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Supporting Information

1 Observational atmospheric temperature data

We used satellite estimates of atmospheric temperature change produced by three

different groups:

1. Remote Sensing Systems in Santa Rosa, California (RSS) (S1);

2. The University of Alabama at Huntsville (UAH) (S2);

3. The Center for Satellite Applications and Research, NOAA/National Envi-

ronmental Satellite, Data, and Information Service, Camp Springs, Maryland

(STAR) (S3).

All three groups provide MSU-based estimates of layer-average temperature changes

for the lower stratosphere (TLS) and the mid- to upper troposphere (TMT). Cur-

rently, only RSS and UAH produce a satellite-based estimate of atmospheric temper-

ature change for the lower troposphere (TLT). The approximate altitude range and

pressure level boundaries associated with each of these temperature measurements is

given in Table 2 in (S4).

All analyses reported on here rely on the following versions of these temperature

data sets:
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1. Version 3.3 of RSS TLS, TMT, and TLT data, downloaded from:

http://www.remss.com/data/msu/data/netcdf on 1/9/2012;

2. Version 5.4 of UAH TLS, TMT, and TLT data, downloaded from:

http://vortex.nsstc.uah.edu/data/msu on 1/13/2012;

3. Version 2.0 of STAR TLS and TMT data, downloaded from:

ftp.orbit.nesdis.noaa.gov on 3/15/2012.

All observed MSU data sets were in the form of monthly means on 2.5◦ × 2.5◦

latitude/longitude grids, and span the 396-month analysis period considered here

(January 1979 to December 2011). We analyzed complete years only; data available

for the last several months of 1978 and the initial months of 2012 were not used.

There are differences in the spatial coverage of the MSU data sets produced by

the three groups. While the UAH MSU data have global coverage, STAR TLS and

TMT products extend from 87.5◦N to 87.5◦S. RSS data sets extend from 82.5◦N to

82.5◦S for TLS and TMT, and from 82.5◦N to 70◦S for TLT. The RSS TLT coverage

is restricted to 82.5◦N to 70◦S because:

1. Poleward of 82.5◦, there are virtually no MSU brightness temperature measure-

ments from the central view angle of the satellite “swath”;

2. In the Southern Hemisphere, the reliable estimation of brightness temperatures

is hampered by the large (and poorly-known) surface emissivity contribution
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from snow- and ice-covered areas of the Antarctic continent which lie above

3,000 meters (S5).

To exclude any impact of spatial coverage differences on trend comparisons, we

calculated all spatial averages of observed and simulated MSU temperatures over the

area of common coverage in the RSS, UAH, and STAR data (82.5◦N to 82.5◦S for

TLS and TMT, and 82.5◦N to 70◦S for TLT.)

2 Details of model output

2.1 General information

We used model output from phase 5 of the Coupled Model Intercomparison Project

(CMIP-5) (S6). A full list of modeling groups participating in CMIP-5 is given at

http://cmip-pcmdi.llnl.gov/cmip5/docs/CMIP5 modeling groups.pdf. Eventually, re-

sults from simulations performed by ca. 27 research groups (using over 60 different

numerical models) will be incorporated in the CMIP-5 multi-model archive.

At the time our research was performed, the CMIP-5 archive was not fully pop-

ulated with model results. We analyzed results from 20 different CMIP-5 models,

contributed by 15 different research groups (see Table S1). Information on the hor-

izontal and vertical resolution of these 20 models is given in Table S2. As noted in
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the main text, we analyzed three different types of simulation:

1. Simulations with estimated historical changes in human and (in most cases)

natural external forcings (see Table S3);

2. Simulations with 21st century changes in greenhouse gases and anthropogenic

aerosols prescribed according to the Representative Concentration Pathway 8.5

(RCP8.5), with radiative forcing of approximately 8.5 W/m2 in 2100, eventually

stabilizing at roughly 12 W/m2 (S7, S8);

3. Pre-industrial control runs with no changes in external influences on climate,

which provide information on internal climate noise.

Details of the start dates, end dates, and lengths of the historical simulations and

RCP8.5 runs are given in Table S4. Corresponding information for the pre-industrial

control runs is supplied in Table S5. Note that the RCP8.5 simulations were initiated

from conditions of the climate system at the end of the historical run.

In the case of GISS-E2-R, simulation output was available from two slightly differ-

ent model versions (p1 and p2). For the purposes of calculating multi-model average

(MMA) quantities, it was necessary to decide whether atmospheric temperatures from

the p1 and p2 historical/RCP8.5 runs should be treated as different realizations of

historical climate change performed with a similar physical model, or as results from

two different models of the climate system. In the former case, the number of models
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employed in estimating the MMA would have been 19 (rather than 20).

There are important differences between these two versions of GISS-E2-R. Histor-

ical and future changes in aerosols and ozone are prescribed in p1, but are interactive

in p2 (S9). Such differences can have significant implications for the atmospheric

temperature changes (and temperature variability) simulated in these two model ver-

sions.1 We therefore decided to treat p1 and p2 as separate models.

This decision also affects estimates of internal variability. Model versions p1 and

p2 have separate control integrations (Table S5). Our baseline (“BASE”) detection

and attribution calculations relied on atmospheric temperatures from the last 200

years of both the p1 and p2 pre-industrial control runs. Similarly, temperature re-

sults from both control runs were available for selection as the “TOP-5” model noise

estimates.

2.2 Selection of models for O3+V fingerprint calculations

The purpose of our “O3+V” sensitivity study was to calculate fingerprints of externally-

forced atmospheric temperature change using a subset of CMIP-5 models with more

reliable estimates of forcing by stratospheric ozone and volcanic aerosols. Only 12

of the 20 CMIP-5 models analyzed here were used in estimating the O3+V finger-

1For example, the interannual variability of TLS is larger in version p2 than in version p1 (c.f.

Figs. 1J and 1I).
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print. The 8 excluded models were CCSM4, CNRM-CM5, GFDL-CM3, GISS-E2-R (p2),

INM-CM4, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M. The justification for ex-

cluding these models from the O3+V fingerprint calculations is given below.

2.2.1 Volcanic aerosol forcing

Compared with all other models analyzed here, both INM-CM4 and IPSL-CM5A-LR

have noticeable deficiencies in their volcanic aerosol forcing. (see Fig. 1). Consider

INM-CM4 first. Although the INM-CM4 historical run included stratospheric volcanic

aerosols, only their scattering effects were simulated (see Fig. 1M). Since stratospheric

volcanic aerosols in INM-CM4 do not absorb incoming solar radiation and outgoing

long-wave radiation, the model cannot generate volcanically-induced stratospheric

warming signals.2

In IPSL-CM5A-LR, volcanically-induced cooling of surface and tropospheric tem-

perature was indirectly represented by tuning the solar irradiance. The absence of

aerosol-induced absorption (see above) explains the lack of short-term lower strato-

spheric warming after the eruptions of El Chichón and Pinatubo. The IPSL-CM5A-LR

model actually shows slight cooling of TLS after the El Chichón and Pinatubo erup-

tions (see Fig. 1N). This is due to the decrease in outgoing long-wave radiation caused

2This does not explain why INM-CM4 fails to produce noticeable volcanic cooling signals in the

troposphere (see Fig. 2M).
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by the solar irradiance-tuned cooling of the troposphere and surface.

2.2.2 Stratospheric ozone forcing

In the following, we group CMIP-5 models into two classes:

1. CHEM models with fully interactive or semi-offline ozone chemistry;

2. NOCHEM models with prescribed changes in ozone.

Most of the CHEM models have errors in their simulations of historical ozone

changes. These errors are not surprising, particularly since CMIP-5 is the first phase

of the Coupled Model Intercomparison Project to incorporate a number of models

with interactive ozone chemistry. Although the inclusion of interactive ozone chem-

istry is essential for the prediction of stratospheric ozone recovery, accurate simulation

of historical changes in ozone is scientifically challenging. Errors in the physical cli-

mate system affect chemical reaction rates, thereby affecting simulations of historical

changes in ozone concentrations, which in turn influence stratospheric temperature.

There is considerable uncertainty in observed estimates of ozone changes (S10).

This uncertainty hampers the screening of CMIP-5 CHEM models based solely on

their performance in simulating observed ozone changes. Here, we chose the simpler

approach of estimating the O3+V fingerprint using only the NOCHEM models. Of

the 20 models analyzed here, 13 are NOCHEM models (see Table S3). One of these
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NOCHEM models, INM-CM4, was excluded because of the above-described problems

in its treatment of volcanic aerosol forcing. The O3+V fingerprint, therefore, was

calculated using simulation output from 12 CMIP-5 models. These 12 models are

identified in Figs. 1 and 2.

2.3 Splicing of simulation output

2.3.1 Splicing of CNRM-CM5 synthetic MSU temperatures

For 19 of the 20 CMIP-5 models analyzed here, our estimates of atmospheric temper-

ature changes over 1979 to 2011 are based on synthetic MSU temperatures from the

spliced historical/RCP8.5 simulations. In the case of CNRM-CM5, however, we relied

on results from the spliced historical/historicalExt simulation. The reasons for this

decision are described below.

The CNRM-CM5 model has explicit treatment of the interactions of volcanic aerosols

with long- and short-wave radiation. In the historical run, changes in stratospheric

aerosol optical depth were specified according to Gao et al. (2008) (S11). At the start

of the RCP8.5 run in January 2006, the stratospheric aerosol optical depth was set

to the Gao et al. estimate of average stratospheric optical depth over 850 to 1999.

This produces a small discontinuity in the volcanic aerosol forcing at the splice point

between the CNRM-CM5 historical and RCP8.5 runs, and therefore leads to a small
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‘jump’ in lower stratospheric temperature. This jump is evident in each of the three

CNRM-CM5 historical/RCP.5 realizations.

To evaluate the impact of this forcing discontinuity on estimated changes in atmo-

spheric temperature, we analyzed three realizations of the CNRM-CM5 “historicalExt”

simulation. The forcings by well-mixed greenhouse gases and anthropogenic aerosols

are very similar in the CNRM-CM5 RCP8.5 and historicalExt runs, as are the predicted

changes in stratospheric ozone. The major difference between these two sets of sim-

ulations is in the volcanic aerosol forcing. In historicalExt, the stratospheric aerosol

optical depth over January 2000 to December 2012 is set to the Gao et al. estimate

of stratospheric aerosol optical depth in December 1999 – i.e., volcanic forcing is un-

changed (and close to zero) from December 1999 onwards. So unlike the CNRM-CM5

spliced historical/RCP8.5 runs, the spliced historical/historicalExt runs have no dis-

continuity in volcanic forcing.

The step-function change in volcanic forcing between the end of the CNRM-CM5

historical run and the start of the RCP8.5 integration introduces an warm bias in the

simulated TLS changes over the satellite era. As a result, the ensemble-mean lower

stratospheric cooling trend over 1979 to 2011 is relatively weak in the CNRM-CM5 spliced

historical/RCP8.5 integrations (−0.091◦C/decade), and larger and closer to observa-

tions in the CNRM-CM5 spliced historical/historicalExt runs (−0.160◦C/decade).

To remove this discontinuity in volcanic aerosol forcing, all analyses involving
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CNRM-CM5 estimates of externally-forced temperature changes relied on results from

the spliced historical/historicalExt simulation.

2.3.2 Impact of splicing on S/N ratios

If we had not performed any splicing, and had focused on the period 1979 to 2005,3

the maximum record length available for model-versus-data comparisons would have

been only 27 years. As noted in the main text, splicing of the historical and RCP8.5

simulations enables us to compare modeled and observed atmospheric temperature

trends over the full 33-year satellite era (1979 to 2011).

This increase in record length (from 27 to 33 years) has some effect on our esti-

mated S/N ratios. The effect is primarily due to the decrease in the amplitude of noise

trends with an increase in the trend fitting period (see Figs. 7B and 8B). It is this

decrease in the amplitude of the noise (rather than an increase in signal amplitude)

that explains why S/N increases by roughly 10-15% as the analysis period increases

from 27 to 33 years (see Figs. 7C and 8C).

For the stratospheric and tropospheric temperature changes considered here, S/N

ratios in 2005 are still well above the 1% significance threshold for almost all model-

versus-observed detection and attribution (“D&A”) tests with the global-mean signal

3This is the period of maximum overlap between observed MSU records and the CMIP-5 historical

runs (recall from Table S4 that most CMIP-5 historical runs end in 2005).
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included (see, e.g., Figs. 7C and 8C). This means that our primary conclusions

regarding signal detection do not depend on our decision to perform splicing.

3 Calculation of TTT

TMT receives a substantial contribution from the cooling of the lower stratosphere

(S12). Fu et al. (2004) developed a regression-based approach for removing the bulk

of this stratospheric cooling component from observational estimates of tropospheric

temperature changes (S12). This enabled Fu et al. to calculate TTT, which they refer

to as the “temperature of the tropical troposphere” (S13). Fu et al. note that TTT

represents “the entire troposphere from the surface to the tropopause.” Although

concerns have been expressed about the efficacy of this approach (S14), tests with

climate model simulation output suggest that the Fu et al. method is reasonably

successful in capturing the true large-scale, multi-decadal trends in bulk tropospheric

temperature (S15, S16).

Since the observed pattern of stratospheric cooling shows pronounced latitudinal

and vertical structure, it would seem reasonable to generate geographical patterns of

TTT trends with a regression-based approach which uses latitudinally varying regres-

sion coefficients. Given large differences in the latitudinal and altitudinal structure of

stratospheric cooling in the observational and model TLS data sets analyzed here (see

Fig. 3A), many different estimates of the latitudinal dependence of such regression
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coefficients could be derived.

Here, we calculate TTT in two different ways: with regression coefficients that do

not vary as a function of latitude (TTT), and with coefficients that differ in the tropics

and extratropics (TTT
?
). This provides us with information on the sensitivity of our

TTT D&A results to details of the statistical method used for removing stratospheric

influence on TMT. For reasons described below, we show only TTT results in the

main text.

TTT is computed with the same regression coefficient applied by Fu et al. (S13)

in their equation 1b:

TTT = a24TMT + (1− a24)TLS (1)

where a24 = 1.1. For TTT
?
, a24 = 1.1 between 30◦N and 30◦S, and a24 = 1.2 poleward

of 30◦. Relative to TTT, TTT
?

removes more of the high-latitude stratospheric

cooling influence on TMT, and thus has larger tropospheric temperature increases at

high latitudes (see Fig. S5).

Regression was performed locally, at each model and observational grid-point. We

note that model and observational temperature data were processed in exactly the

same way – i.e., model-versus-observed differences in total tropospheric temperature

changes are not attributable to differences in the applied regression coefficients.

Gridded data sets of monthly-mean TTT and TTT
?

were produced using the
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actual TLS and TMT temperatures from the RSS, UAH, and STAR groups. They

were also generated with the synthetic TLS and TMT temperatures calculated from

the CMIP-5 pre-industrial control runs and spliced historical/RCP8.5 runs.

In the main text, we focus on the discussion of TTT, primarily because:

• TTT and TTT
?

yield very similar D&A results;

• Due to the way in which TTT
?

is defined, patterns of changes in TTT
?

have a

small discontinuity at 30◦N and 30◦S (see Fig. S5). TTT trend patterns do not

have this discontinuity.

4 RSS percentile realizations

Our D&A analysis relied on both the publicly-available version of the RSS atmo-

spheric temperature data sets and the RSS “percentile realizations.” These realiza-

tions provide valuable information on the impact of different processing choices that

are made during the construction of MSU-based data sets. As described in Mears

et al. (2011), a Monte Carlo approach was used to estimate uncertainties in atmo-

spheric temperature change arising from “sampling error, premerge adjustments to

each individual satellite, and the merging procedure” (S1). For each of the four atmo-

spheric layers considered here (TLS, TMT, TLT, and TTT), a 400-member ensemble

of gridded, monthly-mean temperature data sets was generated.
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Given the very large number of sensitivity tests which we performed, it was not

feasible to use the full 400-member RSS observational ensembles in our D&A analysis.

To reduce the dimensionality of the problem, we ranked the 400 realizations by their

global-mean temperature trends over 1979 to 2011, and then chose 11 realizations for

each atmospheric layer. Ranking was performed separately for TLS, TMT, TLT, and

TTT. The selected realizations were the 5th, 10th, 20th, 30th, 40th, 50th, 60th, 70th,

80th, 90th, and 95th percentiles of the ranked distributions.

In our D&A analysis, each of the RSS percentile realizations was projected onto

the searched-for fingerprint. This procedure adequately samples the uncertainty in

the RSS estimates of global-scale atmospheric temperature change, but does not fully

capture RSS-based uncertainty estimates in the spatial patterns of the temperature

changes. It is likely that the true 5-95 percentile range of RSS-based D&A results is

underestimated.4

5 Regridding of model and observational data

Model results were available on different grids (Table S2). In order to calculate

fingerprints from the multi-model averages of the atmospheric temperature changes

4Note, however, that for the purposes of comparing modeled and observed trends in zonal-mean

atmospheric temperature, the RSS 5 to 95 percentile range is based on the full 400-member RSS

observational ensembles (see Figs. 3 and S5).
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in the spliced historical/RCP8.5 runs, to compare these fingerprints with observations,

and to obtain ‘pooled’ noise estimates from the concatenated control simulations, it

was necessary to regrid temperature data from the observations and the native grids

of all 20 CMIP-5 models to a common grid.

We transformed all data sets to a regular 10◦ × 10◦ latitude/longitude grid using

an area-weighted regridding algorithm (S17). Transformation to a relatively coarse-

resolution grid reduces the spatial dimensionality of the input data sets, which is

of benefit in the estimation of Empirical Orthogonal Functions (EOFs) used in the

fingerprint analysis. Because changes in atmospheric temperature tend to be smoothly

varying, regridding does not lead to appreciable loss of information on the spatial

structure of the leading signal or noise modes.

To ensure that differences in observational coverage have no impact on the D&A

analysis, we used the coverage common to the RSS, UAH, and STAR data sets (see

Section 1 of SI ). After regridding to the target 10◦×10◦ grid, observational and model

temperature data were extracted for 80◦N-80◦S (TLS, TMT, TTT, and TTT
?
) and

80◦N-70◦S (TLT).
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6 Fingerprint analysis

6.1 Definition of fingerprint

Detection methods generally require an estimate of the true but unknown climate-

change signal in response to an individual forcing or set of forcings (S18). This is

often referred to as the fingerprint, F (x). The fingerprint is what we search for in

observational records. F (x) may be defined in a variety of different ways. A common

strategy, which we employ here, is to use the first EOF of the multi-model average

change in synthetic MSU temperature as the fingerprint.5

Let S(i, j, x, t) represent annual-mean synthetic MSU temperature data at grid-

point x and time t from the ith realization of the jth model’s spliced historical/RCP8.5

simulation, where:

i = 1, . . . Nr(j) (the number of realizations for the jth model).

j = 1, . . . Nm (the number of models used in fingerprint estimation).

x = 1, . . . Nx (the total number of grid-points).

t = 1, . . . Nt (the time in years).

5Other possible fingerprint choices include the mean change from a large ensemble of initial

condition realizations, the mean change or leading EOF from an equilibrium response experiment

with large changes in forcing, etc.
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Here, Nr ranges from 1 to 5 realizations (see Table S4); Nm = 20 models in the

BASE case, and 12 models in the O3+V case; Nx = 576 grid-points6 for TLS, TMT,

TTT, and TTT
?
, and 540 grid-points for TLT; and Nt is either 151 or 33 years (see

below).

The multi-model average atmospheric temperature change, S(x, t), was calculated

by first averaging over an individual model’s historical/RCP8.5 realizations (where

multiple realizations were available), and then averaging over models.7 The fingerprint

F (x) is the first EOF of S(x, t). It primarily reflects the large-scale patterns of cooling

of the lower stratosphere and warming of the troposphere.

To explore the sensitivity of our S/N results to different plausible choices in the

fingerprint estimation process, we calculated F (x) using input atmospheric tempera-

ture data for two different periods: 1861 to 2011, and 1979 to 2011. Our primary goal

was to examine whether the geographical pattern of the fingerprint exhibits important

changes over time. Use of the longer, 151-year analysis period involves a larger overall

change in anthropogenic forcing. If the normalized spatial pattern of the fingerprint8

6After transforming synthetic MSU temperature data from each model’s native grid to the com-

mon 10◦ × 10◦ latitude/longitude grid.

7The double overbar denotes two separate averaging steps (over realizations and models).

8For information on fingerprint normalization, refer to the description of the subroutine TQLI

in (S19). Normalization reduces the fingerprint’s sensitivity to differences in global-mean radiative

forcing (and global-mean temperature change) over different time intervals.
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is relatively stationary, use of a longer analysis period is advantageous, and reduces

the impact of internal variability on the estimate of F (x).

If the spatial pattern of response to external forcing had changed markedly over

the past 151 years (S20),9 it would be preferable to calculate F (x) over the same

time period used for estimating observed changes in atmospheric temperature (1979

to 2011). Use of this shorter, 33-year period for fingerprint estimation still involves

the implicit assumption that there are not pronounced changes over time in the large-

scale structure of the climate response to external forcing. In cases where such changes

exist, it is more appropriate to use full space-time detection methods, which explicitly

incorporate the time dimension in the detection scheme (S21, S22).

For the 1861 to 2011 historical analysis period (“HIST”), the beginning and end

dates were dictated by the start date of the GFDL-ESM2G and GFDL-ESM2M historical

runs (see Table S4) and the end of the observational satellite record. All synthetic

MSU temperatures in the HIST case were expressed as annual-mean anomalies rel-

ative to the climatological annual mean of the 151-year simulation. For the 1979 to

2011 analysis period (“SAT-ERA”), anomalies were calculated with respect to cli-

matological annual means over this 33-year period. All fingerprints and S/N results

shown in the main text are for the HIST case; fingerprints for the SAT-ERA are given

in Fig. S8 of the SI. The sensitivity of our findings to the choice of analysis period is

9In response, for example, to low-frequency changes in the pattern of net aerosol forcing.
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discussed in Section 7.3.2.

The O3+V fingerprints for the HIST case are given in row 1 of Fig. 6. The O3+V

fingerprints are very similar to the BASE estimates of F (x) (not shown). The total

variance explained by the O3+V and BASE fingerprints always exceeds 85%.

Many D&A strategies seek to rotate F (x) in a direction that maximizes the signal

strength relative to the control run noise (S18, S21, S22). Optimization of F (x)

generally leads to enhanced detectability of the signal. In most cases we considered,

we achieved detection of an externally-forced fingerprint in observations without any

optimization of F (x) (see Fig. 9 and Fig. S9). We therefore report only on S/N

ratios obtained with non-optimized fingerprints.

6.2 Calculation of concatenated noise data sets

As discussed later in Section 6.3, we need to determine whether the pattern similar-

ity between F (x) and the time-varying observations shows a statistically significant

increase over time. To address this question, we require control run estimates of

internally-generated variability, in which we know a priori that there is no expression

of the fingerprint, except by chance.

In our multi-model D&A framework, we obtain such variability estimates from the

control runs performed with multiple models. Because the length of the 20 control
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runs analyzed here varies by a factor of up to 4 (see Figs. S1 and S2 and Table

S5), models with longer control integrations could have a disproportionately large

impact on the BASE noise estimates. To guard against this possibility, the BASE

noise estimates rely on only the last 200 years of each model’s pre-industrial control

run,10 yielding 4,000 years of concatenated control run data.

For the TOP-5 model noise estimates, only the control runs of a five-model subset

are concatenated. Selection of the TOP-5 models was performed separately for TLS,

TMT, TLT, TTT, and TTT
?
, and is based on values of sLOW, the temporal standard

deviation of detrended, band-pass filtered atmospheric temperature data (see Fig. 5).

In contrast to the BASE case, we use the full length of each of the five model control

runs. This ensures that we have reasonable sample sizes when we rely on TOP-5 noise

information to assess the significance of multi-decadal signal trends.11

In both the BASE and TOP-5 noise cases, annual-mean synthetic MSU temper-

atures from individual model control runs are regridded to the same 10◦× 10◦ target

grid used for fingerprint estimation. After regridding, anomalies are defined relative

to climatological annual means over the full length of each control run.

Visual inspection of the control run TLS and TLT anomalies shows that most of

the 20 CMIP-5 models exhibit little residual drift in globally-averaged lower strato-

10Use of the last 200 years reduces the contribution of any initial residual drift to noise estimates.

11The total number of years of concatenated control run data for the TOP-5 case ranges from

2,881 (for TLT) to 3,027 (for TLS).
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spheric and lower tropospheric temperature (Figs. S1 and S2). The MIROC-ESM

and HadGEM2-CC models are notable exceptions. In MIROC-ESM, the TLS and TLT

trends over the entire 531-year control run are 0.017 and 0.075◦C/century, respec-

tively. The TLS and TLT trends over the 240-year HadGEM2-CC control run are

−0.014 and −0.071◦C/century.

Since this control run drift can bias D&A results, its removal is advisable. Here, we

assume that the drift behavior of synthetic MSU temperature can be well-approximated

by a least-squares linear trend, and drift is removed at each grid-point. For TOP-5

noise estimates, we remove the overall linear trend from each control run prior to

concatenation. In the BASE case, drift removal is performed over the last 200 control

run years (since only the last 200 years are concatenated).

Figures 6 and S8 show the leading noise EOFs of C(x, t) for the TOP-5 and BASE

cases (respectively). In the former case, the total variance explained by the first EOF

of C(x, t) ranges from 12.0% for TLT to 29.6% for TLS. The corresponding explained

variances for the BASE case range from 17.7% for TLT to 28.8% for TLS. The leading

O3+V and BASE noise EOFs are remarkably similar. In the lower troposphere,

however, use of the TOP-5 model subset yields EOF 2 and 3 noise patterns that are

different from their BASE counterparts.
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6.3 Estimating signal-to-noise ratios and detection time

We begin with regridded annual-mean observational data, O(x, t), from RSS, UAH,

and STAR. We also use regridded annual-mean data from the 11 RSS percentile

realizations. Observed data are expressed as anomalies relative to climatological

annual means over the entire 33-year period for which we have MSU data (1979 to

2011). The observations are projected onto F (x), the time-invariant fingerprint:

Zo(t) =
Nx∑
x=1

O(x, t) F (x) (2)

where F (x) is defined as described in Section 6.1. This projection is equivalent to a

spatially uncentered covariance between the patterns O(x, t) and F (x) at time t (S23).

The signal time series Zo(t) provides information on the strength of the fingerprint in

the observational data. If the observed patterns of lower stratospheric temperature

change are becoming increasingly similar to F (x), Zo(t) should increase over time.

There are two approaches that may be used to assess the significance of the changes

in Zo(t): direct comparison of test statistic values with some null distribution (S20),

or comparison of trends in Zo(t) with a null distribution of trends (S24). We use the

trend approach here. To assess trend significance, we require a case in which O(x, t)

is replaced by a record in which we know a priori that there is no expression of the

fingerprint, except by chance. Here, we use the concatenated noise data set, C(x, t),

which has been regridded and detrended as described in Section 6.2. The noise time
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series N(t) is the projection of C(x, t) onto the fingerprint:

N(t) =
Nx∑
x=1

C(x, t) F (x) (3)

As in our previous work (S24), we estimate S/N ratios by fitting least-squares

linear trends of increasing length L years to Zo(t), and then comparing these with

the standard error of the distribution of non-overlapping L-length trends in N(t).

Signal detection is stipulated to occur when the trend in Zo(t) exceeds and remains

above some stipulated significance level (typically either 1% or 5%). The test is one-

tailed, and we assume a Gaussian distribution of trends in N(t). The start date for

fitting linear trends to Zo(t) is 1979, the first complete year of the observational MSU

data. We use a minimum trend length of ten years, so the first S/N ratio (and the

earliest possible detection time) is for 10-year trends ending in 1988. Full details of

the detection method are given elsewhere (S24).

7 Further discussion/interpretation of Figures

7.1 Figure 5

7.1.1 Model bias in decadal variability

In the lower stratosphere, the multi-model average value of sLOW (the temporal stan-

dard deviation of detrended, band-pass filtered atmospheric temperature data) is
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virtually identical to the corresponding value for RSS v3.3 (see Fig. 5A). In the tro-

posphere, however, the model average sLOW value is between 1.55 to 1.69 times larger

than the RSS v3.3 sLOW values (for TMT and TLT, respectively; see Figs. 5B-D).

The latter finding is qualitatively consistent with results obtained using estimates of

TLT and sea-surface temperature variability from CMIP-3 models (S25).

Intriguingly, the CMIP-3 results showed that models overestimate the observed

variability of band-pass filtered TLT data by a factor of 1.1 to 1.2. The much larger

overestimate for CMIP-5 models may reflect true changes (from CMIP-3 to CMIP-

5) in model simulations of internal variability on decadal timescales. Alternately,

it may be due to the fact that a number of CMIP-5 models appear to overestimate

volcanically-induced tropospheric cooling, and the percentage of models with volcanic

forcing in their historical runs is much higher in CMIP-5 than in CMIP-3.

7.1.2 Model relationships between interannual and decadal variability

In the troposphere, the CMIP-5 models do not exhibit clear relationships between

the amplitudes of interannual and decadal variability (Figs. 5B-D). A similar find-

ing was obtained with CMIP-3 models, for both TLT and sea-surface temperature

variability (S25). If this result also applies to observational data, it suggests that

the well-quantified amplitude of observed interannual variability may not help us to

constrain the more uncertain observational estimates of multi-decadal variability (or
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to constrain model variability errors on these longer timescales).

In the lower stratosphere, there appears to be a strong relationship between CMIP-

5 values of sLOW and sHIGH (Fig. 5A). However, this apparent relationship primarily

reflects inter-model differences in the TLS response to volcanic forcing (see Fig. 1),

and not a close scaling relationship between interannual and decadal variability.

7.2 Figure 8

7.2.1 Discussion of S/N ratios for 32-year TLT trends

In the present pattern-based S/N study, the RSS v3.3 and UAH v5.4 TLT data sets

both have “model-observed” S/N ratios of ca. 5 for TLT changes over 1979 to 2010

(see Fig. 8C). In an earlier study (S25), model-observed S/N ratios for global-mean

TLT changes over the same 32-year period (and for the same two observational data

sets) were approximately 4. One important question is whether the incorporation of

pattern information contributes to this 25% enhancement of S/N.

As described in the main text, both the model-predicted fingerprint in response

to combined anthropogenic and natural forcing (Fig. 6) and the observed patterns

of TLT change over the satellite era (Fig. 4) show large-scale warming of the lower

troposphere. In contrast, the dominant modes of natural internal variability in the

TOP-5 and BASE control runs (Fig. 6 and Fig. S8, respectively) have much smaller
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spatial scales, and are characterized by areas of warming and cooling. Because of this

difference in the spatial coherence of TLT changes in the fingerprint and leading noise

modes, F (x) acts as a pattern filter – i.e., the spatially-coherent observed warming

projects well onto F (x), but the smaller-scale internal variability does not.

The current study relies on internal variability estimates from 20 different CMIP-

5 models, whereas an earlier study by Santer et al. (2011) used internal variability

information from 22 CMIP-3 models (S25). If the CMIP-5 models analyzed here had

much smaller levels of multi-decadal variability, this could explain the larger TLT

S/N ratios obtained in the current study. As discussed in Section 7.1.1, we find no

evidence that this is the case.

In fact, the TLT variability on 5- to 20-year timescales is (on average) larger in

the CMIP-5 models used here than in the CMIP-3 models analyzed by Santer et

al. (2011). So even though the CMIP-5 noise estimates are larger (which should

damp S/N ratios), S/N ratios in the current study are higher than in Santer et al.

(2011). The most plausible explanation of this result involves the pattern filtering

described above: the spatial structure of the observations, the fingerprint, and internal

variability provide information that is useful in discriminating between externally-

forced and internally-generated TLT changes.12

12Note that the enhancement of TLT S/N ratios (relative to those obtained in Santer et al., 2011)

occurs for both the BASE and TOP-5 noise estimates.
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7.3 Figure 9

7.3.1 Discussion of model-model S/N results in Figure 9

The model-model S/N ratios in Fig. 9 have no direct relevance for model-versus-

observed comparisons: they simply indicate whether the searched-for O3+V finger-

print is statistically identifiable in each individual model’s estimate of atmospheric

temperature changes over 1979 to 2011. When the global-mean change is included,

the O3+V fingerprint can be discriminated from the internal variability in the TOP-5

models in all 80 model-model comparisons.13

If the global-mean is removed, however, positive detection of F (x) in individual

models occurs in only 57 out of 80 cases. In the lower troposphere, for example, the

“global-mean removed” O3+V fingerprint cannot be detected in the HadGEM2-CC and

INM-CM4 models, because both models lack a prominent feature of the fingerprint (the

pronounced warming of the Arctic relative to the Antarctic; see Fig. S7).

Figure 9 also shows that in the lower stratosphere, we detect the “global-mean

removed” O3+V fingerprint in 4 of 20 models, but in none of the observational data

sets. Models with positive detection results, like NorESM1-M, have patterns of TLS

change that are similar to the fingerprint. In these four cases, positive detection

indicates some pattern similarity between the sub-global features of F (x) and an in-

13Four atmospheric layers × 20 CMIP-5 models.
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dividual model’s pattern of TLS change – it does not imply significant correspondence

with observations.

7.3.2 Sensitivity of S/N results to different processing choices

We performed several sensitivity tests to explore the robustness of the S/N results

presented in Fig. 9. In the first test, we computed model fingerprints and noise

estimates with synthetic MSU temperatures from all 20 CMIP-5 models (the BASE

case). S/N results for 33-year trends are qualitatively similar to those obtained with

the O3+V fingerprints and the TOP-5 noise estimates (compare Fig. S9 and Fig. 9).

There are, however, some quantitative differences.

In the “global-mean included” results, for example, S/N ratios are generally larger

for the O3+V fingerprint/TOP-5 noise combination than for BASE fingerprints and

BASE noise. This increase in S/N is primarily due to the exclusion from the TOP-5 of

models with decadal TLS variability that is much larger than observed. The increase

in S/N ratios ranges from 1.22 for TLS to 1.32 for TTT.

In the second sensitivity test, we retained the same O3+V/TOP-5 fingerprint and

noise configuration, but used the period 1979 to 2011 (rather than 1861 to 2011) for

estimating the fingerprint. Use of a different fingerprint estimation period has little

impact on estimated TMT, TTT, and TLT fingerprints (compare the top rows of Fig.

6 and Fig. S8), and thus has little effect on S/N ratios for TMT, TTT, and TLT.
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Note, however, that the TLS fingerprint pattern is sensitive to the length of record

used for estimating F (x). TLS S/N ratios are roughly 10% smaller when F (x) is

calculated over the satellite era – but in the “global-mean included” case, there is

still ubiquitous detection of the O3+V TLS fingerprint in observations.

The sensitivity of the TLS fingerprint sensitive to the choice of analysis period

requires some explanation. On multi-decadal timescales, the major external influ-

ences on lower stratospheric temperature are the decreases in stratospheric ozone, the

volcanically-induced changes in stratospheric aerosol optical depth, and the increases

in well-mixed greenhouse gases (S26, S27). Each of these external influences on TLS

has a different forcing pattern and a different time history. The non-stationarity of

the TLS fingerprint is caused by the complex spatio-temporal changes in these three

external forcing mechamisms. As noted above, however, this non-stationarity does

not hamper identification of the model-predicted TLS fingerprint in observational

data.

7.4 Figure S3

The grey shaded envelopes in Figs. S3A and B provide information on the uncertainty

in estimates of the TLS and TLT changes in the 12 O3+V models. Uncertainty esti-

mates were calculated from the time series of monthly-mean, spatially averaged TLS

and TLT anomalies in the spliced historical/RCP8.5 runs. After first averaging over
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individual realizations (for models with multiple realizations of the historical/RCP8.5

run), we computed s(t), the “between-model” standard deviation of the 12 ensemble-

mean time series. The envelope is the O3+V multi-model average temperature change

±2× s(t).
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Figure S1: Time series of simulated monthly-mean, near-global anomalies in the

temperature of the lower stratosphere (TLS). Results are from pre-industrial control

simulations performed with 20 different CMIP-5 models. Anomalies were averaged

over 82.5◦N-82.5◦S (the latitudinal extent of RSS TLS data), and are defined with

respect to climatological monthly means over the entire control run. The y-axis range

is identical in each panel. To facilitate visual comparison of results, the nominal start

date for each control run is assumed to be 1850.

Figure S2: As for Fig. S1, but for time series of monthly-mean, near-global anomalies

in the temperature of the lower troposphere (TLT). Model anomalies are averaged

over 82.5◦N-70◦S (the latitudinal extent of RSS TLT data).

Figure S3: Comparison of observed near-global changes in TLS (panel A) and TLT

(panel B) with CMIP-5 multi-model average TLS and TLT changes. The comparison

period is January 1979 to December 2011. Satellite-based estimates of changes in

TLS and TLT are from RSS, UAH, and STAR. In addition to version 3.3 of the RSS

temperature data, 11 RSS “percentile realizations” are also shown. These provide

information on the sensitivity of RSS estimates of atmospheric temperature change

to data set construction uncertainties. The CMIP-5 multi-model average (MMA) TLS

and TLT changes were computed in two ways: 1) using results from all 20 models

analyzed here (BASE); and 2) using a subset of 12 NOCHEM models with prescribed

historical changes in stratospheric ozone, and with more realistic treatment of volcanic
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forcing (O3+V). The grey envelope is the ±2 standard deviation uncertainty of the

O3+V MMA temperature change, calculated as described in the SI. For information

on anomaly definition and spatial averaging, refer to Figs. 1 and 2 of the main

text. Because the CMIP-5 MMA results were averaged over different realizations of

the spliced historical/RCP8.5 run (where multiple realizations were available) and

over different models, they are much smoother than the single realization of the

observations. The apparent oscillations in the MMA TLS anomalies are a residual

seasonal cycle effect, which arises from the impact of the El Chichón and Pinatubo

eruptions on climatological monthly means.

Figure S4: Zonal-mean trends in observed and synthetic TLS, TMT, and TLT (pan-

els A-C) over 1979 to 2011. Observational results are the 5-95 percentile ranges of the

full 400-member RSS observational ensembles (see SI ). Model synthetic MSU temper-

atures are from three selected CMIP-5 models (CCSM4, HadGEM2-CC, and MPI-ESM-LR).

Each of these models has multiple realizations of the spliced historical/RCP8.5 sim-

ulation. Note the large between-realization variability in zonal-mean trends, partic-

ularly at high latitudes in the lower stratosphere. This variability hampers reliable

estimation of the true response to the imposed external forcing changes.

Figure S5: Zonal-mean trends in the observed and simulated temperature of the

total troposphere (TTT) over 1979 to 2011. TTT is a linear combination of MSU

TLS and TMT data, which reduces the substantial contribution TMT receives from
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the cooling of the lower stratosphere (see Section 3 of the SI ). The regression co-

efficients used in calculating TTT do not vary with latitude. Observational TTT

results are from UAH, STAR, version 3.3 of the RSS data set, and the 11 RSS per-

centile realizations. The 5 to 95 percentile range of the RSS results was computed

as described in Section 4 of the SI. Model synthetic MSU temperatures are from the

spliced historical/RCP8.5 simulations performed with 20 different CMIP-5 models.

Only the first realization is shown for each model. The CMIP-5 multi-model aver-

age is the O3+V case. The O3+V multi-model average trends are also plotted for

TTT
?
, which is an alternative version of bulk tropospheric temperature calculated

with latitudinally-varying regression coefficients (see Section 3 of the SI ).

Figure S6: Geographical patterns of trends in lower stratospheric temperature (TLS)

over 1979 to 2011 in 20 individual CMIP-5 models. Model trends (in ◦C/decade) are

from spliced historical/RCP8.5 runs. For models with multiple historical/RCP8.5

realizations (see Table S4), results are shown for the first realization only.

Figure S7: As for Fig. S6, but for trends in TLT.

Figure S8: Leading signal and noise modes from the pattern-based signal-to-noise

(S/N) analysis, together with the percentage variance explained by each mode. Re-

sults are for TLS, TMT, TTT, and TLT (columns 1-4, respectively). The O3+V

fingerprints (row 1) were calculated using multi-model average synthetic MSU tem-

perature changes over 1979-2011. The leading noise modes (rows 2-4) are from the



B. D. Santer et al. 38

BASE case, and were estimated from the control simulations performed with 20 dif-

ferent CMIP-5 models. Only the last 200 years of each control run were used for

noise estimation. Full details of fingerprint and noise mode calculations are given in

Sections 6.1 and 6.2 of the SI.

Figure S9: Sensitivity of S/N ratios to uncertainties in fingerprint and noise esti-

mates. Results are for TLS (panel A), TTT (panel B), TMT (panel C), and TLT

(panel D). S/N ratios are directly comparable to the results shown in Fig. 9 in the

main text, which were based on use of the O3+V fingerprint, and relied on noise

estimates from the TOP-5 models. Here, the searched-for fingerprint and internally

generated noise were estimated with all 20 CMIP-5 models (the BASE case). As in

Fig. 9, the fingerprint was computed using multi-model average atmospheric temper-

ature changes over 1861 to 2011. For further details, refer to Fig. 9 and Section 6.3

of the SI.
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Figure S5: Santer et al.
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Figure S6: Santer et al.
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Figure S7: Santer et al.
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Figure S8: Santer et al.
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Table S1: Modeling center information and official acronyms of the CMIP-5 models

used in this study.

Model Country Modeling center

1 BCC-CSM1.1 China Beijing Climate Center, China Meteorological Adminis-
tration, Climate System Model version 1.1

2 CanESM2 Canada Canadian Centre for Climate Modelling and Analysis,
Earth System Model version 2

3 CCSM4 USA National Center for Atmospheric Research, Community
Climate System Model version 4

4 CNRM-CM5 France Centre National de Recherches Meteorologiques / Cen-
tre Européen de Recherche et Formation Avancées en
Calcul Scientifique, Climate Model version 5

5 CSIRO-Mk3.6.0 Australia Commonwealth Scientific and Industrial Research Or-
ganization in collaboration with Queensland Climate
Change Centre of Excellence, model version Mark3.6.0

6 GFDL-CM3 USA NOAA Geophysical Fluid Dynamics Laboratory, Cli-
mate Model version 3

7 GFDL-ESM2G USA NOAA Geophysical Fluid Dynamics Laboratory, Earth
System Model version G

8 GFDL-ESM2M USA NOAA Geophysical Fluid Dynamics Laboratory, Earth
System Model version M

9 GISS-E2-R (p1) USA NASA Goddard Institute for Space Studies, atmo-
spheric ModelE with Russell ocean, physics version 1

10 GISS-E2-R (p2) USA NASA Goddard Institute for Space Studies, atmo-
spheric ModelE with Russell ocean, physics version 2

11 HadGEM2-CC UK Met. Office Hadley Centre, Global Environment Model
version 2, Carbon Cycle configuration

12 HadGEM2-ES UK Met. Office Hadley Centre, Global Environment Model
version 2, Earth System configuration

13 INM-CM4 Russia Institute for Numerical Mathematics, Climate Model
version 4

14 IPSL-CM5A-LR France Institut Pierre-Simon Laplace, Climate Model version
5A, low resolution configuration
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Table S1: Modeling center information and official acronyms of the CMIP-5 models

used in this study (continued).

Model Country Modeling center

15 MIROC5 Japan Atmosphere and Ocean Research Institute (the Univer-
sity of Tokyo), National Institute for Environmental
Studies, and Japan Agency for Marine-Earth Science
and Technology, version 5

16 MIROC-ESM-CHEM Japan Japan Agency for Marine-Earth Science and Technol-
ogy, Atmosphere and Ocean Research Institute (the
University of Tokyo), and National Institute for Envi-
ronmental Studies, Earth System Model, configuration
with atmospheric chemistry

17 MIROC-ESM Japan Japan Agency for Marine-Earth Science and Technol-
ogy, Atmosphere and Ocean Research Institute (the
University of Tokyo), and National Institute for Envi-
ronmental Studies, Earth System Model

18 MPI-ESM-LR Germany Max Planck Institute for Meteorology, Earth System
Model, low resolution configuration

19 MRI-CGCM3 Japan Meteorological Research Institute, Coupled General Cir-
culation Model, version 3

20 NorESM1-M Norway Norwegian Climate Centre, Earth System Model version
1, medium resolution configuration
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Table S2: Information on horizontal and vertical resolution of the CMIP-5 models

used in this study.

Model Resolution No. levels Top level No. levels
(lat. × long.) (atmosphere)1 (hPa) above 100 hPa2

1 BCC-CSM1.1 64 × 128 17 10 5

2 CanESM2 64 × 128 22 1 10

3 CCSM4 192 × 288 17 10 5

4 CNRM-CM5 128 × 256 17 10 5

5 CSIRO-Mk3.6.0 96 × 192 18 5 6

6 GFDL-CM3 90 × 144 23 1 10

7 GFDL-ESM2-G 90 × 144 17 10 5

8 GFDL-ESM2-M 90 × 144 17 10 5

9 GISS-E2-R (p1) 90 × 144 21 0.4 9

10 GISS-E2-R (p2) 90 × 144 17 10 5

11 HadGEM2-CC 144 × 192 23 0.4 11

12 HadGEM2-ES 144 × 192 17 10 5

13 INM-CM4 120 × 180 17 10 5

14 IPSL-CM5A-LR 96 × 96 17 10 5

15 MIROC5 128 × 256 17 10 5

16 MIROC-ESM-CHEM 64 × 128 35 0.03 20

17 MIROC-ESM 64 × 128 35 0.03 20

18 MPI-ESM-LR 96 × 192 25 0.1 13

19 MRI-CGCM3 160 × 320 23 0.4 11

20 NorESM1-M 96 × 144 17 10 5

1This represents the total number of model levels at which atmospheric temperature information is
archived. It is typically smaller than the vertical resolution of the atmospheric model itself. Similarly,
the top level in the fourth column is the highest pressure level at which atmospheric temperature
data is archived – it is not necessarily identical to the pressure of the model lid.

2Not including the 100 hPa level.
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Table S3: Information on the external forcings which were included in the historical

simulations of the CMIP-5 models used in this study. Information was extracted from

the global attribute named “forcing” in the metadata of the relevant NetCDF files.1

In the third column, models are stratified according to their treatment of ozone.

Model Forcing information from metadata Ozone

1 BCC-CSM1.1 Nat, Ant, GHG, SD, Oz, Sl, Vl, SS, Ds, BC, OC NOCHEM2

2 CanESM2 GHG, Oz, SA, BC, OC, LU, Sl, Vl NOCHEM

3 CCSM4 Sl, GHG, Vl, SS, Ds, SD, BC, MD, OC, Oz, AA, LU CHEM, S-OFF3

4 CNRM-CM5 GHG, SA, Sl, Vl, BC, OC4 CHEM, INT5

5 CSIRO-Mk3.6.0 Ant, Nat NOCHEM

6 GFDL-CM3 GHG, SA, Oz, LU, Sl, Vl, SS, BC, MD, OC6 CHEM, INT

7 GFDL-ESM2G GHG, SD, Oz, LU, Sl, Vl, SS, BC, MD, OC7 NOCHEM

8 GFDL-ESM2M GHG, SD, Oz, LU, Sl, Vl, SS, BC, MD, OC7 NOCHEM

9 GISS-E2-R (p1) GHG, LU, Sl, Vl, BC, OC, SA, Oz8 NOCHEM

10 GISS-E2-R (p2) GHG, LU, Sl, Vl, BC, OC, SA, Oz8 CHEM, INT

11 HadGEM2-CC GHG, Oz, SA, LU, Sl, Vl, BC, OC NOCHEM

12 HadGEM2-ES GHG, SA, Oz, LU, Sl, Vl, BC, OC9 NOCHEM

13 INM-CM4 GHG, Oz, SI, SA, Vl NOCHEM

14 IPSL-CM5A-LR Nat, Ant, GHG, SA, Oz, LU, SS, Ds, BC, MD, OC, AA CHEM, S-OFF

15 MIROC5 GHG, SA, Oz, LU, Sl, Vl, SS, Ds, BC, MD, OC10 NOCHEM

16 MIROC-ESM-CHEM GHG, SA, Oz, LU, Sl, Vl, MD, BC, OC CHEM, INT

17 MIROC-ESM GHG, SA, Oz, LU, Sl, Vl, MD, BC, OC NOCHEM

18 MPI-ESM-LR GHG, Oz, SD, Sl, Vl, LU NOCHEM

19 MRI-CGCM3 GHG, SA, Oz, LU, Sl, Vl, BC, OC11 NOCHEM

20 NorESM1-M GHG, SA, Oz, Sl, Vl, BC, OC CHEM, S-OFF
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Table S3: Information on the external forcings which were included in the historical

simulations of the CMIP-5 models used in this study (continued).

1
Forcing abbreviations are described in Appendix 1.2 of the CMIP-5 Data Reference Syntax document. Nat = natural

forcing (a combination, not explicitly defined); Ant = anthropogenic forcing (a combination, not explicitly defined);
GHG = well-mixed greenhouse gases; SD = anthropogenic sulfate aerosol (direct effects only); SI = anthropogenic
sulfate aerosol (indirect effects only); SA = anthropogenic sulfate aerosol direct and indirect effects; Oz = tropospheric
and stratospheric ozone; LU = land-use change; Sl = solar irradiance; Vl = volcanic aerosol; SS = sea salt; Ds =
dust; BC = black carbon; MD = mineral dust; OC = organic carbon; AA = anthropogenic aerosols (a mixture of
aerosols, not explicitly defined).

2
NOCHEM = Model with prescribed changes in ozone.

3
CHEM, S-OFF = Model with semi-offline ozone chemistry.

4
Although stratospheric ozone forcing is not listed in the forcing metadata, chlorine concentration is an input for

the prognostic ozone scheme of the CNRM-CM5 model. So according to the CMIP-5 Data Reference Syntax document,
stratospheric ozone should have been listed as an external forcing.

5
CHEM, INT = Model with interactive ozone chemistry.

6
GHG includes CO2, CH4, N2O, CFC11, CFC12, HCFC22, and CFC113. Aerosol direct and indirect effects are

included.

7
GHG includes CO2, CH4, N2O, CFC11, CFC12, HCFC22, and CFC113. “The direct effect of tropospheric aerosols

is calculated by the model, but not the indirect effects.”

8
Also includes orbital change, BC on snow, and nitrate aerosols.

9
GHG = CO2, N2O, CH4, CFCs.

10
GHG includes CO2, N2O, CH4, and CFCs; Oz includes OH and H2O2; LU excludes change in lake fraction.

11
GHG includes CO2, CH4, N2O, CFC-11, CFC-12, and HCFC-22.
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Table S4: Basic information relating to the start dates, end dates, and lengths of the

CMIP-5 historical and RCP8.5 simulations used in this study. EM is the “ensemble

member” identifier described in the CMIP-5 Data Reference Syntax document.1

Model EM Hist. Hist. Hist. RCP8.5 RCP8.5 RCP8.5
Start End (months) Start End (months)

1 BCC-CSM1.1 r1i1p1 1850-01 2012-12 1956 2006-01 2300-12 3540

2 CanESM2 r1i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140
3 CanESM2 r2i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140
4 CanESM2 r3i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140
5 CanESM2 r4i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140
6 CanESM2 r5i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

7 CCSM4 r1i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140
8 CCSM4 r2i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140
9 CCSM4 r3i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

10 CNRM-CM5 r1i1p1 1850-01 2005-12 1872 2006-01 2300-12 3540
11 CNRM-CM5 r2i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140
12 CNRM-CM5 r4i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

13 CSIRO-Mk3.6.0 r10i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

14 GFDL-CM3 r1i1p1 1860-01 2005-12 1752 2006-01 2100-12 1140

15 GFDL-ESM2G r1i1p1 1861-01 2005-12 1740 2006-01 2100-12 1140

16 GFDL-ESM2M r1i1p1 1861-01 2005-12 1740 2006-01 2100-12 1140

17 GISS-E2-R (p1) r1i1p1 1850-01 2005-12 1872 2006-01 2300-12 3540

18 GISS-E2-R (p2) r1i1p2 1850-01 2005-12 1872 2006-01 2300-12 3540

19 HadGEM2-CC r1i1p1 1859-12 2005-11 1752 2005-12 2099-12 1129
20 HadGEM2-CC r2i1p1 1959-12 2005-12 553 2005-12 2099-12 1129
21 HadGEM2-CC r3i1p1 1959-12 2005-12 553 2005-12 2099-12 1129

22 HadGEM2-ES r1i1p1 1859-12 2005-11 1752 2005-12 2299-12 3529
23 HadGEM2-ES r2i1p1 1859-12 2005-12 1753 2005-12 2100-11 1140

24 INM-CM4 r1i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

25 IPSL-CM5A-LR r2i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140
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Table S4: Basic information relating to the start dates, end dates, and lengths of the

CMIP-5 historical and RCP8.5 simulations used in this study (continued).

Model EM Hist. Hist. Hist. RCP8.5 RCP8.5 RCP8.5
Start End (months) Start End (months)

26 MIROC5 r1i1p1 1850-01 2012-12 1956 2006-01 2100-12 1140

27 MIROC-ESM-CHEM r1i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

28 MIROC-ESM r1i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

29 MPI-ESM-LR r1i1p1 1850-01 2005-12 1872 2006-01 2300-12 3540
30 MPI-ESM-LR r2i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140
31 MPI-ESM-LR r3i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

32 MRI-CGCM3 r1i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

33 NorESM1-M r1i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

1See http://cmip-pcmdi.llnl.gov/cmip5/documents.html for further details.
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Table S5: Basic information relating to the start dates, end dates, and lengths of the

CMIP-5 pre-industrial control runs used in this study. EM is the “ensemble member”

identifier described in the CMIP-5 Data Reference Syntax document.1

Model EM Control Control Control
Start End (months)

1 BCC-CSM1.1 r1i1p1 1800-01 2799-12 6000

2 CanESM2 r1i1p1 2015-01 3010-12 11952

3 CCSM4 r1i1p1 800-01 1300-12 6012

4 CNRM-CM5 r1i1p1 1850-01 2699-12 10200

5 CSIRO-Mk3.6.0 r1i1p1 1651-01 2150-12 6000

6 GFDL-CM3 r1i1p1 1-01 500-12 6000

7 GFDL-ESM2G r1i1p1 1-01 500-12 6000

8 GFDL-ESM2M r1i1p1 1-01 500-12 6000

9 GISS-E2-R (p1) r1i1p1 3981-01 4530-12 6600

10 GISS-E2-R (p2) r1i1p2 3590-01 4120-12 6372

11 HadGEM2-CC r1i1p1 1859-12 2099-12 2881

12 HadGEM2-ES r1i1p1 1859-12 2435-11 6912

13 INM-CM4 r1i1p1 1850-01 2349-12 6000

14 IPSL-CM5A-LR r1i1p1 1800-01 2799-12 12000

15 MIROC5 r1i1p1 2000-01 2669-12 8040

16 MIROC-ESM-CHEM r1i1p1 1846-01 2100-12 3060

17 MIROC-ESM r1i1p1 1800-01 2330-12 6372

18 MPI-ESM-LR r1i1p1 1850-01 2849-12 12000

19 MRI-CGCM3 r1i1p1 1851-01 2350-12 6000

20 NorESM1-M r1i1p1 700-01 1200-12 6012

1See http://cmip-pcmdi.llnl.gov/cmip5/documents.html for further details.
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Table S6: Ensemble-mean trends in near-global atmospheric temperature. Trends

were computed over the period January 1979 to December 2011, using information

from spliced historical/RCP8.5 simulations performed with the 20 CMIP-5 models

used in this study. All trends are in ◦C/decade. R# is the number of realizations

used in calculating each model’s ensemble-mean trend. All statistics (final 5 rows)

are for the BASE case.

Model R# TLS trend TMT trend TLT trend TTT trend

1 BCC-CSM1.1 1 -0.295 0.254 0.321 0.309

2 CanESM2 5 -0.215 0.322 0.386 0.376

3 CCSM4 3 -0.271 0.233 0.285 0.283

4 CNRM-CM5 3 -0.160 0.193 0.237 0.228

5 CSIRO-Mk3.6.0 1 -0.253 0.179 0.225 0.222

6 GFDL-CM3 1 -0.290 0.297 0.365 0.356

7 GFDL-ESM2G 1 -0.248 0.284 0.327 0.337

8 GFDL-ESM2M 1 -0.272 0.233 0.274 0.284

9 GISS-E2-R (p1) 2 -0.305 0.146 0.215 0.191

10 GISS-E2-R (p2) 2 -0.351 0.167 0.234 0.218

11 HadGEM2-CC 3 -0.354 0.154 0.216 0.205

12 HadGEM2-ES 2 -0.305 0.241 0.314 0.296

13 INM-CM4 1 -0.207 0.089 0.124 0.119

14 IPSL-CM5A-LR 1 -0.050 0.374 0.392 0.416

15 MIROC5 1 -0.280 0.247 0.307 0.299

16 MIROC-ESM-CHEM 1 -0.245 0.151 0.199 0.190

17 MIROC-ESM 1 -0.295 0.171 0.223 0.217

18 MPI-ESM-LR 3 -0.301 0.212 0.264 0.264

19 MRI-CGCM3 1 -0.278 0.086 0.121 0.122

20 NorESM1-M 1 -0.212 0.179 0.218 0.218

Minimum - -0.354 0.086 0.121 0.119

Maximum - -0.050 0.374 0.392 0.416

Mean - -0.259 0.211 0.262 0.257

Median - -0.275 0.202 0.250 0.246

Std. deviation - 0.068 0.074 0.076 0.079
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Table S7: Observed trends in near-global atmospheric temperature over January 1979

to December 2011. All trends are in ◦C/decade. The RSS “percentile realizations”

were not used in calculating the mean observed trends. To facilitate comparison with

model results, the mean CMIP-5 trends for the 12 O3+V and 20 BASE models are

also shown. The absolute value of the ratio between simulated and observed mean

trends is given in rows 9 and 10 of the table (for the O3+V and BASE cases, respec-

tively). Note that the STAR group does not produce a TLT data set.

Model TLS trend TMT trend TLT trend TTT trend

1 RSS 5th percentile -0.329 0.043 0.086 0.075

2 RSS 95th percentile -0.272 0.127 0.190 0.171

3 RSS v3.3 -0.302 0.083 0.139 0.122

4 STAR v2.0 -0.324 0.127 - 0.172

5 UAH v5.4 -0.381 0.047 0.140 0.090

6 Mean (OBS) -0.336 0.086 0.140 0.128

7 Mean (CMIP-5; O3+V) -0.283 0.211 0.266 0.260

8 Mean (CMIP-5; BASE) -0.259 0.211 0.262 0.257

9 O3+V/OBS (row 7/row 6) 0.842 2.453 1.900 2.031

10 BASE/OBS (row 8/row 6) 0.771 2.453 1.871 2.008


