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Variational data assimilation problems in meteorology and oceanography require
the solution of a regularized nonlinear least-squares problem. Practical solution
algorithms are based on the incremental (truncated Gauss–Newton) approach,
which involves the iterative solution of a sequence of linear least-squares (quadratic
minimization) sub-problems. Each sub-problem can be solved using a primal
approach, where the minimization is performed in a space spanned by vectors of
the size of the model control vector, or a dual approach, where the minimization is
performed in a space spanned by vectors of the size of the observation vector. The
dual formulation can be advantageous for two reasons. First, the dimension of the
minimization problem with the dual formulation does not increase when additional
control variables are considered, such as those accounting for model error in a
weak-constraint formulation. Second, whenever the dimension of observation space
is significantly smaller than that of the model control space, the dual formulation
can reduce both memory usage and computational cost.

In this article, a new dual-based algorithm called Restricted B-preconditioned
Lanczos (RBLanczos) is introduced, where B denotes the background-error
covariance matrix. RBLanczos is the Lanczos formulation of the Restricted
B-preconditioned Conjugate Gradient (RBCG) method. RBLanczos generates
mathematically equivalent iterates to those of RBCG and the corresponding B-
preconditioned Conjugate Gradient and Lanczos algorithms used in the primal
approach. All these algorithms can be implemented without the need for a square-
root factorization of B. RBCG and RBLanczos, as well as the corresponding primal
algorithms, are implemented in two operational ocean data assimilation systems
and numerical results are presented. Practical diagnostic formulae for monitoring
the convergence properties of the minimization are also presented.
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1. Introduction

Variational assimilation seeks to solve a regularized
nonlinear least-squares problem to determine a model state
that optimally fits both observational information and a
priori information in the form of a model background
state. The fit is quantified by a cost function that measures
the sum of the weighted squared differences between the
available information (observations and background state)
and the corresponding model-predicted fields. The weights
are defined by matrix operators that define the error statistics
(inverse error covariance) of the information.

The basic problem involves the optimization of a set
of n control variables given m physical observations and
a background estimate for each control variable. Iterative
techniques must be used to identify an approximate mini-
mum of the cost function when n is large. In meteorological
applications, variational assimilation is implemented using
an iterative technique based on the incremental approach
(Courtier et al., 1994), which in optimization theory is
known as a Truncated Gauss–Newton (TGN) method (Law-
less et al., 2005; Gratton et al., 2007). This approach is also
widely used in oceanographic applications (Weaver et al.,
2003; Moore et al., 2011a).

The incremental approach solves a sequence of linear
least-squares (quadratic minimization) problems where
each member of the sequence is a local quadratic
approximation of the original nonlinear least-squares
problem. Conjugate Gradient (CG) or Lanczos methods,
which belong to the general class of Krylov subspace
methods, are effective for solving quadratic minimization
problems when n is large and when the system (Hessian)
matrix is symmetric and positive definite, and only available
in operator form (i.e. as a matrix-vector product). When
the quadratic minimization is performed directly in R

n, the
method is referred to as the primal approach. Alternatively,
the solution can be found using the so-called dual approach
(Egbert et al., 1994; Da Silva et al., 1995; Courtier, 1997;
Cohn et al., 1998; Daley and Barker, 2001; Bennett, 2002)
which performs the quadratic minimization in R

m. The
solution in R

m is then mapped to R
n through the

application of an n × m matrix operator that defines the
background-error covariances of the model-equivalent of
the observations with the control variables.

The dual approach can provide a significant reduction
in the computational cost and storage when m � n since
all the recurrence formulae in the minimization algorithm
involve m-dimensional vectors instead of n-dimensional
vectors as in the primal approach. For weak-constraint
variational assimilation problems (Courtier, 1997; Bennett,
2002; Trémolet, 2006), n can be very large since the control
vector includes a time-sequence of corrective terms or
model states in order to account for model error. For those
problems, the primal approach may become intractable.

The dual approach of Courtier (1997) consists of solving
the quadratic minimization problem in R

m with a first-level
preconditioner given by the inverse of the observation-error
covariance matrix (R−1). The preconditioner was applied
using a factorized form involving R−1/2. The method is
commonly referred to as PSAS (Physical-space Statistical
Analysis System), where the dual approach was first used
for operational meteorological applications (Da Silva et al.,
1995; Cohn et al., 1998). However, it has been shown by
El Akkraoui et al. (2008), Gratton and Tshimanga (2009)

(hereafter referred to as GT09) and El Akkraoui and
Gauthier (2010) that this version of the dual approach
does not generate corresponding n-dimensional iterates
that reduce monotonically the quadratic cost function in
R

n. A prohibitively large number of iterations may then be
required to obtain an acceptable solution, which should be
measured by the reduction of the cost function in primal
space (El Akkraoui and Gauthier, 2010). If the minimization
is terminated after a limited number of iterations, it can
even yield a result that is inferior to the initial guess. El
Akkraoui and Gauthier (2010) demonstrate experimentally
that this problem can be alleviated by minimizing the (R−1-
preconditioned) cost function in R

m using the MINimum
RESidual (MINRES) method, although no mathematical
proof was provided to support this result.

Another dual algorithm known as the Restricted
Preconditioned Conjugate Gradient (RPCG) method has
been proposed by GT09. This method again performs the
minimization in R

m, but contrary to PSAS, it generates
mathematically equivalent iterates to those of the primal
approach in which the cost function is minimized using a
CG method. This allows the dual approach to benefit from
the computational savings when m < n, while preserving
the desired convergence properties of the primal approach.

In this article, we derive a new dual algorithm called the
Restricted B-preconditioned Lanczos method (RBLanczos)
where B is the background-error covariance matrix.
RBLanczos generates mathematically identical iterates to
the B-preconditioned Lanczos algorithm often used in
primal approaches. This algorithm can also be interpreted
as the Lanczos version of a special case of RPCG in which
the corresponding primal first-level preconditioner is B.
We call this specific algorithm Restricted B-preconditioned
Conjugate Gradient (RBCG). The Lanczos vectors, which
are directly computed by RBLanczos, are important for
preconditioning (Tshimanga et al., 2008; Fisher et al., 2009;
Desroziers and Berre, 2012) and for quantifying the
performance of the data assimilation system (Cardinali
et al., 2004; Gelaro and Zhu, 2009; Moore et al., 2011c).

A practical demonstration of the benefits of RBCG and
RBLanczos is provided using two operational variational
data assimilation systems for the ocean. RBCG is
implemented in a three-dimensional variational assimilation
(3D-Var) system for a global configuration of the NEMO
(Nucleus for European Modelling of the Ocean) model.
This system, called NEMOVAR, is used for operational
monthly/seasonal forecasting and ocean reanalysis at the
European Centre for Medium Range Weather Forecasts
(ECMWF) (Mogensen et al., 2012; Balmaseda et al., 2013).
RBLanczos is implemented in a four-dimensional variational
assimilation (4D-Var) system for a California Current
configuration of the ROMS (Regional Ocean Modeling
Systems) model. This system, which includes a weak-
constraint formulation of 4D-Var, is used for regional
ocean forecasting and reanalysis applications (Moore et al.,
2011a,b,c).

The outline of the article is as follows. In section 2
the variational assimilation problem is formulated and the
Lanczos algorithm for the primal approach is introduced.
The RBLanczos algorithm is given in the same section.
Practical formulae for diagnosing quantities needed for
monitoring the convergence of the algorithm are also
derived. Numerical experiments with NEMOVAR and
ROMS are presented in section 3. Conclusions and
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future directions are given in section 4. Appendix A
provides simplified versions of the BLanczos and RBLanczos
algorithms that do not include re-orthogonalization.
Appendix B provides a derivation of the relations between
the vectors defined in the primal and dual formulations of
the Lanczos algorithm.

2. Lanczos method with the primal and dual approaches

2.1. Problem formulation

In its standard formulation, 4D-Var is designed to estimate
the initial state of a dynamical system by combining
observations over a given time window with an a priori
estimate of the initial conditions called the background
state. This approach has its origin in maximum likelihood
estimation under a Gaussian assumption (Tarantola, 2005,
pp 24–32). It leads to the minimization of the cost function

J [u] = 1

2
(u − ub)

T B−1 (u − ub)

+1

2

Nt∑
j=0

{
Hj(xj) − yj

}T
R−1

j

{
Hj(xj) − yj

}
(1)

with respect to a control vector u = x(t0), chosen to be
the initial state of the dynamical model at time t0. In this
formulation, observations are given by an mj-dimensional
vector yj at time tj, and the background state is given by
an n-dimensional vector ub = xb(t0). The n × n matrix B
is an estimate of the background-error covariance matrix,
and the mj × mj matrix Rj is an estimate of the observation-
error covariance matrix at time tj, with the observation
errors assumed here to be uncorrelated in time. The
inverse of these matrices defines the weighting matrix of
the quadratic terms in (1). In order to calculate the model
counterpart of the observation vector at tj, first the state
xj = x(tj) = M0,j{x(t0)} is estimated by propagating the
initial state to time tj using the dynamical model operator
M0,j ≡ M(t0, tj), and then the state is mapped to observation
space using the observation operator Hj. Note that this
formulation of 4D-Var assumes that the model operator
M0,j is perfect. Adopting the terminology of Sasaki (1970),
it is referred to as strong-constraint 4D-Var.

The incremental approach (Courtier et al., 1994) is a
practical algorithm for solving the 4D-Var problem when
the system is weakly nonlinear and of large dimension n.
Incremental 4D-Var consists of solving a sequence of linear
least-squares approximations of the nonlinear least-squares
problem (1). On each iteration (k), a quadratic cost function

J[δu(k)]= 1

2

(
u(k−1)−ub+δu(k)

)T
B−1

(
u(k−1)−ub+δu(k)

)

+ 1

2

Nt∑
j=0

(
H(k−1)

j M(k−1)
0,j δu(k) − d(k−1)

j

)T

×R−1
j

(
H(k−1)

j M(k−1)
0,j δu(k)−d(k−1)

j

)
(2)

is minimized to determine a correction (increment)
δu(k) = δx(k)(t0) to the initial state estimate
u(k−1) = x(k−1)(t0), such that the updated estimate is

u(k) = u(k−1) + δu(k).

The initial estimate is usually taken to be the back-
ground state, u(0) = ub. In the quadratic formulation (2),

M(k−1)
0,j = M(k−1)(t0, tj) is the tangent-linear (TL) of the non-

linear model M0,j defined with respect to the time sequence of

reference states
{

x(k−1)
i

}
, i = 1, . . . , j, and H(k−1)

j is the TL of

the observation operator H(k)
j defined with respect to x(k−1)

j .
In practice, the TL operators are often approximated. The

vector d(k−1)
j = yj − Hj(x(k−1)

j ) is the difference between the
observation vector and the corresponding model-predicted
values at time tj. The main loop of the incremental 4D-Var

algorithm that generates the time sequence of states
{

x(k−1)
j

}
and difference vectors

{
d(k−1)

j

}
, for j = 1, . . . , Nt , is called

the outer loop. For large problems, an iterative method
is used to solve the quadratic minimization problem (2).
The iterative loop of the quadratic minimization problem
is called the inner loop since it is nested within the outer
loop.

This article focuses on minimization algorithms for the
inner loop. For clarity and without loss of generality, we
consider a single outer iteration (k = 1) starting from the
background state ub. For this special case, the quadratic cost
function of the inner-loop problem can be written as

J[δu] = 1

2
δuTB−1δu︸ ︷︷ ︸

Jb

+ 1

2
(G δu − d)TR−1(G δu − d)︸ ︷︷ ︸

Jo

, (3)

which is a compact form of the linearized problem (2)
with k = 1 and u(0) = ub. The underbraces highlight the
background term Jb and observation term Jo. The outer
iteration counter (k) has been dropped for clarity of notation.
In (3), the generalized observation operator G is a m × n
matrix of concatenated operators HjM0,j over time where

m = ∑Nt
j=0 mj, R is a m × m block-diagonal matrix whose

jth block is Rj, and d is the vector of concatenated difference
vectors dj.

The exact solution, δu∗ = argmin J[δu], is obtained by
setting the gradient of the cost function to zero which yields

δu∗ = (B−1 + GTR−1G)−1 GTR−1d. (4)

Since the matrices appearing in (4) are large and typically
only available in operator form (i.e. as a matrix-vector
product), an approximate solution is usually found by
solving the n × n linear system

(B−1 + GTR−1G) δu = GTR−1d , (5)

using a Krylov subspace iterative method (Saad, 1996,
Chapter 6). Equation (5), which involves directly optimizing
in control space to determine δu, is referred to as the primal
problem.

Alternatively, the solution (4) can be expressed
as (Courtier, 1997)

δu∗ = BGT(GBGT + R)−1d , (6)
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by using the Sherman–Morrison–Woodbury formula
(Nocedal and Wright, 2006, pp 612–613) or from duality
theory (Gratton et al., 2013).

An approximate solution of (6) can be obtained by
applying a Krylov subspace method to the m × m linear
system

(GBGT + R)λ = d, (7)

and then transforming the solution as

δu = BGTλ. (8)

In ocean data assimilation, this approach has been referred
to as the indirect representer method (Egbert et al., 1994)
whereas in meteorological data assimilation it has been
called PSAS (Da Silva et al., 1995; Courtier, 1997; Cohn
et al., 1998). Equations (7) and (8), which involve optimizing
the m-dimensional vector λ, constitute the dual problem.
The dual problem can be preferable to the primal problem
for computational reasons when the dimension (m) of
observation space is much smaller than the dimension (n)
of control space.

For some problems it may be desirable to include
additional variables in the control vector u. For example,
extra control variables can be included to account for errors
in the dynamical model M0,j, leading to the so-called weak-
constraint formulation of 4D-Var (Sasaki, 1970), or to
account for errors in boundary conditions. The dimension
of the primal problem is determined by the size of the control
vector. In contrast, the dimension of the dual problem is
determined by the size of the observation vector and thus
does not change by including additional control variables.
For weak-constraint 4D-Var, the number of extra variables
can be so large that the primal problem becomes impractical.
In such cases, the dual problem is particularly appealing.

2.2. Solving the linearized problem: primal approaches

Equation (5) is a problem of the standard form

A δu = b,

where

A = ∇2J = B−1 + GTR−1G (9)

is the (symmetric and positive-definite) Hessian or system
matrix, and

b = −∇J[0] = GTR−1d (10)

is the negative of the cost function gradient evaluated at
δu = 0. Krylov subspace methods search for an approximate
solution δul in a subspace δu0 + Kl(A, r0) where δu0 is the
initial guess,

r0 = b − A δu0 = −∇J[δu0] (11)

is the initial residual (the negative of the gradient evaluated
at δu = δu0), and

Kl(A, r0) = span
{

r0, Ar0, A2r0, . . . , Al−1r0

}
is the Krylov subspace of dimension l.

To define the lth iterate uniquely, several Krylov subspace
methods impose the Petrov–Galerkin condition (Saad,
1996, p 144)

rl ⊥ Ll(A, r0), (12)

where rl is the residual of the lth iterate, and Ll(A, r0)
is an l-dimensional subspace. The choice of the subspace
Ll(A, r0) and properties of the matrix A yield different
Krylov subspace methods. For instance, when Ll(A, r0) =
Kl(A, r0), the condition (12) is called a Galerkin condition.
It leads to the Lanczos method when A is symmetric, which
finds an approximate solution δul by minimizing the A−1-

norm of the residual; ‖rl‖A−1 =
√

rT
l A−1rl. On the other

hand, choosing Ll(A, r0) = AKl(A, r0) with A symmetric
gives the Minimum RESidual method (MINRES) (Paige
and Saunders, 1975). It finds the approximate solution
δul by minimizing the Euclidean norm of the residual;

‖rl‖2 =
√

rT
l rl. Furthermore, if A is symmetric and positive

definite then the Lanczos method is mathematically
equivalent to the CG method (Saad, 1996, p 176).

This article focuses on the Lanczos method which is
widely used in meteorological and ocean variational data
assimilation (Tshimanga et al., 2008; Fisher et al., 2009;
Moore et al., 2011a). As mentioned above, the Lanczos
method imposes the Galerkin condition which implies

VT
l (b − Aδul) = 0 ,

where Vl = [v1, v2, . . . , vl] is an n × l matrix whose column
vectors vi, i = 1, . . . , l, form an orthonormal basis for
Kl(A, r0). The basis vectors are known as Lanczos vectors
and are constructed by using a simplified version of Arnoldi’s
algorithm when A is symmetric (Saad, 1996, pp 174–175).
They can be shown to be related to the normalized residual
(gradient) vectors generated by CG on the same iterations
(Paige and Saunders, 1975). Using this orthonormal basis,
the solution on the lth iteration becomes

δul = δu0 + Vlsl , (13)

where sl is the solution of the linear system

Tlsl = VT
l r0 (14)

involving the l × l tridiagonal matrix

Tl = VT
l AVl . (15)

The tridiagonal system (14) which is of size l, l being typically
small, can be easily solved using standard factorization
methods (Golub and Van Loan, 1996, pp 138–139). The
eigenpairs of the matrix A can be approximated by the
Ritz pairs, (θi, Vlξ i), i = 1, . . . , l, defined with respect to
the subspace Kl(A, r0), where (θi, ξ i) are the eigenpairs of
Tl (Parlett, 1980; Golub and Van Loan, 1996; Saad, 1996).
The right-hand side of (14) can be simplified by recalling
that the vectors vi, i = 1, . . . , l, form an orthonormal basis
for Kl(A, r0) and that v1 = r0/‖r0‖2 , so that

VT
l r0 = ‖r0‖2 e1 , (16)

where ‖r0‖2 =
√

rT
0 r0 and e1 = [1, 0, . . . , 0]T.
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When applying the Lanczos or CG method, a pre-
conditioner is desirable to accelerate the convergence. A
preconditioner typically transforms the linear system into
one with ‘better’ spectral properties; e.g. more clustered
eigenvalues. At the very least, a first-level preconditioner is
needed to non-dimensionalize the control vector when it
involves more than one physical variable. In this way, results
obtained using the standard implementations of Lanczos
or CG (with the canonical inner product) will be inde-
pendent of the choice of physical units. This can be easily
done by separating out the units using the factorization
B = D1/2CD1/2 where D1/2 is a diagonal matrix of (dimen-
sional) standard deviations, and C is a (dimensionless)
correlation matrix, with 1s on the diagonal. Equation (5)
can then be transformed as(

C−1+ D1/2GTR−1G D1/2
)
δũ = D1/2GTR−1d (17)

and solved for δũ = D−1/2δu using Lanczos or CG equipped
with the canonical inner product. The solution in control
space is then obtained from δu = D1/2δũ.

Equation (17) is poorly conditioned in general since
typical correlation matrices C used in variational data
assimilation contain a wide range of eigenvalues (Lorenc,
1997). It also requires specification of the inverse correlation
operator C−1 which is difficult in practice. To alleviate these
problems, the full background-error covariance matrix B is
used as a first-level preconditioner (Lorenc, 1988). Assuming
B can be factored as B = UUT, where U is a n × n′ left
square-root matrix of B, with n′ possibly different from n,
then the preconditioned system becomes

(In′ + UTGTR−1GU) δũ = UTGTR−1d , (18)

where In′ is the n′ × n′ identity matrix. Equation (18) is
solved for δũ using Lanczos or CG formulated with the
canonical inner product, and the solution in control space
is obtained from δu = U δũ. The eigenvalue spectrum of
the system matrix in (18) is bounded below by 1, and
has a cluster at 1 of size at least max (0, n′ − m). A
second-level preconditioner that approximates the inverse
of the linear system matrix can also be used to further
accelerate the convergence. Tshimanga et al. (2008) and
Gratton et al. (2011b) discuss second-level preconditioning
techniques within the context of multi-outer-loop iterations
of incremental 4D-Var. However, in this article, only
first-level preconditioning with B will be considered.
Furthermore, the initial guess δu0 will be assumed to be
zero, as is typically the case in applications of 3D-Var and
4D-Var that involve a single outer-loop iteration.

Notice that the dimension of minimization space for
solving (18) is determined by n′, the dimension of δũ.
The case n′ < n arises with reduced-rank formulations of
B where, for example, U is defined by a limited number of
ensemble perturbations or some other appropriately chosen
basis vectors (Evensen, 2009; Gratton et al., 2011a). Square-
root preconditioning is clearly advantageous when n′ � n.
The case n′ > n arises when B is formulated as a weighted
sum of two or more matrices. This situation can arise with
general covariance models constructed from spectral or
grid-point filters (Fisher, 2003; Purser et al., 2003; Weaver
and Mirouze, 2013) and with hybrid ensemble-variational
B formulations (Buehner, 2005; Wang et al., 2007, 2008).
Square-root preconditioning can be less convenient in these
latter cases.

The preconditioned linear system (18) can be written in
the standard form

Ã δũ = b̃ , (19)

where

Ã = UTAU

and b̃ = UTb ,

with A and b given by (9) and (10). The Lanczos algorithm
applied to (19) searches for a solution in the Krylov
subspace Kl(Ã, r̃0), where r̃0 = UTr0. Applying the standard
version of the Lanczos algorithm described by (13)–(15)
to the system (19), with the assumption δu0 = 0, gives an
approximate solution on the lth iteration as

δũl = Ṽlsl , (20)

where

Tlsl = ṼT
l r̃0 ,

and Tl = ṼT
l ÃṼl .

}
(21)

The Lanczos algorithm applied to the preconditioned
linear system (19) is based on the availability of a factored
form for B (Fisher et al., 2009). Hereafter we use the
term Lanczos to refer to this particular form of the
Lanczos algorithm. Alternatively, B-preconditioning of the
linear system (5) can be achieved by employing B as a
right symmetric preconditioner (Nour-Omid et al., 1988;
Axelsson, 1996; Chan et al., 1999). This leads to

(In + GTR−1G B) δu = GTR−1d. (22)

The system matrix in (22) is symmetric (self-adjoint) with
respect to the B-inner product. The solution in control space
itself is obtained from δu = B δu. This approach generates
mathematically equivalent iterates to those of the Lanczos
approach using U and UT, but is more general since it
does not require B to be factored, this factorization being
particularly inconvenient when n′ 	 n as mentioned above.

The Lanczos algorithm that solves the linear system (22)
with the B-inner product is given in Algorithm 1. For future
reference, we refer to it as BLanczos.

BLanczos searches for a solution in the Krylov subspace
(Chan et al., 1999)

Kl(BA, Br0)

= span
{

Br0, (BA)Br0, . . . , (BA)l−1Br0

}
. (23)

It can be easily shown that the matrix Vl constructed
by BLanczos is related to the matrix Ṽl via the relation
Ṽl = UTVl. From this relation, (20) and (21), and the
definitions of Ã and r̃0, it is straightforward to show that the
solution on the lth iteration of BLanczos can be written as

δul = Zlsl , (24)

where

Zl = BVl

Tl sl = ZT
l r0,

and Tl = ZT
l AZl.


 (25)
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Algorithm 1: BLanczos with re-orthogonalization

1 v0 = 0
2 r0 = GTR−1d
3 t0 = B r0

4 β0 =
√

tT
0 r0

5 v1 = r0/β0
6 z1 = t0/β0
7 β1 = 0
8 Z1 = [ z1 ]
9 V1 = [ v1 ]

10 for i = 1, 2, . . . , l do
11 qi = (vi + GTR−1G zi) − βivi−1

12 αi = qT
i zi

13 wi = qi − αivi
14 Re-orthogonalize wi using Vi and Zi
15 ti = B wi

16 βi+1 =
√

tT
i wi

17 vi+1 = wi/βi+1
18 zi+1 = ti/βi+1
19 Zi := [ Zi, zi+1 ]
20 Vi := [ Vi, vi+1 ]
21 (Ti)i,i = αi
22 if i > 1 then
23 (Ti)i−1,i = (Ti)i,i−1 = βi
24 end
25 end
26 Solve Tlsl = β0 e1
27 δul = Zl sl

From the orthonormality of the column vectors of Ṽl,
i.e. ṼT

l Ṽl = Il, and the relation Ṽl = UTVl, we obtain that
VT

l BVl = Il, i.e. that the column vectors of Vl are B-
orthonormal. From the B-orthonormality of the vectors
vi, i = 1, . . . , l, and the fact that v1 = r0/β0, where

β0 = ‖r0‖B =
√

rT
0 Br0, the right-hand side of the second

expression in (25) can be simplified as

ZT
l r0 = β0 e1.

Each iteration of BLanczos requires only one matrix-
vector multiplication with each of the matrices G, GT,
R−1 and B. The n × l matrix Zl and the two vectors
consisting of the diagonal and off-diagonal entries of the
l × l symmetric matrix Tl need to be stored for computing
the solution with (24). As mentioned earlier, these matrices
contain approximate information on the eigenspectrum of
the Hessian matrix which is valuable for diagnostic studies
and for building second-level preconditioners. The matrix
Zl is also required for re-orthogonalization with the matrix
Vl, as will be explained in section 2.5.

When re-orthogonalization is not necessary, the solution
can also be found using recurrence relationships that do not
require the matrices Zl and Tl (Papadrakakis and Smerou,
1990; Saad, 1996; Chien and Chang, 2003). Therefore, the
memory requirements can be reduced by using this version
of the Lanczos algorithm (known also as the direct version
of the Lanczos algorithm (Saad, 1996, p 177)) which is
derived from the LU factorization of Tl. This direct version
of BLanczos is given in Appendix A.

As mentioned earlier, another well-known method for
solving the linear system (5) is CG. CG is mathematically
equivalent to the Lanczos method in exact arithmetic when
the system matrix A is symmetric and positive definite.

A B-preconditioned CG algorithm for solving the linear
system (5), which we call BCG, is given in Algorithm 2. Like
BLanczos, BCG only requires B for preconditioning (not
its factorization or inverse) and only one application per
iteration of the matrix operators G, GT, R−1 and B (Derber
and Rosati, 1989).

Algorithm 2: BCG

1 δu0 = 0
2 f0 = 0
3 r0 = GTR−1d
4 z0 = Br0
5 p0 = z0
6 h0 = r0
7 for i = 0, 1, ..., l − 1 do
8 qi = hi + GTR−1Gpi

9 αi = rT
i zi/qT

i pi
10 δui+1 = δui + αipi
11 fi+1 = fi + αihi } for diagnosing Jb
12 ri+1 = ri − αiqi
13 Re-orthogonalize ri+1
14 zi+1 = Bri+1

15 βi = rT
i+1zi+1/rT

i zi
16 pi+1 = zi+1 + βipi
17 hi+1 = ri+1 + βihi
18 end

From the theoretical equivalence of BLanczos and BCG,
it is possible to construct the tridiagonal matrix Tl from
the coefficients αi and βi generated by BCG (Saad, 1996,
pp 181–182), and hence to obtain approximate eigenvalues
of the Hessian matrix from the eigenvalues Tl. In particular,
the diagonal and off-diagonal entries of Tl can be obtained
from the relations

(Tl)i,i =




1

αi−1
if i = 1,

1

αi−1
+ βi−2

αi−2
if i > 1,

(26)

and

(Tl)i+1,i = (Tl)i,i+1 =
√

βi−1

αi−1
. (27)

Another way to avoid specifying a factorization of B
is to treat (22) as a non-symmetric system (with respect
to the canonical inner product) and to solve it with
the Full Orthogonalization Method (FOM), which is a
generalization of the Lanczos method that does not require
A to be symmetric but is more computationally expensive. El
Akkraoui et al. (2012) used a BiConjugate Gradient (BiCG)
algorithm∗ (Saad, 1996, pp 211–212) to solve the non-
symmetric system (22) with second-level preconditioning.
BiCG is less robust numerically than PCG (Golub and Van
Loan, 1996, p 551), although this problem can be handled by
using the BiCG Stabilized method (Saad, 1996, p 217). When
using only first-level (B)-preconditioning, El Akkraoui et al.
(2012) show that BiCG is mathematically equivalent to BCG
or ‘double CG’ as referred to in their article.

∗BiCG is referred to as BCG in Saad (1996) and should not be confused
with the BCG algorithm described here.
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2.3. Solving the linearized problem: dual approaches

Alternatively, the solution of the linearized problem (3) can
be found by solving the dual problem using a CG or Lanczos
method. By analogy with the use of B as a preconditioner
for the primal problem, one possibility is to use R−1 as
a preconditioner for the dual problem. This is the basic
approach taken in PSAS. For example, employing R−1 left
symmetric preconditioning on (7) leads to solving the system

(R−1GBGT + Im) λ = R−1d (28)

using a CG or Lanczos algorithm formulated with the R-
inner product. In many data assimilation systems, R is
assumed to be diagonal in which case applying R and R−1

is trivial. Conventional implementations of PSAS (Courtier,
1997; El Akkraoui et al., 2008; El Akkraoui and Gauthier,
2010) employ R−1-preconditioning via a square-root matrix
R−1/2, where R−1 = R−1/2R−1/2 (assuming R is diagonal),
and solve

(R−1/2GBGTR−1/2 + Im) λ̃ = R−1/2d , (29)

where λ = R−1/2λ̃, using CG or Lanczos furnished with the
canonical inner product.

As illustrated by GT09 and El Akkraoui and Gauthier
(2010), PSAS has a non-monotonic convergence behaviour
when viewed in terms of the reduction of the quadratic
cost function (3). This can yield a quadratic cost value that
is larger than the initial value when the minimization is
terminated after a few iterations. As a remedy, El Akkraoui
and Gauthier (2010) suggested the use of MINRES to solve
the linear system (29). Their experimental results showed
that MINRES could produce a monotonically decreasing
quadratic cost function (3), although no mathematical
theory was provided to guarantee this behaviour.

A better alternative is the Restricted Preconditioned
Conjugate Gradient (RPCG) method (GT09) which also
solves (28) using a CG method but equipped with the
(possibly semi-definite) GBGT-inner product instead of the
R-inner product. As discussed by GT09, RPCG generates,
in exact arithmetic, the same iterates as those generated by
PCG. This can also be achieved by solving (29) with the
R−1/2GBGTR−1/2-inner product instead of the canonical
inner product as in PSAS.

Since only first-level preconditioning with B is considered
in this study, we restrict our attention to RBCG which is
the dual equivalent of BCG and a special case of RPCG.
For reference, the RBCG algorithm, which is based on
Algorithm 5 of GT09, is provided in Algorithm 3. (GT09 and
Gratton et al. (2013) provide a more general presentation of
the algorithm that allows for second-level preconditioning.)

As with BCG, each loop of the RBCG algorithm requires
one matrix-vector multiplication with G, GT, R−1 and B.
Note that, the tridiagonal matrix Tl can be generated using
(26) and (27) since the coefficients αi and βi are equivalent
in BCG and RBCG.

In the same way that RBCG is the dual equivalent of
BCG, there exists a Lanczos algorithm that is the dual
equivalent of BLanczos. We call this algorithm Restricted
BLanczos (RBLanczos). It produces identical iterates, in
exact arithmetic, to RBCG, BCG and BLanczos. RBLanczos
simply solves the linear system (28) using a Lanczos
algorithm equipped with the (possibly semi-definite) GBGT-
inner product. The solution in control space is then

Algorithm 3: RBCG

1 λ0 = 0
2 c0 = 0
3 r̂ 0 = R−1d
4 p̂0 = r̂ 0

5 w0 = GBGTr̂ 0
6 t0 = w0
7 for i = 0, 1, . . . l − 1 do
8 q̂i = R−1ti + p̂i

9 αi = wT
i r̂ i/̂qT

i ti
10 λi+1 = λi + αîpi
11 ci+1 = ci + αiti } for diagnosing Jb
12 r̂ i+1 = r̂ i − αîqi
13 Re-orthogonalize r̂i+1

14 wi+1 = GBGTr̂ i+1

15 βi = wT
i+1r̂ i+1/wT

i r̂ i
16 p̂i+1 = r̂ i+1 + βîpi
17 ti+1 = wi+1 + βiti
18 end
19 δul = BGTλl

recovered from (8). RBLanczos is a variant of the Restricted
FOM (RSFOM) algorithm (Gratton et al., 2009) adapted
to symmetric and positive-definite matrices. The derivation
of RBLanczos is sketched in the next section, with more
technical details provided in Appendix B.

2.4. RBLanczos algorithm

Following GT09 and Gratton et al. (2009), we assume that
the initial residual r0 ∈ R

n is in the range of the operator
GT. This assumption is valid when the initial guess δu0 is
taken to be zero, which is the case here. When the initial
guess is different from zero, the assumption still holds but a
generalized algorithm with augmented vectors and matrices
is required (GT09).

The residual can be written as

r0 = GTr̂ 0 , (30)

where r̂ 0 = R−1d ∈ R
m. From the basic assumption (30),

it is shown in Appendix B that there exist m-dimensional
vectors v̂i, ẑi, q̂i, ŵi and t̂ i that can be related to the
corresponding n-dimensional vectors vi, zi, qi, wi and ti of
BLanczos Algorithm 1 according to

Gti = t̂ i,
vi = GT̂vi

}
(31)

for i ≥ 0, and

Gzi = ẑi,
qi = GTq̂i,
wi = GTŵi


 (32)

where i ≥ 1.
Equations (30)–(32) allow all the recurrence relations

in BLanczos Algorithm 1 involving vectors of dimension n
to be transformed directly into corresponding recurrence
relations involving vectors of dimension m. This yields the
RBLanczos algorithm given by Algorithm 4.

As with BLanczos, one loop of RBLanczos requires a
single matrix-vector product with each of the operators G,
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Algorithm 4: RBLanczos with re-orthogonalization

1 r̂ 0 = R−1d
2 t̂ 0 = GBGTr̂ 0

3 β0 =
√

t̂ T
0 r̂ 0

4 v̂1 = r̂ 0/β0
5 ẑ1 = t̂ 0/β0
6 β1 = 0
7 v̂0 = 0
8 Ẑ1 := [ ẑ1 ]
9 V̂1 := [ v̂1 ]

10 for i = 1, 2, . . . , l do
11 q̂i = (̂vi + R−1̂zi) − βîvi−1

12 αi = q̂T
i ẑi

13 ŵi = q̂i − αîvi

14 Re-orthogonalize ŵi using V̂i and Ẑi

15 t̂ i = GBGTŵi

16 βi+1 =
√

t̂ T
i ŵi

17 v̂i+1 = ŵi/βi+1
18 ẑi+1 := t̂ i/βi+1

19 Ẑi := [ Ẑi, ẑi+1 ]
20 V̂i := [ V̂i, v̂i+1 ]
21 (Ti)i,i = αi
22 if i > 1 then
23 (Ti)i−1,i = (Ti)i,i−1 = βi
24 end
25 end
26 Solve Tlsl = β0e1

27 δul = BGTV̂lsl

GT, R−1 and B, but with the important difference that all
vectors are defined in R

m instead of R
n. The two algorithms

are mathematically equivalent.
As discussed in section 2.2, BLanczos searches for the

solution δul in the Krylov subspace (23). It is instructive
to determine the corresponding Krylov subspace for
RBLanczos. Replacing r0 in (23) with (30) yields

Kl(BA, BGTr̂ 0)= span
{
BGTr̂ 0, . . . , (BA)l−1BGTr̂ 0

}
. (33)

It can be easily shown that

ABGT = GTÂ,

where Â = Im + R−1GBGT. Equation (33) can then be
written as

Kl(BA, BGTr̂ 0) = span
{

BGTr̂ 0, . . . , BGTÂl−1r̂ 0

}
= BGTKl(Â, r̂ 0),

where

Kl(Â, r̂ 0) = span
{

r̂ 0, Âr̂ 0, . . . , Âl−1r̂ 0

}
is the Krylov subspace generated by RBLanczos.

When re-orthogonalization is not required, as with
BLanczos, RBLanczos can be transformed into an equivalent
algorithm that does not require storing the matrices Tl

and V̂l to find the solution. This algorithm is provided in
Appendix A.

2.5. Re-orthogonalization

The Lanczos vectors in BLanczos (or the residuals in BCG)
are, in exact arithmetic, mutually orthogonal with respect
to the B-inner product. Round-off errors can result in
a loss of B-orthogonality and can significantly hinder the
convergence of these methods as a consequence. It is possible
to alleviate this problem by re-orthogonalizing the Lanczos
vectors (or the CG residuals) on each iteration using a
modified Gram–Schmidt (MGS) procedure (Saad, 1996,
pp 11–12).

With reference to Algorithm 1 for BLanczos, the re-
orthogonalization procedure acts on the vectors wi. Making
use of the orthogonality relationship vT

i Bvj = 0, for i 
= j,
MGS re-orthogonalization can be described in compact
notation by

wi ←

 1∏

j=i−1

(In − vjv
T
j B)


wi , (34)

=

 1∏

j=i−1

(In − vjz
T
j )


wi . (35)

Equations (34) and (35) require the storage of the Lanczos
vectors vj from all previous iterations j = 1, . . . , i − 1.
Equation (34) is clearly less practical than (35) since
it requires i − 1 additional, and generally expensive,
applications of B to compute the B-inner product of vj and
wi. This expensive matrix-vector product can be avoided by
storing the vectors zj and using them in (35).

The need to store and manipulate the sequence of
n-dimensional vectors vj and zj can lead to significant
computational overhead, as will be illustrated in the
experiments in section 3. In this respect, the dual algorithms,
which involve sequences of m-dimensional vectors, are
clearly an attractive alternative when m � n. From the
relationship vi = GT̂vi, the orthogonality condition for the
Lanczos vectors can be written as

vT
i Bvj = v̂T

i GBGTv̂j = 0 (36)

for i 
= j. Combining (36) with (34) and (35) leads to
the MGS re-orthogonalization scheme for RBLanczos in
Algorithm 4:

ŵi ←

 1∏

j=i−1

(Im − v̂ĵv
T
j GBGT)


ŵi ,

=

 1∏

j=i−1

(Im − v̂ĵz
T
j )


ŵi .

2.6. Monitoring convergence

The values of the quadratic cost function and the norm of
the cost function gradient are important for monitoring the
convergence of the minimization. In addition to the total
value of the cost function, J, the relative contributions
to J from the background term Jb and observation
term Jo provide additional useful diagnostic information.
Inexpensive formulae for computing all these quantities on
each iteration from the recurrence relations in BLanczos,
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RBLanczos, BCG and RBCG (Algorithms 1, 4, 2 and 3)
are derived in this section. Similar formulae can also be
derived for the corresponding direct Lanczos algorithms
(Algorithms 5 and 6) given in Appendix A.

2.6.1. Quadratic cost function

BLanczos

Using a Taylor series expansion about the initial guess
δu0 = 0, the quadratic cost function J[δui] in (3) can be
expressed as

J[δui] = J[0] + δuT
i ∇J[0] + 1

2
δuT

i (∇2J) δui.

Replacing ∇2J by A (Eq. (9)) and ∇J[0] by −r0 (Eq. (11)),
and using the relations (24) and (25), the quadratic cost
function can be expressed in terms of quantities from
BLanczos as

J[δui] = J[0] − sT
i ZT

i r0 + 1

2
sT

i ZT
i AZisi

= J[0] − sT
i ZT

i r0 + 1

2
sT

i Tisi

= J[0] − sT
i ZT

i r0 + 1

2
sT

i ZT
i r0

= J[0] − 1

2
sT

i ZT
i r0, (37)

where

J[0] = 1

2
dTR−1d. (38)

Using again (24) and (25), the Jb term can be evaluated as

Jb[δui] = 1

2
δuT

i B−1δui

= 1

2
sT

i ZT
i B−1Zisi

= 1

2
sT

i VT
i Zisi. (39)

The expressions for J and Jb depend on the vectors si. These
vectors can be computed on each iteration by solving the
(inexpensive for small i) tridiagonal system Tisi = β0e1.

The Jo term is expensive to compute directly since it
requires evaluating the term Gδui which is not directly
available on each iteration of BLanczos. It also requires
application of R−1 which may be costly when correlated
observation error is accounted for in R. Fortunately, given J
and Jb, Jo can be deduced simply from their difference:

Jo[δui] = J[δui] − Jb[δui]. (40)

However, in some applications, additional constraints
are included in the cost function via a penalty term Jc,
in which case (40) would allow only the sum of Jo and
Jc to be recovered. A typical example is when a digital
filter is employed as a weak constraint in 4D-Var in order
to penalize high-frequency noise in the solution trajectory
(Gauthier and Thépaut, 2001). In order to isolate Jo, the
Jc term would then need to be evaluated explicitly on each
iteration.

RBLanczos

The values of J and Jb can be evaluated in terms of quantities
from RBLanczos by using the relation (30) and the relations
for vi and zi in (31) and (32) in the expressions (37) and
(39). This yields

J[δui] = J[0] − 1

2
sT

i ZT
i GTr̂ 0

= J[0] − 1

2
sT

i ẐT
i r̂ 0,

and

Jb[δui] = 1

2
sT

i V̂T
i GZisi

= 1

2
sT

i V̂T
i Ẑisi,

where J[0] is again given by (38). The Jo term can then be
evaluated from (40). The matrices V̂i and Ẑi contain the
j = 1, . . . , i column vectors v̂j and ẑj. These matrices are
also needed for re-orthogonalization.

BCG

For BCG, the quadratic cost function can be calculated from
(37) using the relation (24):

J[δui] = J[0] − 1

2
δuT

i r0 , (41)

where J[0] is given by Eq. (38).
The Jb term can be calculated as

Jb[δui] = 1

2
δuT

i B−1δui

= 1

2
δuT

i fi ,

where fi = B−1δui can be computed without the need to
apply B−1 by including an additional recurrence relation in
Algorithm 2. The Jo term can then be computed from (40).

RBCG

For RBCG, the quadratic cost function is calculated from
(41) using the relations (8) and (30):

J[δui] = J[0] − 1

2
λT

i GBGTr̂ 0

= J[0] − 1

2
λT

i w0,

where w0 = GBGTr̂ 0 is available from Algorithm 3. Using
(8), the Jb term can be written as

Jb[δui] = 1

2
λT

i GBGTλi

= 1

2
λT

i ci ,

where ci = GBGTλi can be diagnosed at little extra cost by
including an additional recurrence relation in Algorithm 3.
The Jo term can then be computed from (40).
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2.6.2. Norm of the quadratic cost function gradient

BLanczos

The residual vector of the approximate solution δui

computed by BLanczos satisfies (Saad, 1996, p 153)

ri = b − Aδui = −βi+1eT
i sivi+1 ,

where ei is the ith column of the i × i identity matrix,
and βi+1, si and vi are as defined in Algorithm 1. Since
ri = −∇J[δui], the B-norm of the cost function gradient
can be readily computed as

‖∇J[δui]‖B = ‖ri‖B = βi+1|eT
i si|. (42)

RBLanczos

Formula (42) can also be used to compute the gradient norm
with RBLanczos.

BCG

For BCG, the gradient norm is given by

‖∇J[δui]‖B = ‖ri‖B =
√

rT
i zi ,

where the vectors zi and ri are defined in Algorithm 2.

RBCG

For RBCG, the norm is obtained from

‖∇J[δui]‖B = ‖GTr̂ i‖B = ‖r̂ i‖GBGT =
√

r̂ T
i wi

where the vectors r̂ i and wi are defined in Algorithm 3.

3. Numerical experiments

3.1. Experimental framework

This section provides a brief description of the NEMOVAR
and ROMS data assimilation systems and the framework in
which the experiments are performed.

3.1.1. NEMOVAR

NEMOVAR is a variational data assimilation system
(Mogensen et al., 2009) for the NEMO ocean model
(Madec, 2008). It is designed as an incremental 4D-Var
algorithm. 3D-Var is also supported, using the First-Guess at
Appropriate Time (FGAT) approach. 3D-Var FGAT follows
the basic formulation of incremental 4D-Var but replaces
the linearized model propagator with the identity operator
(M(tj, t0) ≡ In). Dynamical information is still incorporated
into the 3D-Var analysis through a balance operator, which
relates the control vector to the initial state vector (see later).

A close variant of the operational version of NEMOVAR
used at ECMWF for seasonal forecasting and ocean
reanalysis (Mogensen et al., 2012) is used for the experiments
presented here. The system is based on 3D-Var FGAT.
The configuration is global, with 42 vertical levels and
approximately 1◦ resolution in the Extratropics. In the

Tropics, the meridional resolution is refined, reaching a
minimum value of 0.3◦ directly at the Equator.

Both BCG and RBCG have been implemented in
NEMOVAR, following very similar technical specifications.
NEMOVAR also includes a version of Lanczos (the Lanczos
method on the linear system (19) with the canonical inner
product). Here the experiments focus on comparing BCG
and RBCG, and will be presented in section 3.2. These
experiments are conducted on a single 3D-Var analysis cycle
where the time period covered by the cycle is 10 days.
The background initial conditions are taken from the
ECMWF ORAS4 ocean reanalysis (Balmaseda et al., 2013)
on 1 January 2006. The model state variables comprise
potential temperature (T), salinity (S), sea-surface height
(η) and the horizontal components (u, v) of velocity.
The background-state trajectory on the 10-day window
is generated by integrating forward the NEMO model
using the same daily surface forcing fluxes and relaxation
strategies to sea-surface temperature and climatology as
used in ORAS4 for the same period. The observations that
are assimilated on this cycle are the same as those used in
ORAS4 on the same cycle. They consist of temperature and
salinity (T/S) profiles from the quality-controlled EN3 v2a
dataset† and along-track sea-level anomaly (SLA) data from
altimeter database at AVISO (Archiving, Validation and
Interpretation of Satellite Oceanographic data)‡. The SLA
data are referenced to a mean dynamic topography defined
as the time-mean sea level from an ocean reanalysis similar to
ORAS4 but assimilating only T/S profiles. The total number
of individual observations assimilated on the 10-day 3D-Var
cycle from 1 to 11 January 2006 is approximately 5.0 × 105,
with 2.1 × 105 for T, 1.6 × 105 for S, and 1.3 × 105 for SLA.

The variables in the control vector δu consist of
increments δT, δSU and δηU where the subscript U denotes
an ‘unbalanced’ component of that variable (Weaver et al.,
2005). The control variables are assumed to be mutually
uncorrelated. A linearized balance operator K relates δu to
the increments δT, δS, δη, δu and δv comprising the initial
state δx(t0). The balance operator acts as a multivariate
constraint in the linearized generalized observation operator
G in the observation term of the cost function (3). In this
experiment, the horizontal velocity increments δu and δv
are determined entirely by geostrophic constraints in K
(Mogensen et al., 2012). The total number of active control
variables is approximately 4.6 × 106.

For computational convenience, a land–ocean mask with
values of 0 (land) and 1 (ocean) is used in NEMO, as in
many ocean models, to account for the complex geometry
of land–ocean boundaries. As a consequence, (passive) land
points are included along with (active) ocean points in the
model-variable arrays in the computer code. By including
the land points, the size of the control vector is roughly
9.2 × 106. Half of the memory allocation in a control vector
is thus associated with land points. A control vector in
this experiment requires 19 times more memory than an
observation vector.

†http://www.metoffice.ogv.uk/hadobs/en3
‡http://www.aviso.oceanobs.com/en/data/products/sea- surface-height-
products/global/sla/index.html
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3.1.2. ROMS 4D-Var

ROMS is a hydrostatic, primitive equation, Boussinesq ocean
general circulation model designed primarily for coastal
applications. Terrain-following vertical coordinates are
employed allowing for greater vertical resolution in shallow
water and regions with complex bathymetry (Marchesiello
et al., 2001; Shchepetkin and McWilliams, 2003, 2005;
Haidvogel et al., 2008). ROMS supports both a primal
and dual formulation of incremental 4D-Var. The primal
form follows very closely that of Weaver et al. (2003) and
solves (19) using the standard Lanczos algorithm which is
equivalent to solving (5) using the BLanczos algorithm.

Two forms of dual 4D-Var are available in ROMS, which
differ in the choice of linearization strategy on the outer
loop (Moore et al., 2011a,b). One follows the incremental
approach (Courtier et al., 1994), while the other is based
on the indirect representer approach of Egbert et al. (1994).
For the current study, there is no distinction between these
approaches since the experiments are conducted with a
single outer loop where the linearization trajectory is the
background.

As noted earlier, one of the primary advantages of the dual
approach to 4D-Var is in the weak-constraint formulation.
Since (29) is solved in a space spanned by vectors whose size
is determined by the number of observations, the dimension
of the problem is not changed by the addition of control
variables to account for model error. Conversely, in the
primal form embodied by (5), the dimension of the control
vector swells very quickly as additional control variables are
added.

Four options are available in ROMS for solving the
quadratic problem (3), namely Lanczos (the Lanczos method
on the linear system (19) with the canonical inner product),
dual-Lanczos (the Lanczos method on the linear system (29)
with the canonical inner product), dual-MINRES (MINRES
on the linear system (29) with the canonical inner product),
and RBLanczos. A comparison of the four approaches under
the assumption of both strong and weak constraint will be
presented in section 3.2.

The configuration of ROMS used for the experiments
presented here is for the California Current System (CCS),
an eastern boundary current characterized by a pronounced
seasonal cycle of upwelling and by energetic mesoscale
circulations (Hickey, 1998; Checkley and Barth, 2009),
providing a challenge for linear-based data assimilation
methods such as incremental 4D-Var. The ROMS CCS
domain and circulation is described by Veneziani et al.
(2009a,b) and Broquet et al. (2009a,b). It spans the region
134–116◦W, 31–48◦N, with 10 km resolution in the
horizontal and 42 σ -levels. The minimization experiments
described here are conducted for a single 4D-Var analysis
cycle spanning the 7-day period 29 March–4 April 2003.
The background initial conditions are taken from a
4D-Var sequence described in Moore et al. (2011b), and
the model control variables are the same as those of
NEMOVAR, with the addition of unbalanced variables δuU

and δvU for horizontal velocity. The background trajectory
is generated using forcing derived from daily averaged
output of atmospheric boundary-layer fields from the
Naval Research Laboratory’s Coupled Ocean–Atmosphere
Mesoscale Prediction System (COAMPS) (Doyle et al.,
2009). The ocean surface fluxes were derived using the bulk
formulations of Liu et al. (1979) and Fairall et al. (1996a,b),

and represent the background surface forcing for 4D-Var.
The model domain has open boundaries at the northern,
southern, and western edges, and at these boundaries the
tracer and velocity fields were prescribed, while the free
surface and vertically integrated flow are subject to Chapman
(1985) and Flather (1976) boundary conditions respectively.
The prescribed open-boundary solution was taken from
the Estimating the Circulation and Climate of the Ocean
(ECCO) global data assimilation product (Wunsch and
Heimbach, 2007), and represents the background open-
boundary conditions for 4D-Var.

In the strong-constraint 4D-Var experiments, the control
vector comprises increments to the model initial conditions,
the ocean surface forcing (namely the surface wind stress,
and the surface fluxes of heat and freshwater), and open
boundary conditions. The number of control variables is
7.3 × 106. In the weak-constraint 4D-Var experiments, the
control vector is augmented to include corrections for model
error as well, which take the form of space–time corrections
to the model equations of motion. The size of the control
vector in this case is 5.2 × 107. The implementation of the
ROMS weak-constraint 4D-Var used here is the same as that
described in Moore et al. (2011b).

The implementation of ROMS weak-constraint 4D-Var
follows the dual approach of Chua and Bennett (2001) where
a correction term for model error enters as a forcing on the
right-hand side of the ROMS TL equations in the inner loop,
and in the ROMS nonlinear equations in the outer loop.
The ROMS formulation is described in detail by Moore
et al. (2011b). While the structure of the cost function
is unchanged in this approach, the background term Jb

now contains additional terms that penalize departures
of the model-error correction terms from a zero model-
error background. The background-error covariance matrix
B is expanded and contains block-diagonal entries Q that
describe the model-error covariance. Similarly, the structure
of the Hessian matrix does not change and would have the
same structure implied by the system matrix in (5) but
with B now expanded to include the Q matrix blocks.
Therefore, the problem can be preconditioned by B in the
usual way, although the addition of Q to the expanded B
will undoubtedly influence the conditioning of the Hessian.

Since we do not have a primal weak-constraint
algorithm for ROMS, we cannot explore directly the
change in properties of the Hessian due to the addition
of Q. However, the influence of Q on the condition
number of the preconditioned stabilized representer matrix
R−1/2GBGTR−1/2 + Im in (29) has been examined. The
condition number of the preconditioned Hessian matrix
In′ + UTGTR−1GU in (18) can then be estimated since
this matrix has the same eigenvalues as the preconditioned
stabilized representer matrix, together with an additional
n′ − m eigenvalues equal to 1 (Courtier, 1997; Horn and
Johnson, 1999, pp 53–54). A one-year sequence of strong-
and weak-constraint 4D-Var simulations using a lower-
resolution version of the California Current ROMS reveals
that the addition of Q to B generally raises the condition
number of the Hessian matrix, although the difference in
condition number between the strong- and weak-constaint
cases is typically less than an order of magnitude (P. J. Smith,
personal communication).

The observations assimilated are the same as those
described in Moore et al. (2011b) and include: gridded sea-
surface height analyses in the form of dynamic topography
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from AVISO at approximately 1/3◦ resolution every 7 days;
a blended sea-surface temperature (SST) product with
10 km resolution, available daily from National Oceanic
and Atmospheric Administration (NOAA) CoastWatch and
consisting of 5-day means derived from the Goddard
Earth Observing System (GEOS), Advanced Very High
Resolution Radiometer (AVHRR) and Moderate Resolution
Imaging Spectroradiometer (MODIS) satellite instruments;
and in situ hydrographic observations extracted from the
quality-controlled EN3 v1d dataset. The total number of
observations is of the order 105 (1.0 × 105 for T, 5.0 × 102

for S, and 2.4 × 103 for SSH).

3.2. Results

This section describes the results from numerical exper-
iments with NEMOVAR and ROMS that are designed to
compare the various primal and dual algorithms discussed in
this article. The distinguishing characteristics of these algo-
rithms are summarized in Table 1. The different experiments
are summarized in Table 2.

3.2.1. NEMOVAR

The experiments with NEMOVAR are based on 3D-Var
FGAT with a single outer-loop iteration and 40 inner-
loop iterations. The properties of the minimization are
summarized in Figure 1. Figure 1(a) shows the iterative
evolution of the quadratic cost function (3) using the primal
formulation (BCG) and dual formulation (RBCG) of the CG
algorithm. The curves are indistinguishable as expected from
the theory. Numerical results with Lanczos (not shown) also

produce indistinguishable results from those of BCG and
RBCG.

The results also illustrate that, for this 3D-Var experiment,
there is no visible improvement in the cost function
minimization when using re-orthogonalization. However,
a positive impact from re-orthogonalization is seen after
iteration 22 in the evolution of the gradient norm
(Figure 1(b)). With re-orthogonalization, the gradient
norms in the BCG O and RBCG O experiments are
indistinguishable (when the norm is defined with respect to
the appropriate metric: B in BCG, and GBGT in RBCG).

While Figure 1 shows that the algorithms for the primal
and dual formulations have near-identical convergence
properties, Figure 2 illustrates that the memory requirements
of the algorithms can be very different, particularly with re-
orthogonalization. This figure shows the memory usage
as a function of execution time, where the initial point
has been chosen just before entering the minimization
loop. The jump in the curves near the start corresponds
to static memory allocation within the CG algorithms
(∼2.5 Gb for BCG; ∼2 Gb for RBCG). Thereafter, the total
memory usage remains constant if re-orthogonalization
is not activated, resulting in a saving of ∼0.5 Gb with
RBCG. Re-orthogonalization requires storing an extra pair
of vectors on each iteration as discussed in section 2.5. The
required memory is allocated dynamically in NEMOVAR,
which explains the steady increase of the curves BCG O
and RBCG O. Re-orthogonalization produces only small
memory overhead with RBCG, with the total memory
being comparable to that required by BCG without re-
orthogonalization. On the other hand, re-orthogonalization
with BCG requires a significantly larger amount of
extra memory (∼6 Gb). With higher-resolution model

Table 1. A summary of the distinguishing characteristics of the different minimization algorithms used in the data assimilation experiments for solving
either the primal problem (5) or the dual problem (7).

Algorithm Formulation Description Reference

BCG Primal CG on the linear system (22) with the B-inner product Algorithm 2
Lanczos Primal Lanczos on the linear system (18) with the canonical inner product –
(BLanczos) (Primal) (Lanczos on the linear system (22) with the B-inner product) (Algorithm 1)
RBCG Dual CG on the linear system (28) with the GBGT-inner product Algorithm 3
RBLanczos Dual Lanczos on the linear system (28) with the GBGT-inner product Algorithm 4
dual-Lanczos Dual Lanczos on the linear system (29) with the canonical inner product –
dual-MINRES Dual MINRES on the linear system (29) with the canonical inner product –

Table 2. A list of the experiments performed using data assimilation systems with the NEMO and ROMS models.

Experiment Description

BCG O NEMO, Global, 3D-Var, BCG with re-orthogonalization
BCG NEMO, Global, 3D-Var, BCG without re-orthogonalization
RBCG O NEMO, Global, 3D-Var, RBCG with re-orthogonalization
RBCG NEMO, Global, 3D-Var, RBCG without re-orthogonalization
BLanc OS ROMS, Regional, Strong-constraint 4D-Var, Lanczos with re-orthogonalization
DLanc OS ROMS, Regional, Strong-constraint 4D-Var, dual-Lanczos with re-orthogonalization
DMin OS ROMS, Regional, Strong-constraint 4D-Var, dual-MINRES with re-orthogonalization
RBLanc OS ROMS, Regional, Strong-constraint 4D-Var, RBLanczos with re-orthogonalization
DLanc OW ROMS, Regional, Weak-constraint 4D-Var, dual-Lanczos with re-orthogonalization
DMin OW ROMS, Regional, Weak-constraint 4D-Var, dual-MINRES with re-orthogonalization
RBLanc OW ROMS, Regional, Weak-constraint 4D-Var, RBLanczos with re-orthogonalization
DMin W ROMS, Regional, Weak-constraint 4D-Var, dual-MINRES without re-orthogonalization
RBLanc W ROMS, Regional, Weak-constraint 4D-Var, RBLanczos without re-orthogonalization

Naming convention: The first few letters are shorthand notation for the minimization algorithm used (see Table 1).
O indicates that re-orthogonalization is used (otherwise it is not used), S indicates strong-constraint 4D-Var, and W indicates weak-constraint 4D-Var.
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Figure 1. (a) The value of the cost function as a function of the CG iteration
counter, and (b) the value of the norm of the cost function gradient relative
to the norm of the initial cost function gradient, both as a function of the
CG iteration counter. The gradient norm is measured with respect to the
B metric. The experiments are as described in Table 2. The curves in (a),
and the curves for BCG O and RBCG O in (b), are indistinguishable. A
logarithmic vertical scale is used in both panels.
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Figure 2. Memory usage (gigabytes) as a function of execution time in
the minimization loop using CG algorithms based on the primal and dual
formulations. Table 2 gives a description of the experiments, which have
been performed on a Dell T5500 using a single-CPU processor.

configurations or with applications, such as 4D-Var,
that involve additional control variables, the memory
requirements could easily become prohibitive. This figure
also illustrates that the cost of algebraic computations, such
as scalar products, is noticeably cheaper with the dual
approach than the primal approach. The total execution
time with RBCG is roughly equivalent with or without re-
orthogonalization, and is noticeably shorter than with BCG.
This is especially noticeable when re-orthogonalization is
activated where the computational saving with RBCG is
about 22%.
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Figure 3. The value of the cost function as a function of the Lanczos
iteration counter for (a) strong-constraint 4D-Var and (b) weak-constraint
4D-Var, using the Lanczos algorithms based on the primal and dual
formulations with re-orthogonalization. Table 2 gives a description of the
experiments. A logarithmic vertical scale is used in both panels.
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Figure 4. As Figure 3, but for the case of weak-constraint 4D-Var without
re-orthogonalization of the Lanczos vectors.

3.2.2. ROMS 4D-Var

In all of the experiments presented here, ROMS 4D-Var was
run, as was NEMO 3D-Var, with a single outer-loop iteration
and 40 inner-loop iterations. Figures 3 and 4 summarize the
results of various experiments employing either strong- or
weak-constraint 4D-Var. These figures show the behaviour
of the quadratic cost function (3) as a function of the number
of inner-loop iterations.

The results for the strong-constraint 4D-Var are shown
in Figure 3(a). The curves correspond to experiments with
the primal solver BLanczos and the dual solvers RBLanczos,
dual-MINRES and dual-Lanczos with re-orthogonalization.
As anticipated, RBLanczos and BLanczos yield the same
sequence of cost function values. Clearly the performance
of RBLanczos is superior to both dual-MINRES and

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 140: 539–556 (2014)
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dual-Lanczos. Figure 3(a) illustrates the poor convergence
properties of dual-Lanczos, in agreement with results from
GT09 and El Akkraoui and Gauthier (2010) who employed
CG to the linear system (29) with a canonical inner
product (which is mathematically equivalent to applying
dual-Lanczos to system (29)). In fact, approximately 100
inner-loop iterations are generally required to achieve
an acceptable level of convergence with dual-Lanczos,
as shown by Moore et al. (2011b). The results of three
corresponding weak-constraint dual 4D-Var calculations
are shown in Figure 3(b), revealing again the superior
convergence properties of RBLanczos. The convergence of
weak-constraint 4D-Var with the dual-Lanczos algorithm
required more than 200 inner-loop iterations to yield an
acceptable level of convergence (Moore et al., 2011b). Note
that this plot does not include results for the primal approach
since it was not feasible to perform weak-constraint 4D-Var
experiments with BLanczos.

The importance of re-orthogonalization with the dual
approach is illustrated in Figure 4 which shows, for the
case of weak-constraint 4D-Var, the results from applying
dual-MINRES and RBLanczos without re-orthogonalization
(cf. Figure 3). After an initial period of convergence, the
cost function diverges. This is in stark contrast to the
NEMO 3D-Var experiment where re-orthogonalization had
a relatively minor impact on convergence. The need for
re-orthogonalization in weak-constraint 4D-Var places an
enormous memory burden on the primal approach. Indeed,
in the ROMS weak-constraint 4D-Var experiments, only
the dual approach was feasible. Unlike NEMO 3D-Var, the
computational cost of ROMS 4D-Var, with strong- or weak-
constraints, is comparable for both the primal and dual
formulations for the same number of inner-loop iterations
since the majority of the computational burden comes from
the integration of the TL and adjoint models.

4. Summary and conclusions

Variational data assimilation involves the solution of
a nonlinear least-squares problem to estimate an n-
dimensional control vector given an m-dimensional
observation vector and an n-dimensional background
estimate of the control vector. A nonlinear generalized
observation operator relates the model control vector
to the observation vector. Variational data assimilation
problems in meteorology and oceanography are commonly
solved using an incremental or truncated Gauss–Newton
approach. This approach requires minimizing a sequence
of quadratic cost functions, where each member of
the sequence is derived by linearizing the generalized
observation operator about a recent estimate.

The quadratic minimization problems can be solved using
a primal or dual approach. Primal approaches search for
a solution directly in an n-dimensional space associated
with the model control variables. Dual approaches exploit
the fact that the solution of the quadratic minimization
problem is in the range of the adjoint of the generalized
observation operator to search for the solution in an
m-dimensional space associated with the observations.
The dual approach becomes especially attractive from a
computational viewpoint when m � n which is a typical
situation in ocean data assimilation and with weak-
constraint formulations of 4D-Var in general.

CG and Lanczos methods, which belong to the general
class of Krylov subspace iterative methods, are well suited
for solving quadratic minimization problems when n and
m are large. Conventional implementations of incremental
4D-Var employ a primal approach in conjunction with a CG
or Lanczos algorithm. The system is preconditioned by the
background-error covariance matrix, B, which in practice is
achieved through a variable transformation that requires a
square-root factorization of B. B-preconditioning of the CG
and Lanczos algorithms can also be achieved without the
need to factor B. This property, which is convenient with
general B formulations, is shared by the BCG and BLanczos
primal algorithms which were presented in this article. Both
algorithms are equivalent in exact arithmetic.

The dual equivalent of BCG is the RPCG algorithm of
GT09 with no second-level preconditioning. We called this
specific algorithm RBCG to distinguish it from RPCG which
allows for general preconditioners. Numerical experiments
comparing the performance of RBCG and BCG in a global-
ocean 3D-Var assimilation system for the NEMO model
were presented. In the experiments, the control vector was
roughly 19 times larger than the observation vector. As
expected from theory, and as demonstrated in an idealized
framework by GT09, RBCG and BCG produce identical
iterates to within machine precision. However, the memory
requirements and computational costs of the algorithms
were very different, particularly when a re-orthogonalization
scheme was used to compensate for the effects of round-
off error. While RBCG was relatively insensitive to re-
orthogonalization in terms of memory overhead, BCG with
re-orthogonalization required nearly twice as much total
memory as BCG without re-orthogonalization. RBCG was
also nearly 22% faster than BCG.

The dual equivalent of BLanczos is RBLanczos which
is a new algorithm which was derived in this article. The
derivation of RBLanczos follows directly from BLanczos
by exploiting the fundamental property that, under the
assumption of a zero initial guess, the initial value of the
cost function gradient is in the range of the adjoint of the
generalized observation operator. As a result, all recurrence
relations involving n-dimensional vectors in BLanczos can
be transformed into recurrence relations involving m-
dimensional vectors. The resulting algorithm requires the
same number of matrix-vector products as BLanczos.

Numerical experiments comparing the performance of
RBLanczos and Lanczos (the equivalent form of BLanczos
which employs the factorized form of B as a preconditioner)
in a regional-ocean 4D-Var assimilation system for the
ROMS model were presented. As expected from theory,
RBLanczos and Lanczos produce identical iterates to within
machine precision. In experiments which employed both
strong- and weak-constraint formulations of 4D-Var, the
convergence properties of RBLanczos were also clearly
superior to those of two other dual algorithms (dual-
Lanczos and dual-MINRES) which have been proposed
in the literature. In all algorithms, re-orthogonalization was
found to be crucial for convergence and produced much
smaller memory overhead with the dual algorithms than with
the primal algorithms. It is also important to remark that
only the dual approach was feasible in the weak-constraint
4D-Var experiment due to the very large size of the control
vector.

The two ocean models and data assimilation systems
used here differ significantly. On the one hand, NEMO
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is configured as a coarse-resolution model of the global
ocean and captures the dominant large-scale features of the
global circulation. ROMS, on the other hand, is configured
as an eddy-resolving model of the west coast of North
America, and captures the energetic mesoscale circulation
environment associated with the CCS. In addition, in this
study, NEMO employs 3D-Var while ROMS employs 4D-
Var with the model applied as either a strong or weak
constraint. It is therefore noteworthy that RBCG and
RBLanczos are robust in two very different circulation
environments, and across a range of data assimilation
approaches within the variational framework.

This work has illustrated the benefits of RBCG and
RBLanczos from different perspectives. In this study, we
considered only a single outer loop of the incremental
algorithm and only first-level preconditioning using B.
Extensions of this work to account for multiple outer-
loop iterations and second-level preconditioners based on
limited-memory preconditioners such as quasi-Newton
and Ritz (Gratton et al., 2011b) will be described in
a future publication. In view of the importance of re-
orthogonalization in the 4D-Var experiments, it would also
be of interest to investigate the use of FOM, which is more
stable with respect to loss of orthogonality since it includes
naturally an explicit full re-orthogonalization of the Krylov
subspace basis.
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Appendix A

BLanczos and RBLanczos without re-orthogonalization

This appendix provides the direct versions of BLanczos and
RBLanczos which can be used instead of Algorithms 1 and 4
to reduce memory requirements when re-orthogonalization
is not desired.

The direct BLanczos algorithm is given in Algorithm 5.
The direct RBLanczos algorithm can be derived following
the basic approach used to derive RBLanczos Algorithm 4
from BLanczos Algorithm 1. This is done by using the
relations between the vectors defined in R

n and R
m given by

(30)–(32) and the additional equations

pi = BGTp̂i, (A1)

δui = BGTλi, (A2)

that relate m-dimensional vectors p̂i and λi with the vectors
pi and δui in Algorithm 5, for i ≥ 0. It can be shown that

relations (A1) and (A2) are satisfied by choosing

p̂i = (̂vi − βîpi−1)/ηi,

λi = λi−1 + ζîpi,

where p̂0 = λ0 = 0 and the scalars βi, ηi and ζi are defined
as

βi = ‖ŵi−1‖GBGT =
√

ŵT
i−1GBGTŵi−1 ,

ηi = αi − (βi/ηi−1)βi ,

ζi = −(βi/ηi−1)ζi−1 ,

for i > 1. Direct substitution of these recurrence relations
in BLanczos Algorithm 5 yields Algorithm 6.

Algorithm 5: BLanczos without re-orthogonalization

1 v0 = 0
2 δu0 = 0
3 r0 = GTR−1d
4 t0 = B r0

5 β0 =
√

tT
0 r0

6 ζ1 = β0
7 v1 = r0/β0
8 z1 = t0/β0
9 β1 = 0

10 γ1 = 0
11 p0 = 0
12 for i = 1, 2, . . . , l do
13 qi = (vi + GTR−1G zi) − βivi−1

14 αi = qT
i zi

15 if i > 1 then
16 γi = βi/ηi−1
17 ζi = −γiζi−1
18 end
19 ηi = αi − γiβi
20 pi = (zi − βipi−1)/ηi
21 δui = δui−1 + ζipi
22 wi = qi − αivi
23 ti = B wi

24 βi+1 =
√

tT
i wi

25 vi+1 = wi/βi+1
26 zi+1 = ti/βi+1
27 end

Appendix B

Relationships between vectors in RBLanczos and BLanczos

Following GT09 and Gratton et al. (2009) in their derivation
of RPCG, we suppose that

r0 ∈ range(GT)

which is satisfied under the assumption that the initial guess
δu0 = 0. In particular,

r0 = GTr̂ 0 , (B1)

where r̂ 0 = R−1d ∈ R
m.
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Algorithm 6: RBLanczos without re-orthogonalization

1 r̂ 0 = R−1d
2 λ0 = 0
3 t̂ 0 = GBGT r̂ 0

4 β0 =
√

t̂ T
0 r̂ 0

5 ζ1 = β0
6 v̂1 = r̂ 0/β0
7 ẑ1 = t̂ 0/β0
8 β1 = 0
9 v̂0 = 0

10 γ1 = 0
11 p̂0 = 0
12 for i = 1, 2, . . . , l do
13 q̂i = (̂vi + R−1̂zi) − βîvi−1

14 αi = q̂T
i ẑi

15 if i > 1 then
16 γi = βi/ηi−1
17 ζi = −γiζi−1
18 end
19 ηi = αi − γiβi
20 p̂i = (̂vi − βîpi−1)/ηi
21 λi = λi−1 + ζîpi
22 ŵi = q̂i − αîvi

23 t̂ i = GBGTŵi

24 βi+1 =
√

t̂ T
i ŵi

25 v̂i+1 = ŵi/βi+1
26 ẑi+1 := t̂ i/βi+1
27 end
28 δul = BGTλl

Let us define the vectors in R
m such that

v̂0 = 0,

t̂ 0 = GBGTr̂ 0 , (B2)

v̂1 = r̂ 0/β0 , (B3)

ẑ1 = t̂ 0/β0 , (B4)

where β0 =
√

r̂ T
0 t̂ 0. From the definitions (B1)–(B4), it is

possible to derive the following relations from BLanczos:

Gt0 = t̂ 0 ,

v1 = GTv̂1 , (B5)

Gz1 = ẑ1 , (B6)

q1 = v1 + GTR−1Gz1

= GT
(̂

v1 + R−1ẑ1
)

, (B7)

w1 = q1 − α1v1

= GT
[
(̂v1 + R−1ẑ1) − α1̂v1

]
, (B8)

t1 = Bw1

= BGT
[
(̂v1 + R−1ẑ1) − α1̂v1

]
. (B9)

Equations (B7)–(B9) can be written as

q1 = GTq̂1, (B10)

w1 = GTŵ1, (B11)

Gt1 = t̂ 1, (B12)

where q̂1 = v̂1 + R−1̂z1, ŵ1 = q̂1 − α1̂v1, α1 = q̂T
1 ẑ1 and

t̂ 1 = GBGTŵ1.

We now prove by induction that the relations given
by (B5)–(B6) and (B10)–(B12) also hold for i > 1. First,
assume that the relations are satisfied for a given i:

vi = GTv̂i, (B13)

Gzi = ẑi ,

qi = GTq̂i ,

wi = GTŵi , (B14)

Gti = t̂ i . (B15)

We now show that the relations hold for i + 1. From lines 17
and 18 of Algorithm 1 for BLanczos, we have, using (B14)
and (B15),

vi+1 = wi/βi+1 = GTŵi/βi+1 , (B16)

Gzi+1 = Gti/βi+1 = t̂ i/βi+1 . (B17)

Defining

v̂i+1 = ŵi/βi+1 ,

ẑi+1 = t̂ i/βi+1 ,

we obtain from (B16) and (B17) that

vi+1 = GTv̂i+1 , (B18)

Gzi+1 = ẑi+1 . (B19)

From line 13 of Algorithm 1 and using the relations (B13),
(B18) and (B19), we have

qi+1 = (vi+1 + GTR−1Gzi+1) − βi+1vi

= (GTv̂i+1 + GTR−1ẑi+1) − βi+1GTv̂i

= GT
[
(̂vi+1 + R−1ẑi+1) − βi+1̂vi

]
= GTq̂i+1, (B20)

where

q̂i+1 = (̂vi+1 + R−1ẑi+1) − βi+1̂vi .

Similarly, from line 13 of Algorithm 1 and using the relations
(B18) and (B20), we have

wi+1 = qi+1 − αi+1vi+1

= GTq̂i+1 − αi+1GTv̂i+1

= GT(̂qi+1 − αi+1̂vi+1)

= GTŵi+1 ,

where

ŵi+1 = q̂i+1 − αi+1̂vi+1 ,

which completes the proof.

References

Axelsson O. 1996. Iterative Solution Methods. Cambridge University
Press: Cambridge, UK.

Balmaseda MA, Mogensen K, Weaver AT. 2013. Evaluation of the
ECMWF ocean reanalysis ORAS4. Q. J. R. Meteorol. Soc. DOI:
10.1002/qj.2063.

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 140: 539–556 (2014)



B-preconditioned minimization algorithms 555

Bennett AF. 2002. Inverse Modelling of the Ocean and Atmosphere.
Cambridge University Press: Cambridge, UK.

Broquet G, Edwards CA, Moore AM, Powell BS, Veneziani M,
Doyle JD. 2009a. Application of 4D-variational data assimilation
to the California Current System. Dyn. Atmos. Oceans 48: 69–91.

Broquet G, Moore AM, Arango HG, Edwards CA, Powell BS. 2009b.
Ocean state and surface forcing correction using the ROMS-IS 4DVAR
data assimilation system. Mercator Ocean Quarterly Newsletter 34:
5–13.

Buehner M. 2005. Ensemble-derived stationary and flow-dependent
background-error covariances: evaluation in a quasi-operational
NWP setting. Q. J. R. Meteorol. Soc. 131: 1013–1043.

Cardinali C, Pezzulli S, Andersson E. 2004. Influence-matrix diagnostic
of a data assimilation system. Q. J. R. Meteorol. Soc. 130: 2767–2786.

Chan TF, Chow E, Saad Y, Yeung MC. 1999. Preserving symmetry in
preconditioned Krylov subspace methods. SIAM J. Sci. Comput. 20:
568–581.

Chapman DC. 1985. Numerical treatment of cross-shelf open boundaries
in a barotropic coastal ocean model. J. Phys. Oceanogr. 15: 1060–1075.

Checkley DM, Barth JA. 2009. Patterns and process in the California
Current system. Prog. Oceanogr. 83: 49–64.

Chien CS, Chang SL. 2003. Application of the Lanczos algorithm for
solving the linear systems that occur in continuation problems.
Numer. Linear Algebra Appl. 10: 335–355. DOI: 10.1002/nla.306.

Chua BS, Bennett AF. 2001. An inverse ocean modeling system. Ocean
Model. 3: 137–165.

Cohn S, Da Silva A, Guo J, Sienkiewicz M, Lamich D. 1998. Assessing
the effects of data selection with the DAO physical-space statistical
analysis system. Mon. Weather. Rev. 126: 2913–2926.

Courtier P. 1997. Dual formulation of four-dimensional variational
assimilation. Q. J. R. Meteorol. Soc. 123: 2449–2461.

Courtier P, Thépaut J-N, Hollingsworth A. 1994. A strategy for
operational implementation of 4D-Var using an incremental
approach. Q. J. R. Meteorol. Soc. 120: 1367–1388.

Da Silva A, Pfaendtner J, Guo J, Sienkiewicz M, Cohn S. 1995. Assessing
the effects of data selection with the DAO physical-space statistical
analysis system. In: Proceedings of the 2nd WMO Symposium on
assimilation of observations in meteorology and oceanography. World
Meteorological Organization: Geneva, Switzerland. 273–278.

Daley R, Barker E. 2001. NAVDAS: Formulation and diagnostics. Mon.
Weather Rev. 120: 869–883.

Derber J, Rosati A. 1989. A global oceanic data assimilation system.
J. Phys. Oceanogr. 19: 1333–1347.

Desroziers G, Berre L. 2012. Accelerating and parallelizing minimizations
in ensemble and deterministic variational assimilations. Q. J. R.
Meteorol. Soc. DOI: 10.1002/qj.1886 In press.

Doyle JD, Jiang Q, Chao Y, Farrara J. 2009. High-resolution atmospheric
modeling over the Monterey Bay during AOSN II. Deep Sea Res. II
56: 87–99.

Egbert GD, Bennett AF, Foreman MCG. 1994. TOPEX/POSEIDON
tides estimated using a global inverse method. J. Geophys. Res. 99:
24821–24852.

El Akkraoui A, Gauthier P. 2010. Convergence properties of the primal
and dual forms of variational data assimilation. Q. J. R. Meteorol. Soc.
136: 107–115.

El Akkraoui A, Gauthier P, Pellerin S, Buis S. 2008. Intercomparison of
the primal and dual formulations of variational data assimilation. Q.
J. R. Meteorol. Soc. 134: 1015–1025.
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