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Abstract Attribution of global near-surface temperature

changes is revisited using simulations from the coupled

model intercomparison project 5 and methodological

improvements from the regularised optimal fingerprinting

approach. The analysis of global mean temperature shows

that changes can be robustly detected and attributed to

anthropogenic influence. However, the differences between

results from individual models and observations are found

to be larger than the simulated internal variability in sev-

eral cases. Discrimination between greenhouse gases and

other anthropogenic forcings, based on the global mean

only, is more difficult due to collinearity of temporal

response patterns. Using spatio-temporal data provides less

robust conclusions with respect to detection and attribution,

as the results tend to deteriorate as the spatial resolution

increases. More importantly, some inconsistencies between

individual models and observations are found in this case.

Such behaviour is not observed in a perfect model frame-

work, where pseudo-observations and the expected

response patterns are provided by the same model. How-

ever, using response patterns from a model other than the

one used for pseudo-observations may lead to the same

behaviour as real observations. Our results suggest that

additional sources of uncertainty, such as modeling

uncertainty or observational uncertainty, should not be

neglected in detection and attribution.

Keywords Detection � Attribution � Climate change �
Optimal fingerprints � Global temperature

1 Introduction

The assessment of the anthropogenic contribution to

twentieth century near surface air temperature (SAT)

changes is one of the key issues in climate science. This

question has been discussed intensively in past Intergov-

ernmental panel on climate change (IPCC) assessment

reports, particularly within the framework of detection and

attribution studies (D&A). These analyses seek to quantify

the individual contributions of greenhouse gases, other

anthropogenic and natural factors to past climate change.

Many formal detection and attribution studies have used

the optimal fingerprinting (OF) approach pioneered by

Hasselmann (1979, 1993, 1997). This approach can be

framed as a statistical multi-linear regression model in

which the observations of a given climate variable are

regressed against model-based estimates of response pat-

terns to different external (anthropogenic and natural)

forcings (Hegerl et al. 1996; Allen and Tett 1999; Allen

and Stott 2003). It also requires two independent estimates

of internal variability, which are usually provided by pre-

industrial climate model simulations with constant external

forcings and intra-ensemble variability derived from the

residuals of historical simulations (using one or several

observed forcings) after subtracting the ensemble mean.

Most recent global SAT detection and attribution studies

have used a spatio-temporal analysis over the 1901–2000
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period (Stott et al. 2006; Huntingford et al. 2006). Response

patterns to various external forcings were provided by his-

torical simulations performed with four coupled general cir-

culation models (CGCMs) constrained by observed estimates

of anthropogenic and/or natural forcings. These models con-

tributed to the coupled model intercomparison exercise ver-

sion three (CMIP3) and were the only ones in CMIP3

perform attribution experiments (i.e. with only one source of

varying external forcing, the others being held constant).

The main objective of this paper is to update the results

of these previous multi-model studies using two new ele-

ments. First, we use an improved implementation of the

optimal fingerprinting technique, as described in Part I

(Ribes et al. 2013, R13 thereafter; see also Ribes et al.

2009). This variant, termed Regularised Optimal Finger-

printing (ROF), proposes a new, well-conditioned estima-

tor of the internal variability covariance matrix. This

estimator alleviates the frequently discussed truncation

sensitivity issue related to EOF projection in the standard

OF approach (Allen and Tett 1999; Allen et al. 2006). It

also allows for improved discrimination of different forc-

ing response patterns thanks to a better use of spatio-tem-

poral information. A second new element is the availability

of the new CMIP5 data sets, with many more CGCMs (10

currently, see Table 1) having performed attribution

experiments than in previous intercomparison projects.

We ask the following questions: using the three ele-

ments detailed above, can we attribute some of the recent

changes in global SAT to anthropogenic (ANT) influence?

Can we separate the relative influence of greenhouse gases

(GHG) from that of other anthropogenic (AER) and natural

(NAT) forcings? At which spatial scales? Do the main

assumptions behind the standard OF statistical method still

hold when we use spatial information?

The remainder of the paper is outlined as follows. The

observed and simulated datasets and methods are described in

Sect. 2. Results are presented in Sect. 3, structured according

to the sequence of questions listed above. A discussion

focusing on a comparison with previous studies and remain-

ing limitations as well as a summary are provided in Sect. 4.

2 Data and method

The observed temperature data is based on the median real-

isation of the HadCRUT4 merged land/sea temperature data

set (Morice et al. 2012). The HadCRUT3 observed dataset,

which is the previous version of the HadCRUT dataset

(Brohan et al. 2006), is also used in some cases to assess the

robustness of the results to slight changes in the data used.

The simulated temperature data used to estimate the response

patterns are provided by results from the CMIP5 archive

(available at: http://cmip-pcmdi.llnl.gov/cmip5/) arising from

different sets of historical simulations performed with ten

different models. The type of historical simulations differs

among the ten models (see Table 1). For instance, only a few

models have performed AER-only simulations. For this rea-

son, in this study, AER refers to all ANT forcings except

GHG, with the AER scaling factor estimated similarly to that

of R13. The size of the ensembles considered also varies

substantially, from one single simulation up to 10 members.

Note that the analysis is done over the 1901–2010 period, so

we only consider models which provide sets of historical

simulations (in particular, GHG-only and NAT-only) up to

2010. We use the same estimates of internal variability as in

Table 1 Ensembles of D&A simulations used

Climate model Experiment RIP External

forcings

Nb

runs

CNRM-CM5a HistoricalMisc r*i1p1 ANT 10

HistoricalNat r*i1p1 NAT 6

HistoricalGHG r*i1p1 GHG 6

CanESM2 Historical r*i1p1 ALL 5

HistoricalNat r*i1p1 NAT 5

HistoricalGHG r*i1p1 GHG 5

HadGEM2-ES Historical r*i1p1 ALL 4

HistoricalNat r*i1p1 NAT 4

HistoricalGHG r*i1p1 GHG 4

GISS-E2-R HistoricalMisc r*i1p109 ANT 5

HistoricalNat r*i1p1 NAT 5

HistoricalGHG r*i1p1 GHG 5

GISS-E2-H HistoricalMisc r*i1p109 ANT 5

HistoricalNat r*i1p1 NAT 5

HistoricalGHG r*i1p1 GHG 5

CSIRO-Mk3-6-0 Historical r*i1p1 ALL 10

HistoricalAnt r*i1p1 ANT 5

HistoricalNat r*i1p1 NAT 5

HistoricalGHG r*i1p1 GHG 5

IPSL-CM5A-LR Historical r*i1p1 ALL 4

HistoricalNat r*i1p1 NAT 3

HistoricalGHG r*i1p1 GHG 3

bcc-csm1-1 Historical r*i1p1 ALL 3

HistoricalNat r*i1p1 NAT 1

HistoricalGHG r*i1p1 GHG 1

NorESM1-M Historical r*i1p1 ALL 3

HistoricalNat r*i1p1 NAT 1

HistoricalGHG r*i1p1 GHG 1

FGOALS-g2 Historical r*i1p1 ALL 1

HistoricalNat r*i1p1 NAT 2

HistoricalGHG r*i1p1 GHG 1

All outputs have been downloaded from the PCMDI website

(http://pcmdi3.llnl.gov)
a For CNRM-CM5, some additional simulations have been used with

respect to the ones available on the PCMDI website
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R13. These are based on intra-ensemble variability from the

above CMIP5 experiments as well as pre-industrial simula-

tions from both the CMIP3 and CMIP5 archives, leading to a

much larger sample than previously used (see R13 for details

about ensembles). We then implicitly assume that the multi-

model internal variability estimate is reliable. Further, no

analyses are performed here based on individual model

internal variability (i.e. the internal variability as estimated

from one single model). This is mainly because the set of

independent segments that can be derived from one single

model is much smaller, leading to a less accurate estimate of

internal variability (see e.g. Fig. 1 in R13).

Standard D&A pre-processing is applied to all observed

and simulated data. This pre-processing is described in

detail in R13 and only summarised here. Model output is

first interpolated on the 5� 9 5� observational grid, and

then the spatio-temporal observational mask is applied. The

dimension of the data set is then further reduced by com-

puting decadal means and projecting the resulting spatial

patterns onto spherical harmonics. Results with resolutions

T0 (i.e. global mean only), T1, T2 and T4 will be used to

investigate the sensitivity to resolved spatial scales.

The statistical analysis is based on ROF as described by

R13. The use of the same implementation as in R13 allows a

direct comparison with results from the idealised analysis

performed in R13. The method assumes that observed dec-

adal mean near-surface temperature changes can be expressed

as the linear sum of simulated changes due to various forc-

ings, where the unknown quantities are the scaling factors

estimated in the regression. Here we apply it to both two-

forcing (ANT and NAT) and three-forcing (GHG, AER,

NAT) cases. We use only the total least square (TLS) algo-

rithm, thus accounting for the statistical uncertainty intro-

duced by taking the model response from a finite ensemble. A

residual consistency test (RCT) is also used to test whether

the regression residuals are consistent with internal variabil-

ity. The RCT implementation uses a non-parametric estima-

tion of the null distribution through Monte Carlo simulations

(see R13 for details). Note that we find that this null distri-

bution is not very sensitive to the choice of response patterns

used in the Monte Carlo simulations. All RCT results pre-

sented here are based on the simulated null-distribution with

the CNRM-CM5 patterns, and corresponding ensemble sizes.

3 Results

3.1 Global mean temperature only

3.1.1 Two-forcing analysis (ANT ? NAT)

We first apply ROF to the global mean near-surface tem-

perature using the ANT and NAT response patterns as

predictors. Detailed results, including the estimated scaling

factors, the p value from the residual consistency test, as

well as the time-series of the simulated and reconstructed

response to each forcing, are shown in Fig. 1 for the ten

models considered. Corresponding results, obtained with

the HadCRUT3 observed dataset (instead of the HadC-

RUT4 median dataset), and a slightly smaller set of control

segments to estimate internal variability, are shown in

Online Resource 1 (OR1). Note that the use of another

observed dataset impacts the computation of model data, as

another observational mask is then applied.

Detection (i.e. scaling factor inconsistent with zero) of

the ANT response pattern occurs in nine cases. The only

exception is the FGOALS-g2 response pattern. In this case,

the regression appears to be degenerate, because the NAT

response pattern (which only accounts for variations of the

solar activity in FGOALS-g2) is close to zero throughout,

and the size of the ensembles used is very small (1 or 2

members). The detection of the anthropogenic influence is

then very robust based on this diagnosis. Attribution (i.e.

scaling factor inconsistent with zero and consistent with

one) of the ANT response pattern occurs in four cases, and

fails by only a small margin in four other cases (Had-

GEM2-ES slightly underestimates, while CanESM2, IPSL-

CM5A-LR and bcc-csm1-1 slightly overestimate the ANT

response). One model (CSIRO-Mk3-6-0) seems to under-

estimate the response to the ANT forcing substantially.

The NAT response pattern can be detected and attrib-

uted using four models (CNRM-CM5, GISS-E2-H, GISS-

E2-R and bcc-csm1-1), and comes quite close when using

one additional model (IPSL-CM5A-LR). The NAT

response appears to be primarily overestimated by the

models, because the best estimates of the corresponding

scaling factor are all smaller than unity (except for FGO-

ALS-g2). Note that two models (HadGEM2-ES and

CSIRO-Mk3-6-0) have a negative (though consistent with

zero) NAT scaling factor best-estimate. The response to a

change in solar activity has opposite sign to that expected.

Discrimination between ANT and NAT forcings appears

to be robust as a result of the weak collinearity of the

corresponding response patterns. Most of these results are

also robust to the use of the previous version of the

HadCRUT dataset (see OR1).

Furthermore, five models among the eight providing

constrained scaling factors, do not pass the RCT at the

10 % level. Rejection is even quite strong for three models

(CNRM-CM5, CanESM2 and HadGEM2-ES). This result

suggests, e.g., a possible error in the global mean forced

response or an underestimation of internal variability. It

may be noted in particular that this rejection was, if not

removed, weaker based on HadCRUT3 observations

(OR1). In both cases, the models seem to have difficulty in

simulating a warming as large as observed for the first part

Application of ROF to attribution 2839
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Fig. 1 Attribution analysis

based on global average time-

series with two external

forcings. Results are shown for

ten climate models from the

CMIP5 database, in two-forcing

analysis: ANT (red) ? NAT

(blue). Left scaling factors best-

estimate (diamond) and

confidence interval; middle left

model response to each forcing,

as computed from the CGCM

outputs (solid line), and as

reconstructed by the TLS

algorithm (dotted line); middle

right global temperature time-

series, as measured in the

HadCRUT3 observations (solid

black line), as estimated directly

by the CGCM (dotted cyan

line), and as reconstructed by

the TLS algorithm (dotted black

line), with the scaled

contributions from each forcing

(other solid lines); right result

from the residual consistency

test in terms of p value. Dotted

confidence intervals are

unbounded. The global

temperature time-series

estimated by the CGCM is

computed as the addition of the

estimated responses (i.e. solid

lines in middle left). In middle

right, the TLS reconstruction of

global temperature is the

addition of the scaled responses.

On the x-axis, 1900s denotes the

1901–910 decade, 1910s

denotes the 1911–1920 decade,

etc
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of the twentieth century (cyan dotted line), even after

rescaling the forcing responses (black dotted line). How-

ever, the discrepancy between the best fitted reconstruction

and the observations seems higher in the case of the

HadCRUT4 data over the middle of the last century (from

the 40s to the 60s), with the reconstructed global mean

temperature often more severely underestimated over this

period (e.g. CNRM-CM5, CanESM2, GISS-E2-R, GISS-

E2-H). This discrepancy, though small, suggests that

accounting for observation uncertainty could be of interest

in such a study. This could be done in another study using

the different HadCRUT4 ensemble members.

3.1.2 Three-forcing analysis (GHG ? AER ? NAT)

We then perform the same analysis using the GHG, AER

and NAT response patterns (similar as the Stott et al.

(2006) study). Detailed results are shown in Fig. 2. As in

the previous section, the results obtained with the HadC-

RUT3 observed dataset are shown in Online Resource 2

(OR2).

We first analyse results from the CNRM-CM5,

CanESM2, HadGEM2-ES and IPSL-CM5A-LR models.

For these models, the scaling factors are well constrained

for all three forcings, meaning that none of the confidence

intervals is unbounded. This suggests that ROF is able to

discriminate between the three forcings. GHG scaling

factors are always inconsistent with 0 and include 1 in two

cases (it comes very close for IPSL-CM5A-LR) with their

best estimate being smaller than one. This means that we

detect the GHG influence and that the models slightly (i.e.

non significantly in two cases out of four) overestimate the

response compared to the observations. This contrasts with

the AER forcing, which is not detectable in three out of

four cases (and comes very close in the fourth case), as

zero is included in the 5–95 % confidence interval. The

AER response pattern, however, is found to be consistent

with observations in three out of four cases. The influence

of the NAT forcing is detected in three cases and the best

estimates of the scaling factors, as in the AER and GHG

cases, are smaller than one (although very close in two

cases). However, these models differ significantly in two

aspects. HadGEM2-ES and CNRM-CM5 fail the RCT at

the 10 % level, while the two others barely pass. Among

other discrepancies with observations, all these models

underestimate, to different degrees, early twentieth century

warming. As in the 2-forcing case, rejection of the RCT is

more pronounced with the HadCRUT4 dataset than with

the HadCRUT3 dataset (OR2). Again, this seems primarily

due the model underestimation of the global mean tem-

perature over the middle of the twentieth century, which is

even stronger based on HadCRUT4. Finally, the CNRM-

CM5 model is the only model in which all scaling factors

are roughly consistent with one, though the AER response

is not detected.

It is worth suggesting a possible explanation for the

results obtained for both the GHG and AER scaling factors.

In the case of the CNRM-CM5, CanESM2 and HadGEM2-

ES, the discrimination between these two forcings occurs

essentially as a result of the last two decades, during which

the AER cooling response has been stabilising or weak-

ening (unlike many other models). Indeed, no constraint is

found on the scaling factors if the analysis is performed

over the 1901–1990 period, consistent with highly corre-

lated GHG and AER response patterns. Over the last two

decades, the stabilisation of AER response has tended to

reinforce the total ANT warming. This warming is partly

compensated over the 1990s due to a cooling from the

NAT response, partially linked to the Pinatubo eruption.

Such compensation no longer occurs over the last decade,

as the NAT contribution leads to a significant warming.

Consequently, the simulated warming accelerates in the

three models, in contrast with the observations. Low fre-

quency internal variability may contribute to offseting or

reinforcing the warming over a few decades. However, this

discrepancy between models and observations constrains

the AER scaling factor to be very small and, if not

inconsistent, barely consistent with one, for all three

models. As the AER response is decreased, it also leads to

values of the GHG scaling factors being smaller than one.

Note also that the case of the IPSL-CM5A-LR model is

slightly different. As simulated by this model, the main

cooling from the AER forcing occurs between the 1950s

and the 1970s, with a stabilisation afterwards. Therefore,

the AER forcing offsets the GHG-induced warming before

the 1970s, which results in a small warming over this

period, in line with the HadCRUT4 observations. Then,

stabilisation allows a more pronounced warming after the

1970s, also in agreement with the observations. This leads

to good overall results: each external forcing is detected

(with AER in particular, in contrast with the three other

models), with each scaling factor being relatively close to

one, and no significant inconsistencies arise from the RCT.

The other models (Figs. 2, OR2) all exhibit unbounded

values for the scaling factors for two principal reasons. The

GISS-E2-R, GISS-E2-H and CSIRO-Mk3-6-0 models

GHG and AER response patterns exhibit strong collinearity

(correlations are less than -0.96). The cooling linked to the

AER response shows no sign of weakening at the end of

the period, in line with the GHG-induced warming. Note

that this collinearity is even clearer in the reconstructed

response (e.g. GISS-E2-R in Fig. 2, the correlation being

then less than -0.98), suggesting that ROF is not able to

discriminate between these two forcings in such a case.

This degeneracy leads to very large confidence intervals

with even positive and negative values in some cases.

Application of ROF to attribution 2841
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Fig. 2 Attribution analysis

based on global average time-

series with three external

forcings. Same as Fig. 1, in

three-forcing analysis: GHG

(red) ? AER (green) ? NAT

(blue)
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It thus leads to the impossibility of assessing the contri-

bution of various forcings. Other models show a weak

response to at least one forcing and/or have very small

ensemble sizes, leading directly to a degeneracy in the

regression. The FGOALS-g2 model in particular has no

volcanic forcing, leading to a very weak NAT response

pattern (which can then be made collinear to any linear

combination of the GHG and AER patterns). Despite the

presence of volcanic forcing, bcc-csm1-1 and NorESM1-M

show roughly the same behaviour, with a weak response to

AER. Whatever the reason for the degeneracy, it usually

leads to a perfect fit with the observations (the response

patterns may be easily modified by the TLS algorithm so

that a close fit observations is obtained). As a result, the

RCT p value is usually high. The model and the observa-

tions are thus perfectly consistent, but the analysis yields

no constraint on the contributions of the various forcings

and no conclusion about detection and attribution.

These results suggest that, based on the global mean

time-series only, discrimination between GHG, AER and

NAT forcing is much harder than between ANT and NAT.

Such a behaviour is expected here, as the time-only

response patterns to GHG and AER have been previously

shown to be highly correlated (Gillett et al. 2002; Allen

et al. 2006).

3.2 Spatio-temporal analysis

3.2.1 ROF using HadCRUT4

Previous studies have suggested that OF algorithms using

information on both space and time scales have the

potential ability to better distinguish between the GHG and

AER fingerprints and overcome the degeneracy issue.

Consequently, we now apply ROF to both two-forcing

(ANT and NAT) and three-forcing (GHG, AER, NAT)

cases using a detection vector with increasing amounts of

spatial information. Three additional resolutions (T1, T2,

T4) are used in the projection step. The results in terms of

scaling factors and RCT p value are shown in Fig. 3.

Increasing spatial information in the detection vector

first leads to very low RCT p values for most models,

whatever the number of external forcings taken into

account. Most cases with a p value higher than 10 % cor-

respond to unconstrained scaling factors. Such a phenom-

enon is not surprising: if some degeneracy occurs in the

regression, then the residuals are usually very small and

consistent with the assumed internal variability. The only

two exceptions (i.e. RCT p value higher than 10 % and

constrained scaling factors) are CanESM2 and bcc-csm1-1,

in the 3-forcing analysis, at resolutions T2 and T4. Note

that in the case of CanESM2, this no longer holds if the

historical AER-only simulation is used instead of the ALL

forcings simulations. One possible explanation for this

could be that additional external forcings such as ozone or

land use are important. These results from the RCT must be

interpreted with caution, as it was suggested in R13 that the

null-distribution of this test is difficult to evaluate accu-

rately, even based on Monte-Carlo simulations. However,

the perfect model framework results shown in R13 did

suggest that the RCT was too conservative. Therefore, such

rejections must be taken into account, as they suggest that

at least one assumption of the method is not satisfied.

Furthermore, when increasing spatial information, the

stability of scaling factors best-estimates and confidence

intervals is not observed. This sensitivity of the results is

striking in the 3-forcing analysis, at resolutions T1 and T2,

with a large variation of scaling factor best-estimates on the

one hand, and much larger confidence intervals on the other

hand. In particular, the four models with constrained scaling

factors at T0 resolution show roughly unconstrained values

at these resolutions. This also occurs to some extent in the

two-forcing case, at all resolutions, though it is less pro-

nounced at both T1 and T2 resolutions. In particular, at the

T4 resolution, discrimination between ANT and NAT is

sometimes not achieved. These results strongly contrast with

those from the perfect model framework reported by R13

(R13 reported consistent results and narrower confidence

intervals as the resolution increases).

Then, even more unexpected results are obtained in the

3-forcing analysis at T4 resolution, as several models

provide relatively constrained scaling factors. First, these

results are not robust to small variations in the analysis,

such as using HadCRUT3 observations instead of HadC-

RUT4, or changes in the construction of samples Z1 and Z2.

This is illustrated, for instance, in Online Resource 3

(OR3), which reproduces the same analysis as in Fig. 3,

based on observations from the HadCRUT3 dataset. The

results from ROF at T4 resolution are then much closer to

those obtained at the T1 or T2 resolution, with mainly

unconstrained results. Secondly, as discussed above, the

RCT is not passed in most cases. Third, the scaling factors

estimated here are in many cases unphysical. This occurs in

particular for the AER forcing, which is found to be sig-

nificantly negative in several cases. Some of these results

are also inconsistent with those found at other resolutions,

e.g. with disjoint confidence intervals. Note that a biased

estimate of internal variability can lead to a too frequent

rejection of the RCT (underestimation of the true internal

variability) or an unrealistically large confidence interval

(overestimation). However, it can hardly explain unphysi-

cal scaling factor estimates as observed when ROF is

applied using the T2 and T4 resolutions. Fourth, similarly

to Figs. 1 and 2, Online Resource 4 (OR4) investigates how

well the global mean temperature changes are reproduced

in this case. Note that, unlike in Sect. 3.1.2, the fit is not
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only based on global mean time series here. This figure

suggests that, in many cases, the AER response pattern is

widely redrawn by the method in order to best fit the data,

while the GHG response pattern is virtually removed (with

a small scaling factor). This could be understood as fol-

lows. In the TLS algorithm, both the observations y and the

response patterns xi (see R13 for notation) are noisy and

may be modified to obtain the best fit. Then, as a rescaling

of the amplitude is allowed, only the shape of the signal

matters. In our case, the AER and NAT signals are rela-

tively small compared to the GHG signal, and at the same

time, the internal variability (related to the size of the

corresponding ensemble) is roughly the same, if not higher.

As a consequence, the shape of these response patterns is

more uncertain than the shape of the GHG response pat-

tern, and the best fit is obtained by modifying these shapes

first. Given the relatively small size of the ensembles used,

the signal-to-noise ratio on these signals seems even lower

than in the observations. The OR4 illustrates this phe-

nomenon, as the NAT and, above all, the AER signals are

widely redrawn by the algorithm. The GHG response,

conversely, is not modified, but is virtually removed, as the

corresponding scaling factor is very small. Finally, we are

led to question whether the confidence intervals computed

are suitable in such a case, as the high signal-to-noise

assumption mentioned by AS03 for the uncertainty analysis

may not be satisfied.

In order to investigate what might have happened with a

higher signal-to-noise ratio (i.e. larger ensembles), we

performed the same analysis with the size of the ensembles

arbitrarily increased by a factor of ten. More precisely, the

nominal ensemble size—which is one input of the

method—is increased, whereas the actual ensemble size is

not modified. The other input data, i.e. the observations y

and the noisy response patterns exi ; are identical. This

protocol is somewhat unrealistic because the response

patterns will then contain more noise than the algorithm

assumes. In this respect, this is similar to using the OLS

approach (which assumes no noise in exi), with noisy sig-

nals. Figure 4 shows the results provided by this analysis at

T4 resolution. It may be compared to the fourth row of

Fig. 3. The uncertainty is then strongly reduced, with all

confidence intervals being well-constrained, and no sig-

nificantly negative values. Note that the OLS estimates

based on noisy signals are known to be biased towards zero

(see e.g. AS03), which is very consistent with our results.

This suggests that an increase of the ensemble size could

help to better discriminate between different forcings (at

T4 resolution). In particular, it could prevent us from

finding a best fit where the response patterns are substan-

tially redrawn, as described above. Note that the use of

Fig. 4 Results from the spatio-temporal analysis, based on 10 times larger ensembles. Same as in Fig. 3 with T4 spherical harmonics, but with

the size of each ensemble of simulations arbitrarily increased by a factor 10 (see text). Note the different y-axis scale from that of Fig. 3

Fig. 3 Results from the spatio-temporal analysis, as a function of the

spatial resolution. ROF is applied to both observed (HadCRUT4) and

simulated (CMIP5 models) data after projection onto T0 (or global

mean only, top), T1 (middle top), T2 (middle bottom) or T4 (bottom)

spherical harmonics. The analysis is performed under a two-forcing

(ANT ? NAT), or a three-forcing analysis (GHG ? AER ? NAT),

and applied to 10 CGCMs from the CMIP5 database. Shown are the

scaling factors best-estimates (diamond) and confidence-intervals

(colored bars), together with the p value from the residual consistency

test (black bars). Dotted confidence intervals are unbounded. Note

that black bars cannot be seen in case of too small p values

b
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Fig. 5 Cohort framework

analysis, Part I. Scaling factors

estimates derived within the

cohort framework analysis:

historical simulations

(sometimes extended with

RCP8.5 simulations over the

2006–2012 period) from 7

CMIP5 models are used as

pseudo-observations (rows),

response patterns are taken from

3 CMIP5 models (columns).

Scaling factors are estimated in

a 3-forcing (GHG ? AER ?

NAT) analysis with ROF, at

resolution T4, over the

1901–2010 period. The panels

on the diagonal correspond to

perfect model framework, as the

same model is used to provide

pseudo-observations as well as

response patterns. Additional

results are shown in Online

Resource 7
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Fig. 6 Cohort framework

analysis, Part II. RCT p values

derived within the cohort

framework analysis (similar to

Fig. 5). Additional results are

shown in online Resource 8
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multi-model response patterns may provide one method of

obtaining larger ensemble, as has been done in other

studies (e.g. Gillett et al. 2012). Note also that this artificial

increase of the ensemble sizes leads to even smaller RCT

p values. This is expected here, as the response patterns do

contain more noise than the algorithm assumes.

Fig. 7 EOF projection results. Scaling factor estimates and RCT

p value from EOF projection, for several values of the number of

EOFs retained k, for 10 CMIP5 models. The standard EOF projection

is applied to T4 resolution data. Results are shown in a two-forcing

analysis with k = 20 and k = 60 (top, respectively a, b) and in a

three-forcing analysis with k = 20, 40, 60, 120 (middle and bottom,

respectively c, d, e and f)
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3.2.2 Cohort framework analysis

Another useful diagnosis comes from applying ROF at T4

resolution to pseudo-observations from historical climate

model simulations (as done in R13 based on CNRM-CM5

outputs), with the estimated response patterns coming from

another model. Here, we refer to this protocol as a cohort

framework analysis. It extends the perfect model frame-

work used in R13. Figures 5 and 6 show the results

obtained at T4 resolution, in a 3-forcing analysis, with

historical simulations from 7 climate models taken as

pseudo-observations, while 3 climate models are used to

provide response patterns. A more complete overview,

based on 14 climate models taken as pseudo-observations,

and 7 climate models providing response patterns, is pro-

vided in Online Resource 5, 6 (2-forcing analysis), 7 and 8

(3-forcing analysis). Note that OR5 and OR7 show scaling

factor estimates, while RCT p values are shown in OR6 and

OR8.

First, the diagonal panels correspond to the perfect

model framework, as the same model provides both

pseudo-observations and response patterns. Note that in

some cases, these results must be interpreted with some

caution, as the response pattern estimates are not strictly

independent from the pseudo-observations (meaning that

the ensemble mean of the ALL-forcing historical simula-

tions is used to derive at least one response pattern). These

diagonal results are very consistent with those obtained

with CNRM-CM5 (see R13, Figs. 4, 5), as scaling factor

confidence intervals are very narrowly distributed around

unity. Note that each of the 7 models considered presum-

ably has its own specific internal variability (i.e. the fea-

tures of internal variability may differ from one model to

another). However, satisfying results are obtained here

when the same estimate of the internal variability covari-

ance matrix (derived from a multi-model ensemble) is

used. So the use of a common, multi-model estimate of

internal variability does not seem to deteriorate the accu-

racy of ROF substantially. As for the RCT, similar

behaviour is found as in R13, with p values clearly larger

than expected, resulting in strong acceptance of the test. As

mentioned in R13, this may be due to a poor estimation of

the null-distribution. These results, however, tend to con-

firm the conclusion that this leads to a too conservative test.

Second, the off-diagonal panels provide some indication

as to how the results can be impacted by some error in the

expected response patterns. Here again, different models

presumably lead to different response patterns, although

many common features certainly appear. Figure 5 shows

that several scaling factor confidence intervals are still

constrained, suggesting that this does not always lead to a

huge deterioration of the results. This is clearer if the whole

set of climate models is considered (OR7), or in a 2-forcing

analysis (OR5). Several confidence intervals exclude one,

which is consistent with a discrepancy in the sensitivity to

some forcing. However, these confidence intervals are

often larger than those observed in the perfect model

framework (Fig. 5 and, e.g., second and third rows in

OR5), meaning that an inappropriate assumption on the

response patterns impacts the accuracy of the method. This

increase of the confidence interval ranges can be very

pronounced and may even lead to unconstrained scaling

factors (many cases in Fig. 5 and, e.g. in OR5, if simula-

tions from IPSL-CM5A-LR are used as pseudo-observa-

tions). This suggests that using model response patterns

significantly different from the true patterns may lead to

unconstrained scaling factors. Moreover, several off-diag-

onal panels show small RCT p values, sometimes leading

to a rejection of the test, although this test has been shown

to be too conservative. This behaviour is somewhat clearer

in the 2-forcing analysis (OR6). In this case, some of the

pseudo-observations used even lead to rejection of the RCT

with almost all response patterns (see e.g. bcc-csm1-1,

MPI-ESR-LM, IPSL-CM5A-LR or, to a lesser extent,

CCSM4). Such behaviour is similar to that obtained with

real observations.

Finally, the cohort framework analysis suggests that the

scaling factor and RCT results obtained with true obser-

vations are not consistent with what might have been

expected assuming that the models simulate the external

forcing response patterns correctly. It also suggests that

biased response patterns may at least partially explain the

deterioration of the results obtained when using real

observations.

3.2.3 Comparison to EOF projection

We now compare the results provided by ROF for the

HadCRUT4 dataset to the results provided by the standard

OF implementation for the same data. Standard OF

implementation means projection onto k leading EOFs, as

discussed in R13 and several previous papers (e.g. Allen

and Tett 1999). The analysis is performed with the same

models and pre-processing, at T4 resolution, to allow a

direct comparison. Results are shown in Fig. 7 for different

choices of the number of EOF retained k (namely the

truncation).

In a two-forcing analysis, the cases k = 20, 60 illustrate

the relative robustness of the results, at least for the ANT

forcing. This robustness is less marked for much higher

values of k (e.g. k [ 100, not shown). As in R13, the results

obtained with k = 20 are very close to those provided by

ROF at T0 resolution. This similarity occurs in particular

for scaling factor estimates, but also, to a lesser extent, for

RCT p values. Note that in both approaches, the dimen-

sionality of the initial T4 data is strongly reduced (either by
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projection on EOFs or spherical harmonics), leading to an

effective dimension of 20 and 10, respectively. Then, some

additional consistency may be found with the ROF results

at resolutions higher than T0, as the RCT is often rejected

(very sharply for several models) if k = 60.

In a three-forcing analysis, the results provided by EOF

projection (k = 20, 40, 60, 120) seem more sensitive to

the truncation, with the detection or the attribution to some

forcing dependent on the value chosen. The response to the

GHG forcing, for instance, is found to be sometimes

overestimated (k = 20), mainly overestimated (k = 40,

60), or not clearly detectable (k = 120). Sensitivity seems

even higher for the AER and NAT scaling factors. Again,

the results obtained with k = 20 share many common

features with those obtained with ROF at T0 resolution.

Some similarity may also be found between the case with

k = 120 and ROF results at T4 resolution. Note that the

choice of k = 120 is relatively close to the optimal value of

k found in R13 based on Monte-Carlo simulations.

Figure 7 suggests that standard EOF projection results

(in terms of scaling factor best estimate and confidence

intervals) do show a significant sensitivity to k, leading to

ambiguity in interpretation of results. The RCT doesn’t

clearly allow removal of this ambiguity, as some models do

not pass the RCT at any of the four truncations considered

here, while others pass the RCT with k = 120, etc. Fur-

thermore, the sensitivity to truncation, although not widely

investigated here, seems somewhat higher than that

reported in R13 when the same algorithm was applied in a

perfect model framework. So EOF projection results, as

well as ROF results, do not seem consistent with what

might have been expected.

4 Discussion and conclusions

4.1 ROF

This paper was primarily intended to provide a first

application of ROF to observed global near-surface tem-

perature, based on CMIP5 simulations. Improvements in

observationally-constraining the response to external forc-

ings might have been expected given the potential of ROF

illustrated in R13. Strictly speaking, these improvements

were not found. The results provided by ROF at T4 reso-

lution differ from those obtained in the perfect model

framework in, at least, two aspects. First, the RCT is almost

always rejected. Second, the estimated scaling factors seem

relatively unstable, and do not allow clear discrimination of

the external forcing considered (confidence intervals are

very large). Both aspects suggest some lack of consistency

between models and observations, as the analysis of

observations do not lead to the expected results.

These poor results seem to highly depend on spatial

resolution. As long as global mean signals are investigated

(i.e. T0 resolution), scaling factors are reasonably well

constrained (the 2-forcing case in particular), or under-

standably unconstrained (3-forcing case). Rejection of the

RCT is also less pronounced at such a coarse resolution.

So, the deterioration of the results seems related to adding

more detailed spatio-temporal information into the analy-

sis. In the case of ROF, this is done by increasing the

spatial resolution. It is important to note that a similar

phenomenon occurs with EOF projection when the trun-

cation is substantially increased (what may also be seen as

adding spatio-temporal details). For instance, EOF pro-

jection based on k = 120 seems to provide larger confi-

dence intervals than obtained at smaller truncation, in

disagreement with the Monte-Carlo simulations reported in

R13, which showed a smaller mean quadratic error at this

truncation. Similar conclusion may be drawn from RCT

results. It is also important to note that this investigation of

the sensitivity of the results to the amount of spatio-tem-

poral detail accounted for is heavily related to the use of a

set of control segments much larger than previously used.

Indeed, many studies have been based on a few tens of such

segments (while we are currently considering a few hun-

dred), which makes the investigation of k = 120 largely

unattainable. Yet, at very modest truncations, rejection of

the RCT was quite often reported when increasing k. The

underestimation of the smallest eigenvalues was then

invoked to explain this rejection. Our results suggest that

the rejection occurs even without such underestimation.

Note that the number of segments used also matters in the

case of ROF. A smaller number of segments would have

meant stronger regularisation in the LW estimate, and

much lower weight given to high-order EOFs. This would

presumably lead to a smaller sensitivity to the spatial res-

olution (i.e. results much closer to T0 resolution or iden-

tically to EOF projection with a low truncation). Finally, it

seems that some discrepancy appears between observations

and models, as the resolution increases, preventing the

expected OF results improvement.

We now discuss possible explanations of these results,

as well as possible ways to improve the method. The very

frequent rejection of the RCT suggests that at least one of

the basic assumptions behind the statistical model used is

not satisfied. In this study, we investigate, in particular, to

what extent this phenomenon may be due to an imperfect

estimation of the response patterns by climate models. The

cohort framework analysis suggests that the discrepancies

between model response patterns may have a substantial

impact on the ROF results. It even leads in some cases to a

deterioration of the results comparable to that observed

when using the HadCRUT4 dataset. In our view, this cre-

ates a first, important concern about the statistical method
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used, as model uncertainty is not taken into account in the

TLS statistical model. The inclusion of this uncertainty in

an EIV approach, as proposed by Huntingford et al. (2006),

will be a natural continuation of this work. This will

require adapting ROF to the EIV statistical model. Further,

note that significant discrepancies between model spatial

patterns together as well as between simulated and

observed spatial patterns have been reported e.g. by Shin

and Sardeshmukh (2011) in the case of recent sea surface

temperature trends. It may also be noted that, from an

historical perspective, the assumption that the response to

the forcing is known up to a certain scaling factor has been

introduced in order to account for a potentially unknown

feedback that might change the amplitude of the response,

but not the spatio-temporal pattern. Because many feed-

backs impact both the amplitude and the pattern of the

response, this assumption may be regarded as somewhat

simplistic.

Other plausible explanations could also be mentioned.

First, we have seen that using HadCRUT3 instead of

HadCRUT4 may impact some results, suggesting that

accounting for observational as well as model uncertainty

is clearly of interest. HadCRUT4 ensemble members will

allow further investigation into this question. Secondly, we

do not investigate the use of alternative estimates of

internal variability. Alternatives may come from using one

single model instead of a multi-model ensemble (although

this would presumably strongly decrease the number of

independent segments involved), using other estimators or

other regularisation techniques. Using an inaccurate esti-

mate of internal variability may, of course, have substantial

implications. However, one important result is that the

multi-model, regularised estimate used in this study pro-

vided successful results in the perfect model framework,

with all models considered. Then, while poor estimation of

internal variability may explain the rejection of the RCT, it

can hardly be used to explain the large changes in scaling

factors best-estimate displayed in Fig. 3. So this issue does

not seem to be the dominant uncertainty. Third, other

issues may arise regarding, for instance, the validity of the

additivity assumption. While this study provides some

useful information with respect to the impact of model

errors, future investigations will be required to confirm our

interpretation and develop solutions.

We also suggest that some thought may be needed

regarding the pre-processing step usually performed in OF

analyses. The choice of spherical harmonics is quite naive

in order to focus on large spatial scales. But, given the lack

of consistency between models and observations found

here, the question becomes, to what extent do models and

observations match? In particular, can we find spatio-

temporal pre-filtering that ensures better consistency?

Other simple, physically-based approaches such as those

suggested by Karoly and Braganza (2001); Drost and

Karoly (2012), based on simple climate indices, could lead

to improved results in this respect.

4.2 Detection and attribution results

Although some discrepancy between models and observa-

tions is certainly found when refined spatio-temporal

information is taken into account, the results obtained at

coarser resolution, or equivalently, at low truncation,

deserve several comments.

The results obtained in assessing the contributions of

anthropogenic versus natural forcings to changes in global

mean temperature (Sect. 3.1.1) supports the conclusion that

most of the warming observed over the last 110 years can

be attributed to human influence. This is still widely sup-

ported by the results shown at T1 resolution, or with EOF

projection, at low truncation. This conclusion is very

consistent with many previous studies (see e.g. Hegerl

et al. 2007). Nevertheless, it is further reinforced here, as it

is supported by a set of climate models much wider than

previously used. One additional, less common conclusion

that may be drawn from the two-forcing analysis pertains

to the RCT, which is not passed in several cases. This

seems to be related to the difficulty involved in climate

models to simulate the early twentieth century accurately.

Further investigations could be useful in achieving a better

understanding of this result, which may be related to, e.g.,

observational and model uncertainty.

The discussion about the respective contributions of the

GHG, AER and NAT forcings must be undertaken with

caution. Several previous studies have addressed this issue

for global near-surface temperatures, in particular Stott

et al. (2006), Hegerl et al. (2007) and a more recent study

by Gillett et al. (2012). Results from the first two sources

show well-constrained scaling factors using results from

four CGCMs. Direct quantitative comparison with Stott

et al. (2006) is difficult, however, as all the components

(the statistical method, the observed data, the estimate

response patterns and the estimate of internal variability) of

the analysis differ. However, the results shown in Fig. 3 at

T0 resolution and with the four models with constrained

scaling factors are qualitatively coherent with those pre-

sented by Stott et al. (2006) and Hegerl et al. (2007). A

more meaningful comparison can be made with the study

by Gillett et al. (2012) as they apply the standard OF

approach to two CMIP5 models also used here, with very

similar data and pre-processing. Scaling factor results from

CanESM2 over the 1901–2010 period (their Fig. 3a, fourth

set of bars) are rather similar to those obtained here using

T0 resolution: the GHG and NAT responses are detected,

with some overestimation of the GHG response by

CanESM2. The agreement is less marked when examining
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the CNRM-CM5 results [see auxiliary materiel from Gillett

et al. (2012)]. In both studies, however, detection of the

GHG and AER responses with CNRM-CM5 is seen to be

very sensitive to methodological details (truncation and use

of global mean only in Gillett et al. (2012), use of T0 or T1

resolutions here).

Some discrepancies may also be found, however,

between our results and these studies. They reported

constrained scaling factors with all response patterns

considered. Conversely, at T0-resolution, we obtain com-

parable results for only about a half of the models

involved. This means that, if we believe that all models

provide a plausible estimate of the response patterns, then

the discrimination between GHG and AER based on glo-

bal average observational constraint is not as clear. This

was related, in particular, to the stabilisation of the AER

response over the last decades, which still seems uncer-

tain. This discrepancy may be related to the number of

models involved here, which is larger than previously

used. Obviously, this discrepancy may also be explained

partly by differences in the statistical method (ROF at T0-

resolution, versus EOF projection). Figure 7 suggests that

EOF projection with k = 40 potentially allows better

discrimination between these forcings based on observa-

tions. Even there, however, we consider that the results

should be viewed cautiously. First, these results seem

sensitive to the choice of k, with no clear, a priori reason

to chose k = 40. To our knowledge, physically-based

reasons for such a choice have not been proposed. The use

of the same method with a different, but also acceptable

choice of truncation may lead to very different conclusions

in assessing the respective GHG and AER contributions.

Secondly, attempts to make this choice more objective

(such as ROF, or the choice of k by optimising the

accuracy of the scaling factor estimate, as suggested in

R13), do not lead to confirmation of these results. Third,

the consistency between models and observations, in this

space of the 40 leading EOFs, is still debatable based on

the RCT. In general, these results suggest that the obser-

vational constraint on magnitudes of the GHG and AER

contributions is still relatively weak.

Finally, we suggest that better discriminating the GHG

and AER responses from observations will require further

methodological improvements. In particular, we suggest

that improvements on the statistical methods and models

used, e.g. by taking into account a wider spectrum of

uncertainties than considered in this paper, could help to

distinguish between these two forcings. It could increase

the strength of the separation of the two signals, and make

the estimation of both more accurate. This is an important

challenge, as an improved estimation of the GHG response

in person is directly related to the estimation of climate

sensitivity.
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