OLS case (cf ‘‘Appendix 3’’), the use of an estimated

covariance matrix bC1 for prewhitening (or optimisation) is

not accounted for in this null distribution.

This is why we propose, in line with the OLS case, to

evaluate the null distribution of the residual consistency

test via Monte Carlo simulations based on bk2
lþ1 in order to

apply this test with ROF. Here again, the Monte Carlo

procedure has two input parameters: C and X, where X

denotes the true (i.e. noise-free) version of the simulated eX

[cf Eq. (2)]. The resulting null distribution depends on

these two parameters. Unlike the OLS case, however,

additional numerical simulations (not shown) suggest that

the value used for C may have a substantial impact on the

estimated null-distribution. Note that the value used for X

is found to have less impact. This uncertainty regarding the

null-distribution, and thus on the p value of the test,

requires the analysis of the test result to be done very

carefully.

An illustration of the results from such simulations is

provided in ‘‘Appendix 4’’, in realistic cases. Some dif-

ferences appear between the parametric formulas by AS03

and the Monte Carlo distribution in these cases, as the

dimensionality increases. Note however that smaller
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discrepancies are found when the high signal-to-noise ratio

assumption is more clearly satisfied. Unlike the OLS case,

however, the use of parametric formulas appears to be too

conservative in the TLS case. The values of bk2
lþ1 provided

by the Monte Carlo simulations are smaller than expected

under the parametric distributions (whether the v2 or the

Fisher distribution is considered). So, the use of parametric

formulas in these cases would result in too frequent

acceptance of the null hypothesis. In particular, H0 may be

accepted, while the test variable is well outside its null

distribution.

Then, the same Monte Carlo procedure was used with

EOF projection for some values of the truncation k, in

order to allow a direct comparison with the ROF results

(see e.g. Sect. 4.2.2). An illustration of the results from

these simulations is also provided in ‘‘Appendix 4’’. The

same type of discrepancies as in ROF are found with the

AS03 distribution. As these discrepancies are related to the

dimensionality, they increase with the truncation k.

In the following (Sect. 4), the p value of the residual

consistency test is estimated from the null-distribution as

simulated by MC simulations performed with input

parameters C and X as follows: C is the covariance matrix

as estimated by the LW estimate from the full sample of

control segments Z, and X is the expected response as

simulated by the CNRM-CM5 model. It must be noted that,

based on other MC simulations performed with other and

realistic values for C, the null-distribution seems to be

conservative (meaning that the p values are overestimated).

Further results shown in Part II are consistent with this

conclusion.

4 Results

Two types of results are presented in order to compare

ROF to the use of EOF projection. We first assess the

accuracy of each approach based on numerical idealised

Monte Carlo simulations. We then apply both methods to

data from historical simulations performed with the

CNRM-CM5 model. Most of these results are analyses of

the respective contributions of two (ANT ? NAT) or three

(GHG ? AER ? NAT) external forcings on simulated

global annual mean temperature over the 1901–2010

period.

4.1 Monte Carlo simulations

Idealised Monte Carlo simulations are first implemented in

order to evaluate the accuracy of each method. The accu-

racy metric is the mean square error of the scaling factor

estimates. We use the following simulation protocol.

We first select some realistic parameters C, X and b. C

is estimated from the whole set of simulations mentioned

above for estimating internal climate variability (see Sect.

2.2). Two climate change patterns xi, respectively associ-

ated with all anthropogenic (ANT) and natural forcings

(NAT), are computed from ensembles from the CNRM-

CM5 model. Note that xi is here a vector of dimension

p = 275, while C is a p 9 p matrix. Finally, the ‘‘true’’

scaling factors used in numerical simulations are 1 for both

forcings.

Second, given these fixed parameters, Monte Carlo

simulations are performed in order to provide virtual data

for the optimal fingerprint methods, i.e. y, Z1 and, in the

TLS case, eX . y is simulated following statistical model

(1), with a random term e. Z1 consists of random vectors

with covariance C. In the OLS case, the parameters xi are

assumed to be known and therefore are directly available

for the estimation procedure. In the TLS case, exi are

simulated following Eq. (2), with a random term exi
. The

covariance of exi
is C divided by the virtual number of

model simulations used to evaluate x (see Sect. 3.1),

fixed at 10 and 6, respectively, for the ANT and NAT

forcings (similarly to what was actually available from

CNRM-CM5 ensembles). Note that the simulation of

virtual sets Z2 is not required here because the methods

are evaluated with respect to the mean square error of the

scaling factor estimates, so the uncertainty analysis on bb
is not required.

Third, both versions of the optimal fingerprint algorithm

(i.e. ROF and EOF projection) are applied to the virtual

data y, X (or eX) and Z1, in order to estimate the scaling

factors b. The estimated values are then compared to those

used in the simulations, namely 1. This allows us to

compute the estimation error of the whole algorithm.

Results from 8 simulations are presented in Fig. 1.

Simulations were carried out for both the OLS and the TLS

statistical model, and for different assumptions regarding

the number of independent realisations available in the

sample Z1, namely n1 = 30, n1 = 75, n1 = 150, or

n1 = 300. Note that the case n1 = 150 is the most realistic

(i.e. the closest to the application presented in Sect. 4.2).

The two versions of the optimal fingerprint method are

compared in each case. The perfect case where the matrix

C is known is also represented in order to illustrate the

accuracy of the ‘‘perfectly optimised’’ OF estimate. The set

Z1, only used for estimating C, is then useless, so the results

do not depend on n1. In each case, the mean square error of

the b estimate is computed from N = 10000 simulations. It

should be noted that, similarly to the real case, the trun-

cation parameter k cannot be higher than 250. This is due to

the fact that, as mentioned above, the rank of C is 250.

Consequently, the ranks of Z1 and bC1 cannot be higher than
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250 either. In the cases where n1 \ 250, the rank of bC1 is

n1, and k cannot exceed n1.

This figure shows that ROF is more accurate than EOF

projection in all cases considered. This result is relatively

strong, because it occurs whatever the selected value of

k selected. It is also robust to the choice of the OLS or TLS

statistical model, at least over a broad range of values for

the parameter n1. This result shows that in addition to being

simpler (because it avoids the difficult choice of the

parameter k), ROF should be preferred because it allows a

more accurate estimation of b.

Additional valuable information comes from the illus-

tration that the accuracy of EOF projection is higher when

k ranges from a few tens to, say, two hundred (if

TLSOLS

kk

k k

k k

k k

n 1
=

30
n 1

=
75

n 1
=

15
0

n 1
=

30
0

Fig. 1 Mean square error of the b-estimate, as evaluated from Monte

Carlo simulations for ROF (red), EOF projection (blue) and the

idealised case where the matrix C is known (black), as a function of

the truncation k. Simulations were made for both OLS and TLS

statistical models, and under different assumptions regarding the size

of the sample Z1 (n1 = 30, 75, 150, 300)
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n1 = 300). This provides some additional justification for

the choice of k made by S06. It should also be noted that

such Monte Carlo simulations could be potentially valuable

in providing a criterion for selecting a value of the trun-

cation parameter k. Here, the criterion is the mean square

error of the corresponding estimator. An alternative,

sometimes used in previous studies, is to use the residual

consistency test when selecting k. This option was dis-

cussed first by AT99, which showed that the consistency

test failed when the values of the truncation parameter

k were increased. This phenomenon was partly explained

by a defect in the estimation procedure, as follows. C is

commonly estimated by using the empirical estimate

computed from a typically small sample Z1. This is the

reason why the lowest eigenvalues of the covariance matrix

are underestimated. Such an underestimation may explain

why residuals are not consistent with the assumed internal

variability if k is too large; i.e., if some underestimated

eigenvalues are taken into account. Our Monte Carlo

simulations even allow us to go one step further. If the

smallest eigenvalues are underestimated, the prewhitening

used for optimisation in the scaling factor estimation would

be deteriorated. It can then be expected that the mean

square error of the scaling factors estimate will also be

deteriorated (i.e. increased). The results shown in Fig. 1

indicate that this does occur (with the mean square error

increasing with truncation), but mainly for high truncation

levels (typically k [ 100 in the case where n1 = 150). It

suggests that the impact of underestimating the smallest

eigenvalues in bC1 is relatively low for smaller values of k.

In the case of ROF, the use of a regularised estimate

alleviates this problem because the smallest eigenvalues

are no longer underestimated.

Figure 1 also shows that the accuracy of the b estimate

is higher in the case of the OLS statistical model. This is

expected because the noise exi
is added in the TLS case,

increasing the uncertainty. Note, however, that in the real

world, the OLS approach is applied while the response

pattern really is contaminated with noise. In such a case,

the OLS estimate of b, based on ex instead of x, is less

accurate than the TLS estimate (not shown). Finally, Fig. 1

illustrates how the accuracy of both versions increases with

the parameter n1: both curves are closer to the black

straight line when n1 increases. This is expected, too,

because the higher n1, the more accurate the estimate bC1 of

C, and thus bb.

Note that these results are qualitatively similar to the

power study illustrated in R09. The novelty lies in the

illustration of the accuracy of ROF in the case of attribution,

the use of initial values C and X corresponding to the global

scale, and the illustration on both OLS and TLS statistical

models, and for several values of n1.

4.2 Application to historical simulations

The second step in comparing the two versions involves the

application to historical simulations performed with the

CNRM-CM5 climate model.

This application is based on the ensembles of simula-

tions performed with the CNRM-CM5 model, and on the

set of control simulations taken from CMIP archives. Such

an application is partly idealised, because data from the

same model (but not from the same ensemble of simula-

tions) are used as pseudo-observations, and as expected

responses to each forcing. The TLS statistical model takes

into account the uncertainty in the estimate of the expected

response to forcings, whereas the OLS statistical model

does not, so this section focuses on the TLS approach. TLS

has also been the most widely used method over the last

decade. In addition to presenting results from ROF, this

section provides a comparison with EOF projection in

terms of scaling factor estimates.

4.2.1 Individual comparisons

Figure 2 illustrates the results obtained from one historical

simulation (HISTr1) with a 2-forcing analysis (ANT ?

NAT), based on T4 spherical harmonics in both cases. It

appears from this example that the results from ROF are

very consistent with those obtained by applying EOF

projection. This is particularly true in the case of the ANT

forcing, where the results obtained by using EOF projec-

tion are only very slightly sensitive to the choice of trun-

cation. This is also mainly true in the case of the NAT

forcing, where the best estimate and the confidence interval

from ROF are very close to the one provided by EOF

projection over a wide range of values of k (e.g. from

k ^ 10 to k ^ 120 here). Note that the comparison is only

presented for one historical simulation but the results are

qualitatively very similar for the other simulations.

Figure 3 illustrates the same kind of results in the case

of a 3-forcing analysis (GHG ? AER ? NAT), still based

on T4 spherical harmonics. Some agreement is also found

between the two versions, and the results from ROF are

close to the results provided by EOF projection at some

truncation levels. However, this particular case provides an

illustration of how the results from EOF projection may be

sensitive to the choice of k. For instance, confidence

intervals for bGHG or bAER, as estimated at different trun-

cations k, are virtually disjoint (e.g. 35 \ k \ 45 vs

90 \ k \ 110). The conclusion with respect to detection

(i.e. acceptance of b = 0), or attribution (i.e. acceptance of

b = 1) also depends on k. Due to this sensitivity of the

results from EOF projection, the agreement between the

two versions occurs at different truncation levels for the

three external forcings considered.
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In Figs. 2 and 3, it is worth noting that the confidence

intervals from ROF are somewhat smaller than the ones

provided by EOF projection. This occurs in particular over

the range of truncations providing results similar to ROF.

This result, which is consistent with a more accurate esti-

mate in terms of the mean square error, will be more

clearly illustrated in Fig. 5.

4.2.2 Overall results

Figures 4 and 5 show the results obtained when applying

ROF and EOF projection to each of the 10 members of the

HIST ensemble. The results from ROF are illustrated for

projections onto spherical harmonics from the largest to

smaller scales (T0, T1, T2 and T4 spherical harmonics).

The use of T0, T1 or T2 spherical harmonics may be

regarded as a way of reducing the spatial dimension of the

data with respect to the T4 case. T0 means that only the

global average is considered (spatial dimension equals one)

over 11 decades, so the size of y is 11. In truncation T1

(resp. T2, T4), the spatial dimension taken into account is 4

(resp. 9, 25), resulting in a vector y of size 44 (resp. 99,

275). The results from EOF projection are shown only for

two truncations (k = 15 and k = 30). These levels have

been used in a recent study by Gillett et al. (2012), and are

representative of the truncation levels typically used in

previous studies (e.g. S06). The results are shown both in

terms of scaling factors (best estimates and confidence

intervals) and, in the case of ROF, the p value from the

residual consistency test.

First, the results obtained by applying ROF to T4

spherical harmonics deserve some comment. Note that

these results correspond to the ones shown in Figs. 2 and 3

(still for ROF).

The 2-forcing analysis (Fig. 4, case ROF, T4) shows

that the results obtained from different simulations are very

consistent with one another, and confidence intervals are

relatively small. For both forcings, the estimated scaling

factors are consistent with the expected value, 1. Best

estimates are distributed slightly above or slightly below

this value, so no clear bias appears. Confidence intervals

include unity in most cases, which indicates some consis-

tency between the historical simulation analysed and the

expected responses involved. Detection (i.e. rejection of

ROF EOF projection

kk
NATGHG

Fig. 2 Scaling factor best-estimates and their 90 % confidence

intervals, as estimated from the CNRM-CM5 historical simulation

HISTr1 over the 1901–2010 period, in a 2-forcing analysis. Results

are shown under the TLS statistical model, based on T4 spherical

harmonics, for ROF (left) and for EOF projection (right), as a

function of the truncation k

ROF EOF projection

kkk

NATAERGHG

Fig. 3 Scaling factor best-estimates and their 90 % confidence

intervals, as estimated from the CNRM-CM5 historical simulation

HISTr1 over the 1901–2010 period, in a 3-forcing analysis. Results

are shown under the TLS statistical model, based on T4 spherical

harmonics, for ROF (left) and for EOF projection (right), as a

function of the truncation k
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b = 0) occurs for each simulation and each forcing. Note

that this is not necessarily expected, and shows that the

signal-to-noise ratios from the CNRM-CM5 model are high

enough to allow detection of each external forcing. Note,

too, that the scaling factors estimated by ROF for the NAT

forcing are more sensitive to the simulation, and that the

confidence intervals are larger, which is consistent with a

lower signal-to-noise ratio than for the ANT forcing.

The 3-forcing analysis (Fig. 5, case ROF, T4) also illus-

trates the accuracy of ROF. Best estimates are still distrib-

uted around unity. The estimated confidence intervals are

still consistent with 1, but inconsistent with 0, for virtually

each forcing and each simulation. The biggest difference

between the 2-forcing and the 3-forcing analyses lies in the

size of the confidence intervals estimated. The uncertainty

on the scaling factors from both GHG and AER forcings is

much larger than that associated with the ANT forcing in the

2-forcing analysis. This provides a useful illustration of how

uncertainty increases as the number of external forcings

considered increases in such an analysis. Note, however, that

this phenomenon may also be partly explained by the size of

the ensembles used for estimating the response to each

forcing (e.g. 6 for GHG versus 10 for ANT) and by some

compensation between the GHG and AER forcings (e.g.

ROF, T1ROF, T0
Scaling factors RCT Scaling factors RCT

ROF, T4ROF, T2
Scaling factors RCT Scaling factors RCT

EOF Proj (k=15) EOF Proj (k=30)
Scaling factors RCT Scaling factors RCT

Fig. 4 Results of the attribution analysis applied to global temper-

atures from each simulation in the HIST ensemble (10 members) over

the 1901–2010 period, in a 2-forcing (ANT ? NAT) analysis. The

figure shows: results from ROF, with several choices on the number

of spherical harmonics used (T0, T1, T2 or T4 spherical harmonics),

and from EOF projection, based on T4 spherical harmonics, for two

choices of the number of EOFs retained (k = 15 or k = 30). Results

are presented, in each case, both in terms of the scaling factor best

estimates and their 90 % confidence intervals (left), and in terms of

the p value from the residual consistency test (RCT, right). All these

results were obtained by with the TLS algorithm
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warming vs cooling, with rather similar temporal shapes),

making the sum of the two (i.e. the response to ANT) more

constrained than each component (i.e. GHG or AER).

Conversely, the best estimates and confidence intervals for

the NAT forcing are virtually identical to those obtained in

the 2-forcing analysis (i.e. results in both cases are virtually

the same for each simulation).

For both the 2-forcing and 3-forcing analyses, the results

of the residual consistency test (RCT) may be regarded as

somewhat unexpected. In all cases, the p value is high,

indicating that the test was passed. Nevertheless, the

p values obtained are actually too high, and do not appear

to follow a uniform distribution on [0,1] as expected under

H0. This phenomenon is discussed further below.

Secondly, the comparison of the results from ROF under

different filtering of the data (spatial dimension) allows us

to discuss the benefits of taking a relatively high spatial

dimension into account. In a 2-forcing analysis, the impact

of increasing the spatial dimension is rather low in terms of

best estimates and confidence intervals. In particular, the

scaling factor estimates are only slightly more constrained

with a high spatial dimension (i.e. the typical size of the

confidence intervals is somewhat reduced; this is clearer in

the case of the NAT forcing). This is fairly consistent with

a primarily global response to the ANT and NAT forcings.

In a 3-forcing analysis, the conclusion is clearer, as the size

of the confidence intervals is more substantially reduced

when the dimension increases. This reduction is particu-

larly clear when the results with T0-truncation are com-

pared with those for T4-truncation (e.g. the size of the bAER

confidence intervals is reduced by about a factor of 2), but

some reduction also occurs with T1 or T2 spherical har-

monics. This is also clearer in the case of the GHG and

AER forcings, which makes sense physically, because the

geographical patterns of response help distinguish AER

from GHG.

The results from the residual consistency test are much

more dependent on the choice of the spatial dimension,

ROF, T1ROF, T0

RCTScaling factorsRCTScaling factors

ROF, T4ROF, T2

RCTScaling factorsRCTScaling factors

EOF Proj (k=15) EOF Proj (k=30)

RCTScaling factorsRCTScaling factors

Fig. 5 Same as in Fig. 4, in the case of a 3-forcing analysis (GHG ? AER ? NAT)
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both under 2-forcing and 3-forcing analyses. With T0

spherical harmonics, the p values from the RCT are scat-

tered nearly as expected (i.e. roughly consistent with the H0

uniform distribution). There is, however, a slight tendency

towards smaller p values than expected (e.g. 3 out of 10

cases under the 10 % threshold). This may be due to a

variability of the decadal global mean temperature in the

CNRM-CM5 model being slightly higher than that simu-

lated on average by CMIP models (a precise computation

indicates that the variance is 25 % higher in CNRM-CM5).

With other resolutions, the p values are closer to 1 and, as

the resolution increases, higher than expected. For instance,

there are no p values lower than 0.5 at T2 or T4 resolu-

tions. This suggests that the null distribution of the RCT,

which is used to compute the p value, is not suitably

estimated. Several explanations may be involved here.

Primarily, as mentioned in Sect. 3.4, the null-distribution

used here was derived from Monte Carlo simulations,

which are somewhat sensitive to the value of the input

parameters used, in particular the covariance matrix C. MC

simulations based on alternative, plausible values of C (e.g.

other estimates than the LW estimate), may provide null-

distributions in better agreement with the values found in

this perfect model framework. However, as the true value

of C remains unknown, we choose to continue to use the

LW estimate to simulate the null-distribution, as it has been

shown to be well-conditioned for large-dimensional

covariance matrices. Therefore, the results from the RCT

must be interpreted carefully. Finally, note that other

potential explanations of this phenomenon may also be

involved. For instance, the spatio-temporal variability from

CNRM-CM5 taken as a whole (i.e. not only the variability

of the global mean) could be lower than the assumed CMIP

variability.

Third, the comparison between ROF and EOF projection

is illustrative. The most important comment stems from the

comparison of the results from the two approaches under

the 3-forcing analysis. In that case, the best estimates as

computed by EOF projection are significantly more dis-

persed than those of ROF (case T4), and the confidence

intervals obtained with EOF projection appear to be sig-

nificantly larger. This occurs for both k = 15 and k = 30.

This is very consistent with the results from the Monte

Carlo idealised experiments, essentially showing that the

EOF projection estimate is less accurate with respect to the

mean-square error. Although both techniques are based on

T4 spherical harmonics, the reduction of the spatial

dimension involved in EOF projection (projection onto

k EOFs) leads to the loss of some of the spatial information

that discriminates between forcings. This results in a less

accurate estimation.

The comparison of EOF projection with the results

obtained with ROF under different pre-processings is also

interesting. A first comment concerns the size of the confi-

dence intervals computed, which appears closer to that

obtained for ROF with T0 or T1 spherical harmonics (clearer

under 3-forcing analysis). A second comment concerns the

results obtained from each individual historical simulation.

In both cases, the results from EOF projection appear to be

very close to the results obtained with ROF using only the

global average (i.e. T0), or T1 spherical harmonics. This

occurs in terms of both best estimate and confidence interval.

This also occurs, in particular in the case k = 15, in terms of

the p value from the RCT. This suggests that, with such a

treatment, the spatial shape of each pattern constrains the

scaling factor estimate very little. The similarity, if any, is

higher than with the results obtained with ROF based on T4

spherical harmonics. Again, this suggests that the spatial

information is rather weakly involved.

5 Conclusions

The Regularised Optimal Fingerprinting (ROF) version of

the optimal fingerprinting algorithm is relevant to the attri-

bution problem, under both the OLS and the TLS statistical

models. The implementation described here is very close to

those presented in AT99 or AS03, and leaves the majority of

their algorithms unchanged. In particular, ROF may be

applied with a treatment of internal climate variability based

on the computation of two independent estimates from a set

of long control simulations (or equivalent), as was done in

AT99 and AS03. The main difference with other versions of

the optimal fingerprinting method then lies in the use of a

regularised estimate of the internal variability covariance

matrix for optimisation (or, equivalently, for prewhitening).

Another important difference comes from the implementa-

tion of the residual consistency test, where a more accurate

estimation of the null-distribution is proposed.

ROF avoids the difficult and partly arbitrary choice of a

truncation k, which is required in EOF projection. In this

respect, ROF helps to make the implementation of optimal

fingerprinting more objective. However, some arbitrary

choices are still required with ROF in the pre-processing

step. In particular, the problem of choosing an appropriate

degree of spatial and temporal filtering remains.

The accuracy of ROF is higher than that of EOF pro-

jection in all the cases considered in this paper. Accuracy is

understood here with respect to the mean square error of

the scaling factor estimates. This result was shown to hold

for both the OLS and TLS statistical models, for all pos-

sible EOF truncations, and for several assumptions

regarding the number of independent realisations available

from control simulations. This supports the conclusion that

ROF is also a little more efficient than previous

implementations.
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The application of ROF to idealised data (namely

historical simulations from a CGCM) reinforces these

conclusions. First, it provides a realistic illustration of the

benefits of avoiding the choice of the EOF truncation k.

Second, it shows that the results in terms of the accuracy

of the scaling factor estimation are improved with ROF

when the dimension of the data is not reduced a priori. In

particular, the results provided by the ROF method based

on T4 spherical harmonics are more accurate than those

provided by EOF projection at the same spatial resolution.

The results provided by ROF based on a T4 spatial res-

olution are also more accurate than those obtained with

the same method at lower spatial resolutions (e.g. global

mean only).

ROF then allows us to deal more objectively and a little

more efficiently with the typically high dimensions of cli-

mate datasets. All applications illustrated in this paper

were, however, carried out after an initial large reduction of

the dimension via pre-processing (both in space and time).

This first step of the study remains partly arbitrary and

appears difficult to overcome from a statistical point of

view. In this respect, the development of a wholly objective

version of the optimal fingerprinting algorithm, which

would be able to pre-process the data optimally by itself,

remains a challenge.

Finally, we have focused only on an idealised analysis

here, as the main goal of this paper is to provide a first

illustration of the capabilities of ROF for analysing global

changes with respect to attribution. The application of this

new method to real observations is addressed in Ribes and

Terray (2013), based on the ensembles of simulations

recently provided by CMIP5. Another potentially attractive

extension of this work, still in the methodological area,

would be to extend ROF to the recently developed error in

variables method (EIV, see Huntingford et al. 2006),

designed for multi-model attribution studies.

Appendix 1: Simulations used for evaluating internal

variability

We list here the simulations used to estimate the internal

climate variability. The control simulations with pre-

industrial conditions are presented in Table 1 (CMIP3

models), and in Table 2 (CMIP5 models). The name of the

global coupled model is given together with the length of

the simulation, and the number of non-overlapping 110-

year segments obtained. The CMIP5 ensembles of simu-

lations used are listed in Table 3, with the name of the

model, a subjective name of the ensemble (basically which

external forcings were imposed), and the number of sim-

ulations, which is also the number of independent realisa-

tions provided by the ensemble.

Appendix 2: On-line scripts

The main scripts used in this paper are available on-line via

the CNRM-GAME website at the following URL: http://

www.cnrm-game.fr/spip.php?article23&lang=en. The rou-

tines are written for Scilab, which is a free open-source

software package for numerical computation, similar to

MatLab. The package allows ROF to be applied in both

OLS and TLS statistical models.

The purpose of this package is similar to that of the

Optimal Detection Package (ODP), maintained by Dáithı́

Stone, available at (http://web.csag.uct.ac.za/daithi/idl_lib/

detect/idl_lib.html) and written for IDL software. We

should point out that the ODP probably includes more

options and permits the use of a wider range of statistical

analyses introduced over the last 15 years. The interest of

our package lies in the implementation of ROF and also in

its availability in free, open-source software. Note that our

routines were developed independently of the ODP.

At present, two differences have been noted between

ODP and our package, both with the TLS statistical model.

The first involves the possibility of computing 1-dimen-

sional confidence intervals that have some bounds but that

Table 1 List of CMIP3 control simulations used for evaluating the

internal climate variability

Model name Length (years) ne

bccr_bcm2_0 250 2

cccma_cgcm3_1 1,001 9

cccma_cgcm3_1_t63 350 3

cnrm_cm3 500 4

csiro_mk3_0 380 3

csiro_mk3_5 330 3

gfdl_cm2_0 500 4

gfdl_cm2_1 500 4

giss_aom 251 2

giss_model_e_h 380 3

giss_model_e_r 500 4

inmcm3_0 330 3

ipsl_cm4 500 4

miroc3_2_medres 500 4

miub_echo_g 341 3

mpi_echam5 506 4

mri_cgcm2_3_2a 350 3

ncar_ccsm3_0 230 2

ncar_pcm1 350 3

ukmo_hadcm3 341 3

ukmo_hadgem1 240 2

For each simulation, the name of the global coupled model, the length

of the simulation used, and the number ne of non-overlapping 110-

year segments taken from this simulation are indicated
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include an infinite slope. The second concerns the uncer-

tainty analysis in TLS. This treatment is described in AS03

and involves the computation of revised singular values k̂i

of the matrix Z (following the notation of AS03). We used

the formula mentioned in AS03 (formula (34)), i.e.

k̂2
i ¼

uT
i ZZT ui

1
l uT

i P!̂2!̂
T
2 PT ui

: ð3Þ

The formula implemented within the current version of

ODP can be written as

k̂2
i ¼

uT
i ZZTui

1
l ðu

#2
i Þ

TðP!̂2Þ#21n2

; ð4Þ

where A#2 denotes the matrix with entries (aij
2)i,j if

A = (aij)i,j, and where 1n2
is a vector of dimension n2, with

1n2
¼ ð1; . . .; 1ÞT .

Table 2 List of CMIP5 control simulations used for evaluating the

internal climate variability

Model name Length (years) ne

ACCESS1.0 250 2

bcc-csm1-1 500 4

BNU-ESM 559 5

CanESM2 996 9

CCSM4 501 4

CNRM-CM5 1,000 9

CSIRO-Mk3-6-0 500 4

FGOALS-g2 250 2

FGOALS-s2 501 4

GFDL-CM3 500 4

GFDL-ESM2M 500 4

GISS-E2-H 240 2

GISS-E2-H 531 4

GISS-E2-H 240 2

GISS-E2-R 300 2

GISS-E2-R 401 3

GISS-E2-R 401 3

GISS-E2-R 550 5

HadGEM2-ES 241 2

inmcm4 500 4

IPSL-CM5A-LR 1,000 9

IPSL-CM5A-MR 300 2

IPSL-CM5B-LR 300 2

MIROC-ESM 531 4

MPI-ESM-MR 500 4

MPI-ESM-P 350 3

MRI-CGCM3 500 4

NorESM1-M 501 4

For each simulation, the name of the global coupled model, the length

of the simulation used, and the number ne of non-overlapping 110-

year segments taken from this simulation are indicated

Table 3 List of CMIP5 ensembles of simulations used to estimate

the internal climate variability

Model name Ensemble name Number of

simulations

ne

bcc-csl1-1 HIST 3 2

CanESM2 HISTGHG 5 4

CanESM2 HISTNAT 5 4

CanESM2 HIST 5 4

CanESM2 HISTAER 5 4

CCSM4 HISTANT 4 3

CCSM4 HISTGHG 3 2

CCSM4 HISTNAT 4 3

CCSM4 HIST 6 5

CNRM-CM5 HISTANT 10 9

CNRM-CM5 HISTGHG 6 5

CNRM-CM5 HISTNAT 6 5

CNRM-CM5 HIST 10 9

CSIRO-Mk3-6-0 HISTANT 5 4

CSIRO-Mk3-6-0 HISTGHG 5 4

CSIRO-Mk3-6-0 HISTNAT 5 4

CSIRO-Mk3-6-0 HIST 10 9

CSIRO-Mk3-6-0 HISTAER 5 4

CSIRO-Mk3-6-0 HISTwAER 5 4

CSIRO-Mk3-6-0 HISTwAERoA 5 4

FGOALS-g2 HISTNAT 2 1

GFDL-CM3 HISTANT 3 2

GFDL-CM3 HISTGHG 3 2

GFDL-CM3 HISTNAT 3 2

GFDL-CM3 HIST 5 4

GFDL-CM3 HISTAER 3 2

GISS-E2-R HISTANT 5 4

GISS-E2-R HISTGHG 5 4

GISS-E2-R HISTNAT 5 4

GISS-E2-R HIST 5 4

GISS-E2-R HISTp2 5 4

GISS-E2-R HISTp3 5 4

GISS-E2-R HISTwSI 5 4

GISS-E2-H HISTANT 5 4

GISS-E2-H HISTGHG 5 4

GISS-E2-H HISTNAT 5 4

GISS-E2-H HIST 5 4

GISS-E2-H HISTwSI 5 4

HadCM3 HIST 10 9

HadGEM2-ES HISTGHG 4 3

HadGEM2-ES HISTNAT 4 3

HadGEM2-ES HIST 4 3

IPSL-CM5A-LR HISTANT 3 2

IPSL-CM5A-LR HISTGHG 3 2

IPSL-CM5A-LR HISTNAT 3 2

IPSL-CM5A-LR HIST 5 4

IPSL-CM5A-LR HISTwAER 4 3
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Appendix 3: Consistency check within the OLS

approach

Here we discuss Equation (20) of AT99, used to construct a

residual consistency test. Both the statistical model and the

consistency check are first recalled briefly in order to

introduce the notation.

The OLS statistical model may be seen as the classical

regression model:

Y ¼ Xbþ e; ð5Þ

where CovðeÞ ¼ C is assumed to be known. The optimal

estimate of b can then be written as the generalised least-

square estimate:

bb ¼ ðX0C�1XÞ�1X0C�1Y : ð6Þ

After having estimated b, the residual term e can be

estimated by

be ¼ Y � Xbb; ð7Þ

and then we have

be0C�1
be� v2ðn� lÞ; ð8Þ

where l = rank(X).

The last equation can be used to assess whether the

estimated residuals be are consistent with the covariance

matrix C. In particular, if the estimated residuals are

greater than expected, the quantity be0C�1
be may be outside

the range of values expected in (8) (e.g. higher than the

95 % quantile of the v2(n - l) distribution). This allows a

residual consistency test based on Eq. (8) (Allen and Tett

1999) to be introduced.

As noted by AT99 themselves, the covariance matrix C

is usually not known, and is estimated from control inte-

gration. This estimation procedure means that C is only

approximately known. Let us now consider that climate

models simulate the real climate perfectly, and that the

covariance matrix that would be provided by an infinitely-

long control integration is the true one. With these

assumptions, the covariance matrices bC1 and bC2 used

respectively for computing the generalised least-square

estimate and for uncertainty analysis, satisfy

bC1�
1

n1

Wðn1;CÞ; ð9Þ

bC2�
1

n2

Wðn2;CÞ; ð10Þ

where W denotes the Wishart distribution and n1 and n2 are

the number of independent realisations used as a basis for

estimating bC1 and bC2.

Due to the uncertainty in (9, 10), bC1 6¼ C, and (8) no

longer holds. The discussion in Sect. 4 of AT99 deals with

the case where:

• the exact generalised least-square estimate is used, i.e.

bC1 ¼ C (or equivalently, no error arises from the use of

an imperfect prewhitening),

• the consistency test is based on imperfectly estimated

covariance matrix bC2, i.e. bC2� 1
n2

Wðn2;CÞ.

With these assumptions, it can be shown that

be0 bC�1
2 be ¼

be0 bC�1
2 be

be0C�1
be
be0C�1

be; ð11Þ

� n2

1

v2ðn2 � nþ 1Þ v2ðn� lÞ; ð12Þ

� n2ðn� lÞ
n2 � nþ 1

Fðn� l; n2 � nþ 1Þ ð13Þ

The formula provided in AT99 using the same

assumptions was somewhat different:

be0 bC�1
2 be � ðn� lÞFðn� l; n2Þ: ð14Þ

Both formulas are consistent, however, in the case where

n2� n. AT99 focused on the EOF projection approach, so

the size n of Y was actually the EOF truncation k (i.e.

n = k), which was rather small. Therefore, this assumption

was more reasonable.

The discrepancies between the three parametric distri-

butions mentioned above [respectively Eqs. (8), (13) and

(14)], and the D-distribution as evaluated from Monte

Carlo simulations (see Sect. 3.4), are illustrated in Fig. 6.

The Monte Carlo simulations are performed with input

parameters C and X corresponding to real-case estimated

values, at T0 and T2 resolutions: C is the covariance matrix

as estimated by the LW estimate from the full sample of

control segments Z, and X is the expected responses as

simulated by the CNRM-CM5 model (in a 2-forcing

analysis, so that l = 2).

Table 3 continued

Model name Ensemble name Number of

simulations

ne

MIROC5 HIST 4 3

MPI-ESM-LR HIST 3 2

MRI-CGCM3 HIST 3 2

NorESM1-M HIST 3 2

For each ensemble, the name of the global coupled model, the name

of the ensemble used, the size of the ensemble (i.e. the number of

simulations) and the number ne of independent 110-year segments

taken from this ensemble are indicated. Only historical simulations

are used, so each individual simulation provides one single 110-year

segment. As a consequence, ne is one less than the ensemble size
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As expected, the discrepancies between D and the

parametric formulas used by AT99 tend to be reduced when

n is much smaller than n2 (left-hand side). They become

much larger when n is close to n2 (right-hand side). In such a

case, the distributions have virtually disjoint supports, so

the use of one instead of the other would result in very

different conclusions. Conversely, the distribution defined

by Eq. (13) appears to be relatively suitable in these cases

with ROF. This close agreement between the results from

the MC simulations and formula (13), where the value of C

doesn’t appear, suggests that the null-distribution is not very

sensitive to the initial value of C in the MC algorithm.

Finally, it may be noted that the distribution D is still

well defined in the case where n [ n1, because the regu-

larised estimate bC1 is always invertible. The case where

n [ n2 is more problematic, because bC2 is then not

invertible. A D-distribution may, however, be computed

via Monte Carlo simulations by using the pseudo-inverse of

bC2. In such a case, however, the revisited parametric for-

mula provided by Eq. (13) cannot be used, because n2 -

n - 1 is negative. This is the reason why results at T4

resolution are not shown in Fig. 6.

Appendix 4: Consistency check within the TLS

approach

The discrepancies between the two parametric distribu-

tions proposed by AS03 and the null-distribution as

evaluated from Monte Carlo simulations when ROF is

used, are illustrated in Fig. 7. The Monte Carlo simula-

tions are performed with input parameters C and X cor-

responding to real-case estimated values, at T0, T2 and

T4 resolutions: C is the covariance matrix as estimated by

the LW estimate from the full sample of control segments

Z, X is the expected responses as simulated by the

CNRM-CM5 model (in a 2-forcing analysis, so that

l = 2).

The corresponding results for EOF projection are shown

in Fig. 8. The Monte Carlo simulations are then performed

with the same input parameters C and X as in Fig. 7 at T4

resolution. Then, the pre-whitening applied in the Monte

Carlo algorithm is based on EOF projection instead of

involving the LW estimate. Results are shown for several

values of the EOF truncation k, corresponding to those used

in Part II.

T0 : n =10 ,n1 = n 2 =187 T2 : n = 90 , n1 = n2 =187Fig. 6 H0 distribution of the

residual consistency test in OLS

analysis, as evaluated from

different formulas and under

different assumptions: the v2

distribution (blue), the Fisher

distribution used in AT99 (red),

the corrected Fisher distribution

given in Eq. (13) (green), and

the distribution derived from

Monte Carlo simulations (black
histogram)

T0 : n = 10 ,n1 = n2 =187 T2 : n = 90,n1 = n2 =187 T4 : n = 250,n1 = n2 =187

Fig. 7 H0 distribution of the residual consistency test in TLS analysis

for ROF, as evaluated from different formulas and under different

assumptions: the v2 distribution used by AS03 (blue), the Fisher

distribution used by AS03 (red), and the distribution derived from

Monte Carlo simulations (black histogram)
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