
Improved Seasonal Prediction of Temperature and Precipitation over Land in a
High-Resolution GFDL Climate Model

LIWEI JIA,* XIAOSONG YANG,* GABRIEL A. VECCHI,1 RICHARD G. GUDGEL,1 THOMAS L. DELWORTH,1

ANTHONY ROSATI,# WILLIAM F. STERN,1 ANDREW T. WITTENBERG,1 LAKSHMI KRISHNAMURTHY,*
SHAOQING ZHANG,1 RYM MSADEK,* SARAH KAPNICK,@ SETH UNDERWOOD,& FANRONG ZENG,1

WHIT G. ANDERSON,1 VENKATRAMANI BALAJI,@ AND KEITH DIXON
1

*University Corporation for Atmospheric Research, Boulder, Colorado, and NOAA/Geophysical Fluid Dynamics Laboratory,

Princeton, New Jersey
1NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
#University Corporation for Atmospheric Research, Boulder, Colorado

@Princeton University, and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
&Dynamics Research Corporation, Andover, Massachusetts, and NOAA/Geophysical Fluid Dynamics Laboratory,

Princeton, New Jersey

(Manuscript received 5 February 2014, in final form 15 October 2014)

ABSTRACT

This study demonstrates skillful seasonal prediction of 2-m air temperature and precipitation over land in a

new high-resolution climate model developed by theGeophysical Fluid Dynamics Laboratory and explores the

possible sources of the skill. The authors employ a statistical optimization approach to identify the most pre-

dictable components of seasonal mean temperature and precipitation over land and demonstrate the predictive

skill of these components. First, the improved skill of the high-resolution model over the previous lower-

resolution model in seasonal prediction of the Niño-3.4 index and other aspects of interest is shown. Then, the
skill of temperature and precipitation in the high-resolution model for boreal winter and summer is measured,
and the sources of the skill are diagnosed. Last, predictions are reconstructed using a few of themost predictable
components to yield more skillful predictions than the raw model predictions. Over three decades of hindcasts,
the two most predictable components of temperature are characterized by a component that is likely due to
changes in external radiative forcing in boreal winter and summer and anENSO-related pattern in boreal winter.
The most predictable components of precipitation in both seasons are very likely ENSO-related. These com-
ponents of temperature and precipitation can be predicted with significant correlation skill at least 9 months in
advance. The reconstructed predictions using only the first few predictable components from the model show
considerably better skill relative to observations than raw model predictions. This study shows that the use of
refined statistical analysis and a high-resolution dynamical model leads to significant skill in seasonal pre-
dictions of 2-m air temperature and precipitation over land.

1. Introduction

Motivated by a desire to represent processes at more

detailed scales, and enabled by developments in super-

computing capabilities and advanced numerical techniques,

high-resolution climate models have been developed at

various modeling centers (Delworth et al. 2012; Jung et al.

2012;Kinter et al. 2013; Shaffrey et al. 2009).High-resolution

climate models, with the ability to better represent small-

scale processes, show advantages in simulating many key

aspects of climate such as the El Niño–Southern Oscilla-

tion (ENSO), the Indian monsoon (Delworth et al. 2012),

tropical precipitation, atmospheric circulation, and ex-

tratropical cyclones (Jung et al. 2012). At theGeophysical

Fluid Dynamics Laboratory (GFDL) a stream of model

development aiming to assess the impact of resolution

on simulation and prediction has led to the development

of a family of coupled climate models with different res-

olutions.The simulated climate in thehigh-resolutionGFDL

CM2.5 (hereinafter CM2.5; Delworth et al. 2012) showed

remarkable improvements, including a reduction of

the double intertropical convergence zone, improved

simulations of ENSO and Amazonian rainfall, and

a better representation of the geographic distribution
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of snow variables (Kapnick and Delworth 2013) over the

coarser-resolution GFDL CM2.1 (hereinafter CM2.1;

Delworth et al. 2006).

However, high-resolution coupled climate models are

computationally expensive. It is worth exploring which

elements of enhanced resolution are critical for each prob-

lemof interest. Inspired by the hypothesis that increased

atmosphere and land resolution is critical for many of the

improvements seen in the CM2.5 simulations over its

lower-resolution predecessor CM2.1, GFDL recently

developed a forecast-oriented climate model based on

the fully coupled high-resolution CM2.5: the Forecast-

OrientedLowOceanResolution versionofCM2.5 (CM2.5-

FLOR, hereinafter FLOR). This FLOR model has a

high-resolution (;0.58) atmosphere and land as in CM2.5,

but a coarser-resolution (18) ocean and sea ice as inCM2.1.

FLOR was designed to substantially reduce computing

time relative to CM2.5 to enable the running of large

ensembles needed for climate predictions while still main-

taining high-resolution land and atmosphere to allow ex-

ploration of regional climate and extremes. FLOR is the

first high-resolution climate model used for operational

seasonal forecasts in the United States. The hypothesis

underlying the development of FLOR is that the atmo-

sphere and land resolution is crucial for seasonal forecasts.

Testing this hypothesis is oneof the objectives of this study.

While the impact of initialization of land and atmosphere

on seasonal temperature and precipitation predictions has

been previously explored in the literature (Paolino et al.

2012; Koster and Suarez 2003), this study focuses instead

on the impact of the increased resolution of land and

atmosphere components on seasonal predictions.

Another objective of this study is to measure the sea-

sonal prediction skill of 2-m air temperature and pre-

cipitation over land and investigate the sources of the skill

in the new high-resolution FLORconsidering the societal

and scientific values of seasonal predictions over land. A

statistical optimization approach, called average predict-

ability time (APT) (DelSole and Tippett 2009a,b; DelSole

et al. 2011) is utilized. TheAPT approach is able to extract

components with maximum predictability. One can refine

the raw forecasts by filtering unpredictable components

determined by the APT approach. Our hypothesis is that

using refined statistical techniques can improve seasonal

predictions.

Unlike predictions on multiyear-to-decadal time

scales that are characterized by combined signals from

internal climate variations and changes in external radi-

ative forcing (Meehl et al. 2009; Taylor et al. 2012), pre-

dictions on seasonal scales, generally up to 12 months in

length, are dominated by internal variability. However,

if the assessment period for seasonal predictions spans

several decades, the externally forced climate signal can

be prominent. Hence, seasonal climate predictions could

be a joint initial-boundary value problem (Doblas-Reyes

et al. 2013), similar to the decadal predictions. Distin-

guishing the role of externally forced changes from internal

variability in the decadal predictions has been well studied

(Smith et al. 2007; Solomonet al. 2011;Yanget al. 2013) but

has not been well documented in the seasonal predictions.

In this study, we employ the APT method to isolate pre-

dictable patterns on different time scales in the seasonal

hindcasts and investigate the roles of external forcing and

internal climate variability in the seasonal predictions.

The rest of the paper is organized as follows: Themodel

and data are introduced in section 2. The methodology is

described in section 3. Our results are discussed in section

4 and summarized in section 5.

2. Model and data

a. Model description

To test the hypothesis that atmosphere and land res-

olution is critical for seasonal predictions, we employ the

new high-resolution FLOR, which has high resolution in

the land and atmosphere components. FLOR is a com-

bination of two previously described coupled model

configurations. The atmosphere [GFDL Atmospheric

Model version 2.5(AM2.5)] and land models are those

used in the high-resolution CM2.5 (Delworth et al. 2012),

which have an approximately 0.58 spatial resolution.

However, in contrast to CM2.5, which has high resolution

in both its atmosphere and ocean components, the ocean

and sea ice components of FLOR are at 18 resolution.
The ocean and sea ice components of FLOR are based

on those of the low-resolution CM2.1 (Delworth et al.

2006), which has been used extensively for climate re-

search, predictions, and projections for close to a de-

cade. In FLOR, the ocean component has been slightly

altered from that of CM2.1 by having a more realistic

representation of the solar absorption by the ocean us-

ing a biharmonic horizontal viscosity scheme, as well as

some fixes documented in Delworth et al. (2012). FLOR

also incorporates a newer and higher-order advection

scheme used in CM2.5 and an updated parameterization

for eddies. Additional description of aspects of FLOR

will be described in a series of papers, including Vecchi

et al. (2014), Winton et al. (2014), Yang et al. (2015),

Msadek et al. (2014), and A. Wittenberg et al. (2014,

unpublished manuscript).

Two versions of FLOR (viz., A06 and B01) have joined

the North AmericanMultimodel Ensemble (NMME) sea-

sonal forecasting system, which is currently delivering real-

time seasonal-to-interannual predictions (http://www.cpc.

ncep.noaa.gov/products/NMME). These two versions have

identical atmospheric, land, and sea ice configurations but
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have slightly different ocean configurations (Vecchi et al.

2014). We used the B01 version in this study. FLOR has

been shown to produce skillful seasonal forecasts of trop-

ical cyclone activity, sea ice extent, and extratropical storm

tracks (Vecchi et al. 2014; Msadek et al. 2014; Yang et al.

2015).Wewill show in section 4 that FLORexhibits higher

seasonal skill of the Niño-3.4 index, 2-m air temperature,
and precipitation than CM2.1, which is also included in the
NMME and is comparable to other NMME models in
seasonal forecast skill of 2-m air temperature, precipitation,
sea surface temperature (SST), and the Niño-3.4 index
(Becker et al. 2014).

b. Control simulations, historical simulations, and
ensemble hindcasts

Control simulations of CM2.1, FLOR, and CM2.5 with

constant radiative forcing agents and land surface con-

ditions appropriate to 1990 conditions, were used to ex-

plore the temperature and precipitation regressions onto

Niño-3 SST anomalies.Weanalyzed the data during years
11–290, 11–290, and 11–270 forCM2.1, FLOR, andCM2.5,

respectively. The 20-yr running mean was removed from

the control runs, which reduces climate drift and decadal

variability. The variability in the control runs is merely

internal variability in the climate system.

Fivemembers of historical simulations forCM2.1, FLOR,

and CM2.5 were created individually using initial condi-

tions obtained fromwidely separated (40yr) points in their

corresponding multicentury control simulations. The

multicentury control simulationswere forced by fixed 1860

radiative forcing agents and land surface conditions. The

time-varying historical forcing agents for the historical

runs are atmospheric CO2, CH4, N2O, halons, tropospheric

and stratospheric O3, anthropogenic tropospheric sulfates,

black and organic carbon, solar irradiance, land use, and

volcanic aerosols (Knutson et al. 2006). We analyzed five

ensemble members over 1981–2010 for each model.

A series of ensemble seasonal hindcasts were gener-

ated for FLOR and CM2.1 separately. The initial con-

ditions for CM2.1 are based on the GFDL’s Ensemble

CoupledDataAssimilation (ECDA) system (Zhang et al.

2007; Zhang and Rosati 2010; Chang et al. 2013). The

ECDA covers the period from 1960 to the present and is

being updated monthly for GFDL’s seasonal-to-decadal

experimental forecasts (Yang et al. 2013; Vecchi et al.

2013). A comprehensive assessment of oceanic variability

from the latest version of ECDA analyzed from 1960 to

2010 can be found in Chang et al. (2013). The initial

conditions for the ocean and ice components in FLORare

taken from the ECDA developed specifically for CM2.1.

The initial conditions for the atmosphere and land com-

ponents in FLOR are taken from AM2.5 simulations

forced by observed SST. Before 2005, FLOR and CM2.1

are forced with observationally based estimates of

changing concentrations of greenhouse gases, aerosols,

land-use changes, solar irradiance variations, and volca-

nic aerosols. After 2005, FLOR and CM2.1 are forced

with estimates of changing greenhouse gases and aerosols

based on the representative concentration pathway 4.5

(RCP4.5) scenario (Meinshausen et al. 2011). Such time-

varying external forcings are usually considered in oper-

ational seasonal forecast (Saha et al. 2014). For FLOR

(CM2.1), 12 (10) ensemblemembers are initialized on the

first day of each month from the 1980s to the present and

are integrated for 12 months. Ensemble hindcasts during

the period of 1980–2012 (1982–2011) for FLOR (CM2.1)

are analyzed to estimate seasonal skill.

c. Observational data

The observations used in this study are precipitation

at 0.58 resolution from the National Oceanic and Atmo-

spheric Administration (NOAA)’s precipitation recon-

struction over land (Chen et al. 2002); the CPC Merged

Analysis of Precipitation (CMAP) at 2.58 resolution; the
Global Historical Climatology Network (GHCN) grid-

ded v2 dataset 2-m air temperature over land at 0.58
resolution (Fan and van den Dool 2008); the Hadley

Centre Sea Ice and Sea Surface Temperature dataset

(Rayner et al. 2003); and the NCEP–NCARReanalysis-1

surface temperature and precipitation at 2.58 resolution.
Velocity and sea level pressure data are from theModern-

Era Retrospective Analysis for Research and Applica-

tions (MERRA) (Rienecker et al. 2011). The observed

Niño-3.4 index was downloaded from NOAA’s website

(http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.

mth.81-10.ascii).

3. Review of methodology

To identify predictable components, we employ the

technique of average predictability time, proposed by

DelSole andTippett (2009a,b). This approach determines

components that maximize predictability. To find such

components, one must first define a measure of pre-

dictability. Consider a set of ensemble forecasts, initialized

at distinct start times. Ensemble members at each start

time are generatedwith slightly different initial conditions.

In this context, a standard measure of predictability is

P(t)5 12
s2
t

s2
clim

, (1)

where s2
t is the forecast variance at lead time t, averaged

over all start times. As lead time increases, the

forecast variance tends to increase and approaches the

climatological variance s2
clim as lead time t approaches
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infinity. The climatological variance is practically the var-

iance of all ensemble forecasts from different start times.

The measure P(t) typically is close to one initially and

decreases with lead time until it vanishes when the fore-

cast variance equals the climatological variance. It can be

shown thatP(t) is related to signal-to-noise ratio (Jia 2011),

which is often used to measure predictability. APT is then

defined as twice the sum of P(t) over all lead times:

APT5 2 �
‘

t51

 
12

s2
t

s2
clim

!
. (2)

It yields a time scale that agrees with the usual e-folding

time for an exponentially decaying forecast signal. In re-

ality, the sum in (2) is generally from lead time 1 to finite

lead times. In this study, the sum is from lead 1 to 10

months. Let x(t, t, e) be the state vector specifying the

amplitudes of ensemble forecasts at fixed lead time t, start

time t, and ensemble member e. We seek the projection q

such that qTx(t, t, e) maximizes APT, where the super-

script T denotes the transpose operation. The forecast

variance of qTx(t, t, e) at lead time t is

s2
t 5 qT [x(t, t, e)2 hx(t, t, e)i][x(t, t, e)2 hx(t, t, e)i]Tq
5 qT Ŝtq ,

(3)

where the angle brackets denote the average over en-

semble members. The overline denotes the average over

start times, and Ŝt denotes an estimate of the forecast

covariance matrix at lead time t. The climatological var-

iance is just the forecast variance as the lead timeapproaches

infinity. It is denoted as

s2
clim 5 qTŜclimq , (4)

where Ŝclim is an estimate of the climatological covariance

matrix. Substituting (3) and (4) into (2) gives

APT5 2 �
‘

t51

"
qT(Ŝclim2 Ŝt)q

qT Ŝclimq

#
. (5)

It can be shown thatmaximizing (5) leads to a generalized

eigenvalue problem:

2 �
‘

t51

(Ŝclim 2 Ŝt)q5 lŜclimq . (6)

The eigenvalue l gives APT value, and each eigenvector

q corresponds to a component.Equation (6) abovehasmore

than a single solution; thus, it yieldsmultiple components.

The time series of each component is uncorrelated with

one another because of the symmetry characteristic of Ŝt

and Ŝclim. We order the eigenvalues and their associated

eigenvectors by decreasing order such that the first

component maximizes APT, the second maximizes APT

subject to being uncorrelated with the first, and so on.

This decomposition based on APT is analogous to em-

pirical orthogonal function (EOF) analysis, but instead of

decomposing variance, we decompose predictability.

APT is essentially the sum of signal-to-total ratio over

lead times that can be used to measure predictability. In

general, components that are persistent (e.g., trend) or

oscillate over narrow frequencies have large APT. Com-

ponents with differentAPT values often vary on different

time scales. The spatial pattern p associated with each

component is obtained by regressing the time series

qTx(t, t, e) with x(t, t, e), which gives p5 Ŝclimq. The

spatial patterns are not orthogonal with one another.

Note that the APT method is discussed here in the con-

text of ensemble forecasts, as we will apply it to the en-

semble hindcast data in this study. The APT approach is

also applicable to a single simulation: for instance, a con-

trol simulation. More details of this APT technique are

found in DelSole and Tippett (2009a,b), and the appli-

cation of this technique can be found in Jia and DelSole

(2011, 2012) and Yang et al. (2013).

For typical global forecast data, the number of grid

points exceeds the number of samples (i.e., time steps),

so the above covariance matrices are singular, and the

eigenvalue problem cannot be solved. A standard ap-

proach is to project the forecast data onto a few leading

principal components (PCs) and then to maximize APT

only in the subspace spanned by the leading PCs. In this

paper, we chose 30 PCs for 2-m air temperature and

precipitation. The sensitivity ofAPT values to the number

of PCs has been tested. The APT values are not sensitive

when using more than 20 PCs. Since precipitation vari-

ance can vary substantially even between neighboring grid

points, the PCs, which maximize variance, might over-

emphasize grid points with large variance and capture

small-scale structures. The APT analysis, which includes

a linear combination of PCs, hence, is influenced.We thus

derive the PCs from precipitation hindcasts in which each

grid point is normalized by its own standard deviation.

The normalized precipitation is able to capture large-scale

precipitation structures.

To determine whether a component is predictable or

not, we tested the significance of the APT value of the

component using Monte Carlo methods under the null

hypothesis that the component is unpredictable. A com-

ponent is then considered to be predictable if its APT

value is statistically significant at a certain significance

level. The application of Monte Carlo methods can be

found in DelSole et al. (2011), Jia and DelSole (2011),
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and Yang et al. (2015). Basically, for M spatial di-

mensions, N time steps, E ensemble members, I ini-

tial conditions, and L lead times, we generated a

M3N3E3 I3L data matrix by drawing independent

random numbers from a normal distribution with zero

mean and unit variance. APT analysis was applied to

this matrix to produce an ordered sequence of APT

values. The procedure was repeated 1000 times. The 5%

significance level for each APT associated with each

component was determined by selecting the 95th per-

centile of theAPT values derived from the random data.

The squared error skill score (hereinafter SESS) is

used to measure skill (Goddard et al. 2013), which is

defined as

SESS5 12
�
n
(On2Pn)

2

�
n
(On 2O)2

, (7)

whereOn is the centered observation at time n, Pn is the

centered prediction ofOn, andO is the time mean ofOn

for all years (i.e., climatological mean). The value of

SESS is one for a perfect prediction and is negative if the

error of a prediction is larger than the error of a predic-

tion based on the climatological mean.

4. Results

a. Climate mean state, variability, and prediction skill

Figure 1 shows annual mean precipitation and 2-m air

temperature in observations and historical simulations

of FLOR and CM2.1 during 1981–2010, as well as the

bias in FLOR and CM2.1. Compared to observed mean

precipitation, FLOR and CM2.1 show dry biases over

most of South America, although FLOR shows less bias

than CM2.1. FLOR also simulates mean precipitation

better than CM2.1 over tropical Africa, eastern China,

and the southeastern United States. As for annual mean

2-m air temperature, the observed pattern is well simu-

lated in FLOR and CM2.1, but both models show cold

biases in most areas. FLOR shows less bias along the

Andes and in equatorial Africa than CM2.1.

Besides the annual mean temperature and pre-

cipitation over land, we also examined seasonal mean

climate and variability of several important variables

over the globe. Figure 2 shows the scatterplot of pattern

correlation of seasonal mean climate and standard de-

viation between observation and historical simulations

for FLOR versus CM2.1 and FLOR versus CM2.5. A

correlation coefficient above the diagonal line indicates

that FLOR has higher correlation skill than CM2.1 or

CM2.5. As seen fromFigs. 2a and 2c, the correlation skill

is higher in FLOR than in CM2.1 for nearly all variables

and seasons, both in mean climate and standard de-

viation. In contrast, the correlations in FLOR are com-

parable to those in CM2.5 for seasonal mean climate

(Fig. 2b) and are slightly higher than CM2.5 for standard

deviation (Fig. 2d), although the ocean resolution is in-

creased in CM2.5. The fact that mean climate and cli-

mate variability are improved considerably in FLOR

over CM2.1, but moderately in CM2.5 over FLOR,

supports the hypothesis that atmosphere and land reso-

lution, rather than ocean resolution, is critical to the im-

provements in these quantities.

Another phenomenon worth examining is ENSO and

its teleconnections to remote regions. Figure 3 shows the

patterns of correlation between Niño-3 sea surface tem-
perature anomalies (SSTA) and the global anomalies of
surface temperature and precipitation for observations, a
280-yr 1990-control simulation of FLOR and CM2.1, and
a 260-yr 1990-control simulation of CM2.5. In the obser-
vations, Niño-3 SSTA is strongly correlated with both
surface temperature and precipitation over the equatorial
central and eastern Pacific. These strong correlations are
well simulated in all three models. However, this zone of
positive correlation extends farther west than observed in
all three simulations, though the westward extent is some-
what reduced in FLOR and CM2.5 relative to CM2.1.
Compared to CM2.1, FLOR and CM2.5 also show less
extreme temperature correlations over Australia, the
Amazon region, southern Africa, the tropical Atlantic
and Indian Oceans, and the Southern Ocean, which are
more in line with observed values. In all three simulations,
the negative temperature correlations over the contiguous
United States, Argentina, China, the off-equatorial west
Pacific, and the southern Atlantic appear to be too strong,
as are the positive temperature correlations over equa-
torial land areas. For precipitation, regions of both posi-
tive and negative correlations are generally stronger than
estimated from observations. In particular, the negative
precipitation correlations over the Maritime Continent
and tropical Atlantic are too strong in all three simula-
tions. Thenegative precipitation correlations overAustralia,
the Amazon, and southern Africa and positive correlations
over the equatorial Pacific and IndianOceans, contiguous
United States, Argentina, and western Asia are also too
strong in all three simulations, but these are somewhat
reduced in FLOR and CM2.5. Consistent with our earlier
results, the simulated temperature and precipitation corre-
lationpatterns appear to be influencedmore by the increase
in atmosphere and land resolution (going from CM2.1 to
FLOR) than by the increase in ocean resolution (going
from FLOR to CM2.5). In addition, the spectrum of the
Niño-3.4 SSTA in FLOR (not shown) exhibits a prominent,
broad-spectrum spectral peak near 2.8 years, which is
a somewhat shorter time scale than the observedpeakof 3.2
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years and the CM2.1 peak of 3.3 years. The ENSO SST
anomaly variance along the equator in FLOR is stronger
than observed, especially in the central Pacific, although
both biases are reduced compared to CM2.1 (not shown).

To examine ENSO prediction skill, we show in Fig. 4

the SESS values and anomaly correlations of the

Niño-3.4 index as a function of initial month and target
month in FLOR and CM2.1. Both FLOR and CM2.1

FIG. 1. Annual mean (a)–(c) precipitation (in mmday21) and (d)–(f) 2-m air temperature (in K) in observations,

FLOR, and CM2.1 historical simulations during 1981–2010 and the bias of annual mean (g),(h) precipitation (in

mmday21) and (i),(j) 2-m air temperature (in K) in FLOR and CM2.1.
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show very high correlation skill. FLOR shows slightly
higher correlations than CM2.1 at short leads for initial
months from August to December. However, the SESS
values are much larger in FLOR than in CM2.1 in boreal
winter and spring. It follows that FLOR has higher skill
in predicting the Niño-3.4 index than CM2.1 in those two
seasons. Such skill improvements in SESS are not seen in
anomaly correlation, indicating that conditional bias is
reduced in FLOR. In other words, CM2.1 and FLOR

have comparable skill in capturing the phasing of ENSO,
but the amplitude of ENSO is captured better by FLOR
than by CM2.1. We also found that the SESS values at
long leads initialized in November–January are lower in
FLOR than those in CM2.1. We suspect this low skill

might be because the initial conditions for FLOR are

taken from theECDAdeveloped for CM2.1, rather than

a coupled assimilation with FLOR itself. It will be shown

shortly that the reduced SESS at long leads in FLOR

FIG. 2. Scatterplot of pattern correlation between CM2.1 historical runs (1981–2010) and observation (x axis) vs

FLOR historical runs (1981–2010) and observation (y axis) for (a) seasonal mean climate and (c) std dev; and

betweenCM2.5 historical runs (1981–2010) and observation (x axis) vs FLORhistorical runs and observation (y axis)

for (b) seasonalmean climate and (d) std dev of the following variables: global precipitation, sea surface temperature,

sea level pressure, and zonal and meridional velocities at 925, 850, and 200 hPa. Different colors indicate different

seasons. Each symbol represents a particular variable.
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might account for the low skill of the most predictable

precipitation pattern at long leads in FLOR, since the

most predictable precipitation pattern is significantly

correlated with the Niño-3.4 index.
We now identify predictable components of pre-

cipitation over land in FLOR andCM2.1 hindcasts using

APT analysis. A 3-month running mean was applied to

the hindcasts to remove subseasonal variability. Hence,

for each initial month, there are 10-months leads. The

hindcasts for all 12 initial months and 10 lead months

were used in the APT analysis, which gives a dataset of

3960 (3600) months in length for FLOR (CM2.1). The

most predictable patterns of precipitation for FLORand

CM2.1 are shown in Figs. 5b and 5c, respectively. TheAPT

value of themost predictable pattern for FLOR(CM2.1) is

16.1 (15.8) months, which is statistically significant at a 5%

significance level based on the Monte Carlo methods.

Themost predictable patterns are strikingly similar to the

precipitation regression patterns on the Niño-3.4 index in
bothmodels (not shown).Moreover, the time series of the

FIG. 3. Correlation between (left) local surface temperature and (right) precipitation anomalies and Niño-3 (1508–908W, 58S–58N) SST

anomalies, for annual (June–May)means from (a),(e) NCEP–NCARReanalysis-1 (1961–2001), and 1990-control runs from (b),(f) CM2.1

(years 11–290); (c),(g) FLOR (years 11–290); and (d),(h) CM2.5 (years 11–270). Anomalies are computed by subtracting a 20-yr running

mean from the original June–May annual mean temperature time series, which, in addition to removing 25%, 50%, and 75% of the

amplitude at periods of 25, 33, and 49 yr, also truncates the initial and final decades from the anomaly time series.
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most predictable patterns in observations are significantly
correlated with the observed Niño-3.4 index (correlation
coefficient is 0.7 for FLOR and 0.61 for CM2.1) in both
models, where the time series in observations for each
model is derived by projecting the projection vector of the
most predictable component onto the observed precip-
itation. Thus, to evaluate the predictable patterns emerging
from the model, we compare the patterns to the observed
precipitation regression pattern with the Niño-3.4 index
(Fig. 5a). The most predictable pattern in FLOR is much

closer to the observed precipitation regression pattern

than CM2.1, particularly in South America, the southern

United States, eastern China, Australia, and eastern Af-

rica. A close comparison of the patterns in low latitudes of

the Americas and Asia reveals that FLOR is able to cap-

ture small-scale structures near the Andes and in tropical

Asian islands. The arc-shaped pattern in northern Aus-

tralia is also better captured in FLOR than CM2.1. The

wet areas in easternChina areweaker inCM2.1 than those

in FLOR and observations, and CM2.1 predicts the east

coast of equatorial Africa with the wrong sign.

To measure the prediction skill of the most predict-

able pattern, we project the projection vector q of the

most predictable pattern onto the observed precipitation.

The resulting time series was used to calculate the SESS

of the most predictable pattern. The SESS values of the

ensemble mean prediction of the most predictable pat-

tern for FLORandCM2.1 are shown in Figs. 5e and 5f as

a function of initial month and target month. Recall that

a 3-month running mean was applied to the data; each

target month in the figure indicates the start month of

a 3-month mean. The SESS values are much larger in

FLOR than in CM2.1 in nearly all initial and target

months, especially for target months from October to

the following March. To gain insight into the striking

improvements of retrospective skill in FLOR over

CM2.1, we compute the standard deviation of the time

series of the most predictable pattern and normalize it

relative to the time series of the pattern in observations

for FLOR and CM2.1, respectively. A resulting value

close to one implies that the predicted variability is

close to the observed variability, although the pre-

dictions and observations can be out of phase. But the

out-of-phase case is penalized in the measure of SESS

(i.e., leads to small SESS values). Figure 5d shows the

normalized standard deviation as a function of target

FIG. 4. (a),(b) Squared error skill score and (c),(d) anomaly correlation of the Niño-3.4 index in FLOR and CM2.1
for each initial month and target month during 1981–2010 (1983–2010) in FLOR (CM2.1). Each target month in-

dicates a 3-month mean (e.g., target month of January denotes January–March mean).
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month at different lead months in FLOR and CM2.1.

At a specific target month, each dot in the figure de-

notes a particular lead month from 0 to 9. The nor-

malized standard deviations in FLOR are closer to 1

than those of CM2.1 at target months from October to

the following March, and the corresponding SESS

values are much larger in FLOR compared to CM2.1,

implying that the variability of the predictable pattern

in those months is better predicted by FLOR than by

CM2.1. In other words, the conditional biases are

considerably reduced in FLOR relative to CM2.1,

which leads to higher SESS values. Skill improvements

of FLOR over CM2.1 are also found for predictable

components of 2-m air temperature over land (not

shown). As described in section 2, the data assimilation

used in FLOR was taken from the ECDA in CM2.1.

We expect that skill can be further improved once the

ECDA based on FLOR is available. Note that, although

the prediction skill improves in most cases in FLOR, we

do find a few cases where the SESS values are lower than

CM2.1, such as the long leads initialized in October,

November, December, and January. Such low skill in

FLOR might be associated with the low skill in ENSO

prediction, as shown in Fig. 4.

b. Predictable components of precipitation over land
in FLOR on seasonal scales

The improved predictions in FLOR motivate us to

further explore the prediction skill of precipitation and

temperature over land in this high-resolution model on

seasonal scales, considering that patterns of precipitation

and temperature vary with seasons. Results for seasonal

mean predictions inDecember–Feburary (DJF) and June–

August (JJA) are discussed in this section.

FIG. 5. (a)Observed precipitation regression patternwith theNiño-3.4 index (inmm day21 per unit std dev); spatial

structure of the most predictable component of precipitation over land (in mmday21 per unit std dev) from

(b) FLOR and (c) CM2.1; (d) std dev of time series of the most predictable pattern for different target months and

initial months, normalized relative to the observations; squared error skill score of the most predictable pattern for

each initial month and target month in (e) FLORand (f) CM2.1. Each dot in (d) represents a particular initial month.
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The spatial patterns of the first predictable component

in DJF and the first two predictable components in JJA

derived from hindcasts during 1980–2012 are shown in

Figs. 6a, 6b, and 6f, as these components have significant

skill. Here, only the hindcasts at a specific target season

(DJF or JJA) were utilized to estimate the pattern,

which gives a dataset of 330 months in length. The first

predictable pattern inDJF shows wet anomalies in eastern

China, southern North America into South America,

southeastAfrica, theAndes, and dry anomalies in northern

Australia, southern Africa, and northeastern South

America. In JJA, the first predictable component shows

dry anomalies over India, eastern China, eastern Aus-

tralia, the Sahel, and Central America. The second

component in JJA shows dry conditions over India and

northern South America but wet conditions over large

areas of the United States. The predictable patterns di-

agnosed here are in large agreement with the land pre-

cipitation teleconnection pattern to ENSO, as shown in

previous studies (Ropelewski and Halpert 1996; Yang

andDelSole 2012). In fact, the SST regression pattern on

these components displays a classic ENSO structure

with the largest loadings over the tropical Pacific (not

shown). To confirm the relationship between these

FIG. 6. Spatial structure of (a) the first predictable component of precipitation over land (in mmday21 per unit std dev) in DJF and

(b),(f) the first two predictable components in JJA; (c),(d),(g) the corresponding SESS (black solid) and anomaly correlation (red solid)

skill as a function of initial month; (e) the time series of the most predictable component in DJF for observation (black), leads 1–5 (red),

leads 6–10 (blue), and the observedNiño-3.4 index. The red dash lines indicate the 5% significance level for anomaly correlation. The black
dash lines indicate zero SESS. The percentage denotes the variance explained by the component.

2054 JOURNAL OF CL IMATE VOLUME 28



predictable components and ENSO, we show in Fig. 6e

the observed Niño-3.4 index and the time series of the
most predictable pattern in DJF for observation and
model hindcasts (averaged over the first 5 leads and the
second 5 leads). Both the time series of the pattern in
model and observations are highly correlated with the
observed Niño-3.4 index. The correlation coefficient
between the time series of the pattern in observations
and the observed Niño-3.4 index is 0.88. In JJA, the
correlations between the time series of the first two
components in observations and the observed Niño-3.4
index are also statistically significant with correlation
coefficients of 0.43 and 0.69 for the first and the second
component, respectively. Therefore, these predictable
components of precipitation over land are likely ENSO
related.
An important question is whether the predictable

components diagnosed in model system exist in the real

world, since components that emerge in a dynamical

model need not exist in nature (i.e., observations). To

address this question, we show in Figs. 6c, 6d, and 6g the

anomaly correlations between the time series of the

predictable components frommodel hindcasts and those

from observations, as well as the SESS of the compo-

nents. The correlations are statistically significant at the

5% significance level at all initial months in both seasons

based on Student’s t test. However, the SESS values that

take into account conditional bias, drop considerably for

March initial condition in all cases. The skill drop of

predictions initialized in March is presumably due to

the spring barrier of ENSO prediction (Barnston et al.

2012). Based on the strong correlations between the time

series of the predictable components in model and ob-

servations, we argue that the predictable components di-

agnosed in the dynamical model do exist in the real world

and can be predicted with significant skill at least 9 months

in advance.

c. Predictable components of air temperature over
land in FLOR on seasonal scales

The spatial patterns of themost predictable component

of 2-m air temperature in DJF and JJA derived from

hindcasts during 1980–2012 are shown in Figs. 7a and 7b.

The most predictable components in both seasons show

positive amplitudes nearly everywhere, except for a few

limited areas in DJF. Areas with maximum amplitudes

vary with seasons. In DJF, large loadings are located in

the high latitudes of North America, central South

America, South Africa, and Australia. In JJA, maximum

loadings are located in central North America, Green-

land, northern Africa, and central Eurasia. The time

series of the most predictable component averaged over

lead 1–5 and lead 6–10, as well as the time series in

observations show an increasing trend in both seasons

(Figs. 7e,f). Therefore, the most predictable component

of 2-m air temperature indicates a multidecadal warm-

ing signal in both seasons.

To explore the mechanism of the most predictable

component, we estimated externally forced patterns of

2-m air temperature over land in DJF and JJA from

FLORhistorical runs, using a signal-to-total maximizing

EOF method (Ting et al. 2009). As shown in Fig. 8, the

externally forced patterns bear great similarity to the

most predictable patterns in both seasons, with a pattern

correlation of 0.68 for DJF and 0.76 for JJA, suggesting

that the most predictable components are likely the re-

sponse to the changes in external radiative forcing.

However, this does not exclude the possibility that other

mechanisms might be responsible for the low-frequency

variability of the most predictable components. For

instance, in JJA, in spite of the similarities between the

most predictable pattern and the externally forced

pattern, differences are seen in North America and

Europe. The differences might be attributable to the

Atlantic multidecadal oscillation (AMO), as found by

Sutton and Hodson (2005) and R. Zhang (2014, per-

sonal communication).

The anomaly correlations and SESS values of the first

predictable component in DJF and JJA are shown in

Figs. 7c and 7d as a function of initial month. Different

initial months also indicate different lead times from 0 to

9 months. For instance, for DJF predictions, the initial

month of December indicates a 0-month lead; the initial

month of November indicates a 1-month lead, and so on.

Very high correlations are seen for all initial months

in both seasons and are nearly independent of initial

month. The SESS values are higher than 0.8 for most

initial conditions. Thus, the most predictable com-

ponent of 2-m air temperature in DJF and JJA can be

predicted with significant skill at least 9 months in

advance.

The spatial pattern of the second predictable com-

ponent in DJF (Fig. 9a) shows dipole structures in North

America, South America, and Africa; a positive sign in

Australia and southern Asia; and a negative sign in the

mid to high latitudes of Eurasia. The time series of the

second component in observations is significantly cor-

related with the observed Niño-3.4 index (correlation
coefficient is 0.7), and the regressed SST pattern on this
component reveals a classic ENSO pattern (not shown),
implying that this component is associated with ENSO.
The spatial structure of this component is consistent with
the findings of the temperature teleconnection pattern
with ENSO (Yang and DelSole 2012; Zhang et al. 2011).

In JJA, relatively weak amplitudes in the second pre-

dictable pattern (Fig. 9b) are found compared to those in
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DJF. Unlike in DJF, the correlation between the time

series of the second predictable component in observa-

tions and the observed Niño-3.4 index is not statistically
significant in JJA, suggesting that processes other
than ENSO contribute to the predictability of JJA

temperature. Themechanism of this component remains
to be studied.
The anomaly correlations of the second predictable

components, shown in Figs. 9c and 9d, are significant for

all initial months in both seasons but are smaller than

FIG. 7. Spatial structure of the first predictable component of 2-m air temperature (in K per unit std dev) in (a) DJF and (b) JJA;

(c),(d) the corresponding SESS (black solid) and anomaly correlation (red solid) skill as a function of initial month; (e),(f) the time series

of the most predictable component in DJF and JJA for observation (black), leads 1–5 (red), and leads 6–10 (blue). The red dash lines

indicate the 5% significance level for anomaly correlation. The black dash lines indicate zero SESS. The percentage denotes the variance

explained by the component.

FIG. 8. Externally forced pattern of 2-m air temperature (in K per unit std dev) over land in (left) DJF and (right) JJA derived from the

5-member historical runs of FLOR from 1981 to 2010.
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those of the first component. The SESS values for all

initial months are negative in JJA. A close scrutiny of

the associated time series of the second component in

JJA reveals that the amplitudes in the model are larger

than those in observations (not shown). Therefore, the

negative SESS values are due to the overestimation of

the predictable pattern in the model compared to the

observations.

The above analysis based upon APT-isolated predict-

able components with different time scales and mecha-

nisms (i.e., the externally forced trend component on

multidecadal scales and theENSO-related component on

interannual scales). The ability of the APT method to

isolate these components cleanly is impressive. The trend

component explains 7% (6.4%) of total variance in DJF

(JJA), the ENSO-related component in DJF explains

4.8% of total variance, and the second component in JJA

explains 2.3% of the total variance. It is noteworthy that

both the forced component (i.e., trend) and the unforced

(i.e., ENSO) internal variability contribute to the pre-

dictions of temperature on seasonal time scales, consis-

tent with the findings in Jia et al. (2014).

d. Reconstructing predictions from predictable
components

Having identified predictable components of seasonal

temperature and precipitation over land and demon-

strated prediction skill of these components, it is com-

pelling to reconstruct predictions based upon the first

few predictable components. We hypothesize that since

the reconstructed predictions filter out unpredictable

components in themodel, theywill bemore likely to have

higher skill when compared with observations than the

raw predictions directly from the model. Thus, by ig-

noring unpredictable elements of the model predictions,

we expect improvements in skill, even though we are

throwing out some elements of the model predictions.

The geographic distribution of SESS averaged over

lead times is computed for predictions reconstructed

from the first few predictable components (as those shown

in Figs. 6, 7, 9) of temperature and precipitation, re-

spectively, and are compared to those from raw pre-

dictions of FLOR in DJF and JJA (Fig. 10). The reason

for averaging SESS over lead times is that both the

geographical distribution and the magnitude of SESS

are very similar among different lead times. Overall,

the actual SESS values of the reconstructed and the raw

predictions are larger in temperature than pre-

cipitation. The map of SESS difference (Fig. 10, right

column), defined as the SESS of reconstructed pre-

dictions minus SESS of raw predictions, shows positive

values nearly everywhere over the globe in both air

temperature and precipitation and for both seasons,

indicating skill improvements in reconstructed pre-

dictions for temperature and precipitation in both sea-

sons. These results are impressive in that reconstructed

predictions using only 1–2 predictable components out-

perform raw predictions. The improvements in pre-

cipitation predictions are generally higher than those in

temperature, as indicated by the darker color in the skill

FIG. 9. Spatial structure of the second predictable component of 2-m air temperature (in K per unit std dev) in (a) DJF and (b) JJA;

(c),(d) the corresponding SESS (black solid) and anomaly correlation (red solid) skill as a function of initial month. The red dash lines

indicate the 5% significance level for anomaly correlation. The black dash lines indicate zero SESS. The percentage denotes the variance

explained by the component.
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difference map of precipitation. Note that the skill im-

provements in precipitation are mostly over areas with

negative SESS values in the raw predictions. And a large

number of those areas with negative SESS show positive

SESS in reconstructed predictions. Similar geographic

distribution of anomaly correlation skill shows that the

correlation difference between the reconstructed and the

raw predictions is small (Fig. 11). Only moderate im-

provements are found, and even decreases in correlation

skill are seen in certain areas. The fact that there are

moderate to no improvements in correlation skill but

considerable improvements in SESS over nearly the

whole globe reveals that reconstructing predictions based

on predictable components substantially reduces condi-

tional biases, although the significance of the improve-

ments in SESS is difficult to test.

A question might be raised as to whether the higher

skill in reconstructed predictions versus raw predictions

is a result of optimal filtering of unpredictable components

or merely a result of filtering out PCs with small variances

(recall that the leading 30 PCs were used in the APT

analysis). To address this question, we examined the SESS

of the reconstructed predictions based on the leading 30

PCs. This is equivalent to using all 30 predictable compo-

nents without any optimal filtering. The resulting SESS

values (averaged over the globe) in DJF and JJA were

lower than the reconstructed predictions from the first few

predictable components for both temperature and pre-

cipitation. Therefore, optimal filtering of unpredictable

components does contribute to the skill improvements of

temperature and precipitation over land. However, we

note that such results can be model dependent. A similar

study by Jia et al. (2014) reconstructed predictions based

on skillful components derived from the ENSEMBLES

multimodel dataset and showed that, except for South

America and Africa, most of the skill improvements of

seasonal mean 2-m air temperature come not from fil-

tering out unskillful components, but from filtering out

PCs.

To further compare the reconstructed and the raw

predictions, we show in Fig. 12 the percentage of grid

points in each bin (interval of 0.04) for SESS and the

anomaly correlation of reconstructed versus raw pre-

dictions. For example, a value of 0.5 indicates 0.5% of

FIG. 10. SESS of reconstructed predictions of 2-m air temperature and precipitation from (left) the first 1–2 predictable components,

(middle) raw predictions directly from FLOR, and (right) SESS of reconstructed predictions minus SESS of raw predictions. The SESS is

averaged over lead times from 0 to 9 months.
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total grid points in that bin. A value above the diagonal

line implies that the SESS/correlation of the reconstructed

predictions is higher than that from the raw predictions.

Nearly all values for SESS are above the diagonal lines

in temperature and precipitation. The improvements in

SESS are considerable, particularly for precipitation

grid points with negative SESS in raw predictions, con-

sistent with the results from geographical distribution

maps shown in Fig. 10. The improvements in correlation

are smaller than those in SESS. As SESS takes into ac-

count conditional bias, the higher improvements in SESS

than in correlation again imply reduced conditional bias

in reconstructed predictions.

5. Summary and discussion

This study investigated the seasonal prediction skill of

2-m air temperature and precipitation over land in a new

high-resolution climate model (FLOR) using a statistical

optimization technique: APT. We first showed that this

model, with high-resolution in the atmosphere and

land, simulates seasonal mean climate and variability

(including ENSO teleconnection patterns) better than

the lower-resolution CM2.1. In addition, FLOR exhibits

higher skill in predicting theNiño-3.4 index and themost
predictable component of temperature and precipitation
than CM2.1, even with ocean initial conditions that are
optimized to CM2.1 and without atmospheric data as-
similation in the FLOR experiments.
The improvements in FLOR motivated us to further

examine the seasonal skill of temperature and precipitation

over land in FLOR forDJF and JJA separately. It is shown

that the two most predictable components for 2-m air

temperature over land are characterized by an externally

forced multidecadal warming component in DJF and JJA

and anENSO-related pattern inDJF.We emphasize that

our technique is able to isolate components on different

time scales that are associated with different physical

mechanisms. The most predictable components of pre-

cipitation over land are ENSO-related in both seasons.

These predictable components of temperature and pre-

cipitation show significant correlation skill for all leads

from 0 to 9months. The negative SESS values of themost

predictable component of precipitation in both seasons

FIG. 11. Correlation of reconstructed predictions of 2-m air temperature and precipitation from (left) the first 1–2 predictable com-

ponents, (middle) raw predictions directly from FLOR, and (right) correlation of reconstructed predictions minus correlation of raw

predictions. The correlation is averaged over lead times from 0 to 9 months.
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FIG. 12. Scatterplot of the percentage of grid points in each bin from21 to 1 (interval of 0.04)

for SESS and anomaly correlation of reconstructed predictions vs raw predictions for 2-m air

temperature and precipitation in (left) DJF and (right) JJA.
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for the March initial condition might be related to the

spring barrier of ENSO prediction.

The skill of reconstructed predictions based on the first

few predictable components was compared to the skill of

raw predictions directly from the model in both temper-

ature and precipitation and for both seasons. The results

showed considerable improvements in SESS nearly ev-

erywhere over the globe but moderate to no improve-

ments in correlation. This reveals that conditional bias is

significantly reduced in the reconstructed predictions.

Our results suggest that increasing atmosphere and

land resolution in the dynamical model and employing

refined statistical optimization techniques improve sea-

sonal predictions of 2-m air temperature and precipitation

over land. The increased resolution in FLOR leads to

better simulations of mean climate and variability and

improved predictions of ENSO, 2-m air temperature, and

precipitation over land.The statistical optimizationmethod

(APT) is able to isolate predictable components on

different time scales that are associated with different

physical mechanisms. It is noteworthy that both the ex-

ternally forced multidecadal trend component and the

internal ENSO-related component contribute to the sea-

sonal predictions of 2-m air temperature. Reconstructing

predictions based on predictable components provides a

strategy to improve seasonal predictions. Further improve-

ments in seasonal skill are expected when the data as-

similation system is available for FLOR. Our results are

based on the specific FLORmodel, so they could bemodel

dependent.
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