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ABSTRACT

The seasonal predictability of extratropical storm tracks in the Geophysical Fluid Dynamics Laboratory’s

(GFDL)’s high-resolution climate model has been investigated using an average predictability time analysis. The

leading predictable components of extratropical storm tracks are the ENSO-related spatial patterns for both

boreal winter and summer, and the second predictable components aremostly due to changes in external radiative

forcing andmultidecadal oceanic variability. These two predictable components for both seasons show significant

correlation skill for all leads from 0 to 9 months, while the skill of predicting the boreal winter storm track is

consistently higher than that of the austral winter. The predictable components of extratropical storm tracks are

dynamically consistent with the predictable components of the upper troposphere jet flow for both seasons. Over

the regionwith strong storm-track signals inNorthAmerica, themodel is able to predict the changes in statistics of

extremes connected to storm-track changes (e.g., extreme low and high sea level pressure and extreme 2-m air

temperature) in response to different ENSOphases. These results point toward the possibility of providing skillful

seasonal predictions of the statistics of extratropical extremes over land using high-resolution coupled models.

1. Introduction

The extratropical storm tracks are regions of

frequent baroclinic waves and associated surface

cyclones and anticyclones. These storms are charac-

terized by strong winds and heavy precipitation, and

are thus a source of regional extreme weather and cli-

mate events. Additionally, the poleward transport of

heat, momentum, and moisture associated with mid-

latitude storms is a prominent part of the global cir-

culation system. Thus, predicting and projecting future

changes of storm tracks is of huge societal and scientific

interest.

Extratropical storm tracks vary on seasonal, in-

terannual, and decadal-to-centennial time scales (Chang

et al. 2002; E. K. M. Chang et al. 2013; Stockdale et al.

2011).On interannual time scales, storm tracks exhibit not

only a fluctuation of intensity as well as north–south shifts

associated with atmospheric internal mode variability

(Lau 1988; Yang and Chang 2006, 2007), but also changes

in response to El Niño–Southern Oscillation (ENSO)

cycle. During El Niño years, the Pacific storm track shifts
equatorward and downstream (Straus and Shukla 1997;

Zhang and Held 1999; Eichler and Higgins 2006), while

La Niña events drive a shift in the opposite direction. The
dynamics of the midlatitude storm tracks’ response to

ENSO involve extratropical response to local enhance-

ment of the Hadley circulation over the eastern Pacific

(Bjerknes 1969), and there are feedbacks from ENSO-

induced storm-track changes that play an important

role in controlling the extratropical response to ENSO
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(Held et al. 1989). The Northern Hemisphere winter

storm tracks also exhibit interdecadal variations (Chang

and Fu 2002). On centennial time scales, the CMIP3 and

CMIP5 models project poleward migration and in-

tensification of the Southern Hemisphere storm tracks

in the twenty-first century in response to greenhouse gas

changes (Chang et al. 2012; E. K. M. Chang et al. 2013).

The observational, theoretical, and modeling aspects of

the extratropical storm tracks on multiple time scales

have been extensively studied in the literature [see the

review paper by Chang et al. (2002)], but what has not

been assessed as broadly is the extent to which dy-

namical models can predict seasonal storm-track

variations.

State-of-the-art dynamical seasonal prediction systems

have demonstrated skill in forecasting oceanic and land

surface temperature and precipitation in the hindcasts

(e.g., Saha et al. 2006; Jia et al. 2015), and the routine

seasonal forecasts using dynamical climate models are

provided to society and policy makers by the worldwide

operational forecasting centers (Saha et al. 2006, 2014;

Merryfield et al. 2013; Stockdale et al. 2011). The useful

products derived from the seasonal forecasts have been

limited to the first moment of variables of interest, such as

the seasonal mean land surface temperature and pre-

cipitation, but the predictability of the second moment of

variables of interest, such as the variance statistics of ex-

tratropical storm tracks, has not been explored. The sec-

ond moment of a variable contains detailed distribution

beyond the simple mean, especially for the information

related to extreme climate and weather events. Assess-

ment of the predictability of the second moment statistics

would potentially enrich the seasonal forecast information

from the mean to higher order and therefore provide

more detailed information for the users. In addition, ex-

amining the storm-track predictability is a measure of

model fidelity, since storm tracks are symbiotically linked

to the planetary-scale flow (Cai and Mak 1990). In this

study, we evaluate the predictability of extratropical storm

tracks in GFDL’s high-resolution seasonal prediction

system, which has been shown to provide skillful seasonal

forecasts of land surface temperature and precipitation

(Jia et al. 2015), tropical cyclones (Vecchi et al. 2014), and

Arctic sea ice extent (Msadek et al. 2014a).

In this study, we employ a method called average

predictability time (APT) optimization (DelSole and

Tippett 2009a,b; DelSole et al. 2011) to identify the

predictable patterns of storm tracks in the seasonal

hindcasts. The APT has been used for identifying an

internal interdecadal predictable pattern of sea surface

temperature in GFDL’s decadal hindcasts (Yang et al.

2013) and is capable of distinguishing the ENSO-driven

seasonal signals from anthropogenic forced response of

land surface temperature in GFDL’s seasonal hindcasts

(Jia et al. 2015). Our main goals are to identify the

predictable patterns of storm tracks in the hindcasts

using APT, assess the predictive skill of those patterns,

and understand the mechanisms responsible for that

predictability. Details of the hindcasts and observational

datasets are discussed in section 2. The methodology is

reviewed in section 3. In section 4, the predictable pat-

terns for storm tracks are identified byAPT analysis, the

retrospective predictive skill is assessed using observa-

tions, and the role of mean flow predictability in storm-

track prediction is investigated. Conclusions and

discussions are given in section 5.

2. Model, hindcast experiments, and observations

The high-resolution climate model explored here,

FLOR (forecast-oriented low-resolution version of

GFDL CM2.5), is a combination of two previously de-

scribed GFDL coupled model configurations, namely

CM2.1 (Delworth et al. 2006) and CM2.5 (Delworth et al.

2012). The atmosphere and land models have an ap-

proximately 50km 3 50km spatial resolution, and are

those used in CM2.5 (Delworth et al. 2012), which have

oceanmodels at a 0.258 3 0.258 resolution. The ocean and
sea ice components of themodel are at 18 3 18 resolution,
based on those of CM2.1, which has been used exten-

sively for climate research, predictions, and projections

for close to a decade. In this climate model, the ocean

component has been slightly altered from that of CM2.1

by incorporating a newer, higher-order advection

scheme, an updated parameterization for eddies (Farneti

et al. 2010), a more realistic representation of the solar

absorption by the ocean, and a biharmonic horizontal

viscosity scheme. FLOR has most of its computational

expense and resolution concentrated in the atmosphere

and land components. A detailed description of the

FLOR model can be found in Vecchi et al. (2014).

The seasonal hindcastswere initializedusing theGFDL’s

ensemble coupled data assimilation (ECDA) system. The

ECDA employs an ensemble-based filtering algorithm

applied to the CM2.1. More details of the ECDA can be

found in Zhang et al. (2007) and Zhang and Rosati (2010).

The ECDA covers the period from 1960 to present and is

being updated monthly for GFDL’s seasonal-to-decadal

experimental forecasts (Yang et al. 2013; Vecchi et al. 2013;

Msadek et al. 2014b). A comprehensive assessment of the

1960–2010 oceanic variability in the latest version of the

ECDA can be found in Y.-S. Chang et al. (2013). Note that

the initial conditions of different components of FLOR

are taken from different available sources at GFDL,

since the data assimilation system for FLOR is under

development (Vecchi et al. 2014). The initial conditions
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for the ocean and ice components of the FLOR hind-

casts are taken from the ECDA, while the initial con-

ditions for the atmosphere and land components are

taken from FLOR atmosphere-only simulations driven

by observed SSTs. The 12-member ensemble seasonal

hindcasts were initialized on the first day every month

from 1982 to 2014 and integrated for 12 months with

temporally varying anthropogenic and natural forcing.

The seasonal hindcast anomalies for each variable were

obtained by subtracting out the lead-time-dependent

climatology from hindcasts. For the historical forcing

simulations, the five ensemble members using FLOR

were integrated using temporally varying anthropogenic

and natural forcing from 1860 to 2013. Note that the

temporally varying anthropogenic and natural forcings

between 1982 to 2014 are exactly the same for the his-

torical forcing simulations and seasonal hindcasts.

The observational data used in this study are the sea

level pressure (SLP), 2-m air temperature, 10-m wind

speeds, and 300-hPa zonal winds and precipitation from

the ERA-Interim reanalysis of the European Center for

Medium-Range Weather Forecasts (ECMWF) (Dee

et al. 2011). The Niño-3.4 index, the average SST
anomalies in the region bounded by 58N–58S, 1708–
1208W, is calculated from the United Kingdom Meteo-

rological Office Hadley Centre Sea Ice and Sea Surface

Temperature dataset (HadISST 1.1) analyses (Rayner

et al. 2003). A rainy day is defined as a day with the daily

precipitation exceeding 1mmday21 based on the rec-

ommendation of the World Meteorological Organiza-

tion (Klein Tank et al. 2009).

The statistical significance test of the anomaly corre-

lation coefficients (ACC) between observations and

hindcasts is formed by the null hypothesis that ACC is 0,

and we perform this test by determining whether the

confidence interval for ACC contains 0. If the 95%

confidence interval for ACC does not contain 0, we

conclude that ACC is significant at the 5% significant

level.

3. Review of methodology

a. Storm-track statistics

To highlight synoptic time-scale variability, seasonal

standard deviation statistics are computed using a 24-h

difference filter (Wallace et al. 1988), as follows:

std5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

t51

[y(t1 24 h)2 y(t)]2

s
, (1)

where N is the sample size of each season, and y is

a variable representing the storm-track activity. As

discussed in previous studies (Chang and Fu 2002), this

filter has half power points at periods of 1.2 and 6 days,

and results obtained based on this filter are very similar

to those obtained using other commonly used bandpass

filters. Many different variables are commonly used to

measure storm-track activity, such as the meridional

winds in different vertical levels, 500-hPa geopotential

height, and SLP (Chang et al. 2002, 2012). Here we use

SLP for computing the storm-track statistics, since our

interest is in the surface storm tracks. We compute the

seasonal storm-track indices using (1) from 6-hourly

SLP for both model hindcasts and ERA-Interim re-

analysis. We only focus on the winter seasons of De-

cember–February (DJF) for the Northern Hemisphere

(NH) and July–September (JAS) for the Southern

Hemisphere (SH). Instead of using conventional June–

August (JJA) months representing the Southern

Hemisphere winter, JAS is used because of its stronger

split jet mean flow than JJA (Yang and Chang 2006) and

its stronger field significance of ENSO-teleconnected

global temperature and precipitation patterns than JJA

(Yang and DelSole 2012).

b. The average predictability time analysis

We employ the average predictability time optimiza-

tion method to identify characteristic patterns of pre-

dictable components in the seasonal hindcasts.

Complete details of APT can be found in DelSole and

Tippett (2009a,b). Briefly, the method is to maximize

APT, which is defined as the integral over lead time of

the ‘‘signal to total’’ variance ratio of a forecast model:

APT5 2

ð‘
0

s2
signal(t)

s2
total

dt , (2)

where s2
signal(t) is the variance of the ensemble mean at

fixed lead time t, and s2
total is the corresponding total

variance of the forecast ensemble. For the ensemble

forecasts, the signal and total covariance can be ap-

proximated by the corresponding ensemble covariances.

Following DelSole and Tippett (2009a), maximizing

APT in ensemble forecasts leads to the generalized ei-

genvalue problem

"
2 �

L

t51

Ssignal(t)

#
q5 lStotalq , (3)

where L is the maximum forecast lead time, q is the

desired projection vector, Ssignal(t) is the ensemble

mean covariance matrix at the forecast lead time t, and

Stotal is the total ensemble covariance matrix. The ei-

genvectors q provide the basis for decomposing the
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multivariate time series into a complete, uncorrelated set

of components ordered such that the first maximizes

APT, the second maximizes APT subject to being un-

correlatedwith the first, and so on. The eigenvalues of (3)

correspond to the APT values of each component. This

decomposition based on APT is analogous to empirical

orthogonal function (EOF) analysis, except that we de-

compose predictability instead of decomposing variance.

For solving the APT optimization problem (3) in

practice, the data are first projected onto the leading

principal components (PCs) (DelSole et al. 2011). We

have a relatively long sample size of 3960 (i.e., 33 initial

conditions, 12 ensemble members, and 10 lead times), so

the time series and patterns from APT are virtually in-

dependent of the number of PCs in the range of 20–40

PCs (not shown).We choose 30 PCs for displaying results

for both SLP and 300-hPa zonal wind in the following.

Following DelSole et al. (2011), the statistical signifi-

cance test of APT was estimated by Monte Carlo

methods. The null hypothesis for the test is that the data

are drawn from a white noise process. Accordingly, we

generated a 30 3 3960 data matrix by drawing in-

dependent random numbers from a normal distribution

with zero mean and unit variance. The time dimension

of the data was grouped as a set of 30 separate 10-season

forecasts with 12 ensemble members each; 30 APT

values were then determined. This procedure was re-

peated 1000 times to generate 1000 3 30 APT values.

The 95th percentile of the 1000 3 30 APT values was

then determined as the threshold values for statistical

significance.

4. Results

a. Mean flow and storm-track climatology

Since midlatitude storm tracks interact with the large-

scale mean flow through the wave–mean flow in-

teractions, we first examine the model’s capability of

reproducing the observed climatological mean flow and

storm tracks. Figure 1 shows mean 300-hPa zonal winds

for DJF and JAS in observations and FLOR hindcasts.

The pattern anomaly correlation coefficient and root-

mean-square error between hindcasts and observations

are 0.98 and 2.6m s21 respectively for DJF, and 0.98 and

2.8m s21 respectively for JAS. The high spatial corre-

lation coefficients indicate that the model is able to re-

produce the geographic features of the observed

climatological 300-hPa zonal winds in both seasons.

Compared to observations, the hindcasts reasonably

simulate the location and intensity of the North Africa–

East Asia jet, the North Pacific jet, and the North At-

lantic jet in the DJF season. The remarkable zonal

asymmetry of the DJF jet intensity in the Southern

Ocean (i.e., the weaker jet stream in the South Pacific

and the stronger jet in the south IndianOcean and South

Atlantic) is well reproduced in the hindcasts. In the JAS

season, the model reproduces the observed location and

intensity of jets in the North Pacific and the North At-

lantic. It is worth noting that the split structure of the

Southern Hemisphere winter jet is faithfully reproduced

by the model (i.e., the model reproduces the strong

subtropical jet extending from the central south Indian

Ocean across Australia to the east-central South Pacific

Ocean between 208 and 408S, the polar front jet con-

centrated along 608S in the South Pacific, and a zone of

weak westerlies centered in New Zealand).

The spatial pattern of errors for DJF and JAS are

shown in Figs. 1b and 1e respectively. For DJF, it is

dominantly a dipole pattern with westerly errors on the

equatorward side of the dipole. The dipole is present in

both hemispheres but is particularly pronounced in the

Northern Hemisphere with errors exceeding 6ms21,

while it is considerably smaller in amplitude for the

Southern Hemisphere. For JAS, the large westerly er-

rors exceeding 4ms21 are generally confined within the

equatorward side of the westerly jet. The zonal mean

errors, shown in Figs. 1c and 1f, exhibit a gradual in-

crease with lead time for both seasons.

Figure 2 shows mean storm tracks for DJF and JAS in

observations and FLOR hindcasts. The spatial root-

mean-square errors between hindcasts and observations

are 0.5 and 0.9 hPa for DJF and JAS respectively. The

spatial anomaly correlation coefficients between hind-

casts and observations are 0.99 and 0.98 for DJF and

JAS respectively, suggesting the strong agreement be-

tween these two climatological fields. In the DJF season,

the location, orientation, and intensity of the North

Pacific, North American, North Atlantic, and Eurasian

continental storm tracks as well as the Southern Hemi-

sphere storm tracks are well simulated by the model,

although the maxima of the North Pacific, North At-

lantic, and South Pacific storm tracks in the model are

generally weaker than those in observations. In the JAS

season, consistent with reproducing the split jet seen in

Fig. 1, the model is capable of reproducing the observed

location and intensity of the South Atlantic and south-

ern Indian Ocean storm tracks and the poleward mi-

gration of the South Pacific storm tracks.

The spatial patterns of storm-track errors for DJF and

JAS are shown in Figs. 2b and 2e respectively. For DJF,

it is dominant of a dipole pattern in high latitudes with

negative errors over the North Pacific and Atlantic

storm tracks and positive errors over theNorth Pole. For

JAS, the model generally has a positive bias. The errors

are particularly strong over the Antarctic continent with
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errors exceeding 2 hPa, while the errors for the Northern

Hemisphere are relatively weaker. The zonal mean er-

rors, shown in Figs. 2c and 2f, exhibit weaker de-

pendence with lead time for both seasons in comparison

with the errors of 300-hPa zonal winds. Note that the

lead-time-dependent model biases were removed for

the skill verification by subtracting out the lead-time-

dependent climatology from hindcasts.

b. Predictable patterns of storm tracks

Wefirst apply APT analysis to the storm tracks for the

DJF and JAS seasons. The APT values for the two

seasons are shown in Fig. 3. Based on the Monte Carlo

statistical test described in section 3b, the first three

components have statistically significant APT values for

both DJF and JAS. However, only the two leading

components have multiseason predictive skill verified

against observations, so we only focus on the two leading

components in this study. Note that the fraction of

global variance explained by each predictable compo-

nent for both seasons is generally lower than about 10%;

however, it will be shown later that the leading compo-

nents can explain a significant amount of variance in

certain geographic locations.

1) THE DJF SEASON

The component with the maximum APT for the DJF

season is shown in Fig. 4a. The pattern generally shows

an equatorward shift of the North Pacific and North

Atlantic storm tracks and the South Atlantic and Indian

Ocean storm tracks, with weakening of the North

American and the South Pacific storm tracks. Note that

the amplitude of the pattern is considerably larger in

North America (over 0.7 hPa) than elsewhere. The APT

value for this component is 14.7 months, and the fraction

of global variance explained by this component is about

7.8% (Fig. 3). The spatial distribution of the fraction of

variance explained by the leading component is shown

FIG. 1. The climatological 300-hPa zonal winds for DJF in (a) model and (b) observation; and for JAS in (d) model

and (e) observation. The difference between model and observation is color shaded for (b) and (e), and the zonal

mean of the difference is shown as a function of lead time for (c) DJF and (f) JAS. The contour interval is 10m s21 in

(a),(b),(d), and (e), and the shading interval is 2 m s21 in (b),(c),(e), and (f). The heavy solid lines in (c) and (f) denote

the observational maximum jet position.
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in Fig. 4b. We see that the leading predictable compo-

nent explains as much as 35% of the variance in North

America, and 15% of the variance in the southern At-

lantic and Pacific Oceans. These results show that the

leading predictable components explain a significant

amount of variance in certain geographic locations.

The time series of the leading component as a function

of initialized years from 1982 to 2014 are shown in Fig. 4c

for lead times of 1–5 and 6–10 months, respectively. To

assess the forecast skill of the component, we project the

ERA-Interim data onto the eigenvector q with maxi-

mum APT from (3) to obtain the observed time series,

which are indicated by the solid black line in Fig. 4c. The

observed time series is highly correlated with the ob-

served Niño-3.4 index with the correlation coefficient of
0.79, suggesting this pattern is ENSO-related. The ACC
between forecasts and observations as a function of ini-
tial months, shown inFig. 4d, generally decrease with the

lead time, but are statistically significant up to 9 months

of lead time at 5% significance level. The skill of pre-

dicting this storm-track pattern is generally lower than

the skill of predicting ENSO itself (Fig. 4c), but they

have a similar pattern over the initial months: a sharp

decrease of ACC starting from early summer (June) to

early spring (March) initial conditions. The decrease in

predictability over the summer is consistent with the

known ‘‘spring barrier’’ of predicting ENSO and ENSO-

related land temperature and precipitation patterns

(Barnston et al. 2012; Jia et al. 2015).

The leading predictable pattern of the storm-track

variability is consistent with the ENSO-teleconnected

storm-track patterns reported in previous modeling and

observational studies (Straus and Shukla 1997; Zhang

and Held 1999; Eichler and Higgins 2006). The advance

of this study is that not only is the ENSO-related pattern

successfully identified in seasonal hindcasts using APT

FIG. 2. The climatological storm tracks measured by the standard deviation of 24-h-difference filtered sea level

pressures forDJF in (a)model hindcasts and (b) observation; and for JAS in (d) model hindcasts and (e) observation.

The difference between model and observation is shaded for (b) and (e), and the zonal mean of the difference is

shown as a function of lead time for (c) DJF and (f) JAS. The contour interval is 2 hPa in (a),(b),(d), and (e), and the

shading interval is 0.5 hPa in (b),(c),(e), and (f). The heavy solid lines in (c) and (f) denote the observational storm-

track axis position.
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analysis, but also this pattern as a whole may be retro-

spectively predictable up to 9 months in advance at the

5% significance level in GFDL’s fully coupled high-

resolution seasonal forecasting system.

The second predictable component (PrC2) for the

DJF seasonal hindcasts, shown in Fig. 5a, generally

shows a poleward shift and strengthening of the SH

storm tracks and weakening of the North Atlantic storm

tracks. The APT value for this component is 6.4 months,

and the fraction of global variance explained by this

component is about 2.8%. The spatial distribution of the

fraction of variance explained by PrC2 is shown in

Fig. 5b. We see that PrC2 explains as much as 12.5% of

the variance in themiddle and high latitudes of Southern

Oceans. These results show that PrC2 explains com-

parable amount of variance in certain geographic loca-

tions to that of PrC1. The time series of this component

as a function of initialized years from 1982 to 2014 are

shown in Fig. 5c for lead times of 1–5 and 6–10 months,

respectively. The ACC between forecasts and obser-

vations as a function of initial months, shown in Fig. 5d,

are statistically significant up to 9 months of lead time

at the 5% significance level, but independent of the

lead time.

The time series of the PrC2 in the DJF season exhibits

a multidecadal increasing trend in the hindcasts as well

as observations (Fig. 5c), and the associated pattern in

the Southern Hemisphere bears remarkable similarity

to the linear trend pattern in FLOR’s historical forcing

experiment (Fig. 6a), suggesting that the signal in the

Southern Hemisphere is mostly the response to the

changes in external radiative forcings. The pattern is

also consistent with CMIP5 models’ projections of

poleward expansion and strengthening of the Southern

Hemisphere storm track at the surface (Chang et al.

2012). However, the weakening of the North Atlantic

storm track is opposite to the linear trend pattern in the

historical forcing experiment, and we speculate that it

may be linked to the Atlantic multidecadal oscillation

(AMO) phase transition from cold to warm in the last 30

years, since the warm phase of AMO tends to weaken

the North Atlantic storm track (Zhang and Delworth

2007). Thus, both the radiative forcing and multidecadal

oceanic variability could contribute to the seasonal

predictability of the DJF storm tracks.

2) THE JAS SEASON

The pattern of the PrC1 for the JAS seasonal hindcasts,

shown in Fig. 7a, generally shows a poleward shift

of the South Atlantic storm tracks, a tripole structure

with weakening of storm-track activity between 408 and
608S, and strengthening between 308 and 408S in the

South Pacific and the west Antarctic continent. The APT

value for this component is 10.5 months, and the fraction

of global JAS variance explained by this component is

about 5.5%. This component explains as much as 25% of

the variance in the South Pacific Ocean (Fig. 7b), sug-

gesting its significant contribution of predictability in

certain geographic locations.

The time series of the leadingAPTmode as a function

of initialized years from 1982 to 2014 are shown in Fig. 7c

for lead times of 1–5 and 6–10months, respectively. Like

the DJF PrC1, the observed time series of the JAS PrC1

is highly correlated with the observed Niño-3.4 index
with a correlation coefficient of 0.82, suggesting this
pattern is ENSO-related. The ACC between forecasts
and observations as a function of lead time, shown in
Fig. 7d, generally show a sharp decrease from June to

February initial conditions for both PrC1 and Niño-3.4
index, although they are significant at 5% significance
level over all the lead times. Again, this is likely related
to the spring barrier of ENSO prediction. Compared
with the DJF season, the skill of predicting the PrC1 and
ENSO in JAS is consistently lower at each lead time.
The ENSO-related storm-track pattern is consistent

with the observedAntarctic dipolemode associatedwith

ENSO (Yuan 2004). Note that the maximum amplitude

center of the pattern locates in the zone where the cli-

matological jet and storm tracks are weaker than the

surrounding area in the South Pacific (see Figs. 1 and 2),

so the leading predictable pattern of the JAS storm track

in the SH is distinct from the storm-track pattern asso-

ciated with the leading atmospheric internal mode—the

southern annular mode (Yang and Chang 2007).

FIG. 3. (a) The APT values and (b) the associated fraction of

explained variance using 30 leading PCs for the 24-h difference

filtered SLP in DJF and JAS. Solid line is the 5% significance level

of the APT values.
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The PrC2 for the JAS season, shown in Fig. 8a, gen-

erally shows a band of increase between 308 and 708S in

the South Atlantic, south Indian Ocean, and western

South Pacific. The APT value for this component is 8.1

months, and the fraction of explained variance by this

component is about 4.3%. The time series of this com-

ponent as a function of initialized years from 1982 to

2014 are shown in Fig. 8b for lead times of 1–5 and 6–10

months, respectively. The time series of the PrC2 in the

JAS season exhibits a multidecadal increasing trend in

the hindcasts as well as in the observations. The ACC

between hindcasts and observations as a function of

initial months, shown in Fig. 8c, are statistically signifi-

cant at the 5% significance level for 6 out of 10 initial

months.

The storm track pattern of the JAS PrC2 bears simi-

larity with the linear trend pattern in the historical

forcing experiment (Fig. 6b), but the amplitude is much

stronger in the hindcasts than the historical forcing ex-

periment, implying that this component is partly the re-

sponse to the changes in external radiative forcings. In

addition, the linear trend in the observed time series of

the JASPrC2with a slope of 0.3 unit variate per decade is

much weaker than the counterpart of the DJF PrC2 with

a slope of 0.8 unit variateper decade (Figs. 5b and 8b),

resulting in the lower skill of predicting the trend pattern

in JAS than DJF.

The above analysis based on APT identified pre-

dictable components with different time scales and

mechanisms for the storm track (i.e., the ENSO-related

FIG. 4. (a) The spatial structure of the predictable component (color shading) that maximized the average

predictability time of storm tracks in the seasonal hindcasts for the DJF season, which is called PrC1. The black

contour denotes the climatological storm tracks (in hPa). The shading unit is hPa per unit standard deviation.

(b) Percent of variance of storm tracks explained by PrC1. (c) The ensemble mean time series of PrC1 averaged

over lead time 0–4 months (red solid) and 5–9 months (blue solid) as a function of time; the time series of the ERA-

Interim data projected onto PrC1 (black solid), and the Niño-3.4 index (green solid) from 1982 to 2014. (d) The
anomaly correlation coefficients (ACC) between forecasts and observations (red squares) and associated 95%error
bars as a function of initial month. The green line denotes the ACC for the Niño-3.4 index.
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component on interannual scales and the externally

forced trend component on multidecadal scales) sug-

gests that both the forced component and the unforced

internal variability contribute to seasonal predictions of

midlatitude storm tracks. This is consistent with the fact

that seasonal predictions of land 2-m air temperature

can be attributed to both the forced component and the

unforced (i.e., ENSO) component relating to internal

variability (Jia et al. 2015).

3) RECONSTRUCTING PREDICTIONS FROM

PREDICTABLE COMPONENTS

APT is capable of decomposing raw hindcasts into

predictable components (signal) and unpredictable

components (noise), so we can reconstruct hindcasts

based upon the predictable components while filtering

out unpredictable components; thus, we expect im-

provement in predictive skill by the reconstruction.

Here, we generate a reconstructed model using a small

number of leading predictable components, and select

the components if the corresponding APT values are

statistically significant at the 5% significance level. The

first three components are chosen for the reconstructed

model based on the Monte Carlo test for both DJF and

JAS storm tracks (Fig. 3).

The geographic distribution of correlation skill be-

tween the 1-month lead raw hindcasts and observations

for the DJF storm tracks, shown in Fig. 9a, displays

strong skill over the North Pacific and North American

regions and the midlatitudes in the Southern Hemi-

sphere. The regions with large correlation coefficients

are generally coincident with the large loading centers of

FIG. 5. (a) The spatial structure of the second predictable component (color shading, in hPa per unit standard

deviation) that maximized the average predictability time of storm tracks in the hindcasts for theDJF season, which

is called PrC2. The black contour denotes the climatological storm tracks (in hPa). (b) Percent of variance of storm

tracks explained by PrC2. (c) The ensemble mean time series of PrC1 averaged over lead time 0–4 months (red

solid) and 5–9months (blue solid) as a function of time; and the time series of the ERA Interim data projected onto

PrC1 (black solid). (d) The anomaly correlation coefficients (ACC) between forecasts and observations (red

squares) and associated 95% error bars as a function of the forecast lead time.
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the leading predictable components (see Figs. 4a and 5a).

The correlation skill map for the reconstructed model,

shown in Fig. 9b, exhibits a similar geographic distribu-

tion as the raw hindcasts, but with a higher degree of

spatial coherence and a wider area of significant pre-

dictive skill than the raw hindcasts. To further quanti-

tatively compare the predictive skill of the reconstructed

model and the raw hindcasts, we show in Figs. 9c and 9d

the percentage of grid points over the North Pacific and

North America region (258–758N, 1808–608W) in each

bin (interval of 0.05) for the anomaly correlation co-

efficients of reconstructed versus raw hindcasts at lead

time 0–4 months and 5–9 months respectively. In the

plot, a value above the diagonal line implies that the

correlation coefficient of the reconstructed hindcasts is

higher than that from the raw hindcasts. The over-

whelming majority of points for correlation coefficients

are above the diagonal line, and the ratio of the points

above the diagonal line out of the total points is about

79% and 76% for the lead time 0–4 months and 5–9

months respectively (Figs. 9c,d), indicating that the re-

constructed model outperform the raw hindcasts. Note

that the distribution pattern of correlation coefficients

systematically shifts from larger values to smaller values

as the lead time increases, indicating that the predictive

skill degrades with increasing lead times. The improve-

ment of predictive skill using reconstructed model based

on leading predictable components was also found in the

JAS storm-track hindcasts (not shown).

The skill analysis of the raw hindcasts further confirms

the robustness of APT diagnosis for identifying the

predictable signals. The fact that the reconstructed

model outperforms the raw hindcasts indicates that the

reconstructed model based on few predictable compo-

nents may be used as a refinement model of raw

hindcasts from a dynamical model. The improvement of

storm-track predictive skill due to theAPT refinement is

consistent with the improvements of predictive skill for

the seasonal land temperature and precipitation using

the same technique (Jia et al. 2015).

4) HINDCAST FOR THE 2013/14 DJF SEASON

The APT analysis finds features that systematically

maximize the average predictability over all lead times,

so the identified predictable components (e.g., the

ENSO-related component and the multidecadal trend

component) tend to persist over multiple seasons.

However, there can be years that exhibit skill, even

though the drivers of the APT features are not the

principal sources of skill (e.g., in non-ENSO years). The

2013/14 DJF season provides an example of this, as it

was not a classic ENSO year and the observed storm

tracks over North America were enhanced (Fig. 10a). In

2013/14 DJF, there was a pronounced reduction of storm-

track activity over the North Pacific Ocean and theWest

Coast of the United States, and a substantial increase of

storm-track activity extending from central Canada

down to the Midwestern United States. This pattern

FIG. 6. The linear trend pattern of storm tracks (color shading) derived from the five-member

historical forcing simulations of FLOR from 1981 to 2013 for the (a) DJF and (b) JAS seasons.

The shading unit is hPa per unit standard deviation. The black contour denotes the climato-

logical storm tracks (in hPa).
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differs from the classical cold ENSO pattern, and al-

though the nominal Niño-3 anomalies in 2013/14 winter
were cold, it did not exhibit canonical ENSO anomalies
in the eastern tropical Pacific. Nevertheless, the FLOR
hindcasts initialized on 1 November 2013 reproduce the
principal aspects of the observed storm-track anomalies
(Fig. 10b), although the ensemble mean amplitudes are

much weaker than the observations. The ensemble-

mean hindcast is composed of some ensemble members

that bear more and others less similarity to observa-

tions, with the ensemble mean showing the largest

correlation with observation (Fig. 11). However, we

show a ‘‘best’’ ensemble member that looks similar to

observation by visual inspection in Fig. 10c. This

member was able to reproduce the location and ex-

treme amplitudes of the observed storm-track anoma-

lies, indicating that the observed extreme anomalies

were in the forecast spread. The ability of the ensemble

mean to recover the large observed correlation in-

dicates a predictable element to this particular winter’s

storm tracks, but the ensemble spread indicates that the

extreme values involved a stochastic element. To fur-

ther examine the relationship among forecast ensem-

bles and observation, we plot the anomalies of each

member and the ensemble mean and observations for

one center of positive anomalies over the Midwestern

North America and another center of negative anom-

alies in the North Pacific in Fig. 11. For both locations,

the ensemble spreads are quite large while the observed

anomalies are within the ensemble spread, suggesting

that the uncertainty to the initial conditions is large and

a sufficient ensemble size is required for retrieving the

signal for this case.

We note that the hindcasts initialized on 1 October

2013 show less agreement with observations, and there is

almost no skill for the hindcasts initialized on 1 Sep-

tember 2013 and earlier (not shown). Therefore, the skill

for this year was limited to one to two months lead. A

more detailed exploration of the mechanisms and sour-

ces of the predictability for this case is underway and,

along with additional experiments, will be described in

the future.

FIG. 7. As in Fig. 4, but for the JAS season.
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c. Roles of mean flow in storm-track predictability

Midlatitude storm-track variations are symbiotically

linked to the planetary-scale flow changes and their

associated eddy–mean flow interactions (Cai and Mak

1990; Branstator 1995). The dynamical processes gov-

erning ENSO-induced storm-track predictability in-

clude representing the planetary-scale flow associated

with anomalous tropical heating and the eddy–mean

flow interactions (Held et al. 1989). In general, a corre-

sponding shift in the storm-track structure will accom-

pany an anomaly in the mean jet flow. We have shown

that the ENSO-induced storm-track pattern is predict-

able up to multiple seasons in advance in the GFDL

high-resolution prediction system. To further confirm

that the predictive skill arises from the consistent dy-

namical processes associated with the ENSO-induced

forcing, we examine the predictable patterns for the

300-hPa zonal winds.

Figure 12a shows the leading predictable pattern of

DJF 300-hPa zonal winds. In the tropics, the pattern

shows easterly anomalies in the eastern tropical Pacific

Ocean and westerly anomalies in the tropical Atlantic

Ocean, resembling a Gill-type response to ENSO-

induced heating anomalies (Gill 1980; Jin and Hoskins

1995). In the Northern Hemisphere subtropics and

midlatitudes, the pattern shows a strong dipole with

strengthening of the subtropical jet and weakening of

the midlatitude jet extending from the North Pacific

across North America to the North Atlantic, reminis-

cent of the Pacific–North American teleconnection

pattern (PNA) (Wallace and Gutzler 1981) in the upper

troposphere jet field. The pattern in the South Pacific

also shows a strong dipole with strengthening of the

subtropical jet and weakening of the midlatitude jet,

while a weak dipole equatorward shifting jet extends

from the South Atlantic to the southern Indian Ocean.

The APT value for this component is 17.9 months, and

the fraction of global variance explained by this com-

ponent is about 23.8%. The spatial distribution of the

fraction of variance explained by this component also

shows strong geographic locations (e.g., the fraction is as

FIG. 8. As in Fig. 5, but for the JAS season.
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much as 50% in the tropics and subtropics, and 30% in

the extratropics of North America) (Fig. 12b).

The observed and hindcasted time series of the lead-

ing APT in DJF as a function of initialized years from

1982 to 2014 are shown in Fig. 12c for lead times of 1–5

and 6–10 months, respectively. The time series in ob-

servations is very strongly correlated with the observed

Niño-3.4 index with a correlation coefficient of 0.96,
suggesting that this pattern is ENSO-related. The skill of
predicting this 300-hPa zonal wind pattern is almost
equivalent to the skill of predicting ENSO itself. The
second predictable pattern of the DJF 300-hPa zonal
winds also exhibits a poleward shift and strengthening of
the SH midlatitude jet (not shown), which is consistent
with the PrC2 of the SH storm track.

Figure 13a shows the leading predictable pattern of

the JAS 300-hPa zonal winds. In the tropics, the pattern

also shows a similar Gill-type response wind pattern to

ENSO-induced heating anomalies as the DJF pattern.

In the subtropics and midlatitudes, the maximum load-

ings of the pattern locate in the South Pacific with

strengthening of the subtropical jet and the weakening

of midlatitude jet. The patterns in the South Atlantic

and south Indian Ocean are generally of opposite sign to

that in the South Pacific, although the associated am-

plitudes are much weaker. The zonal wind pattern is

consistent with the observed wave train pattern associ-

ated with ENSO in the SH winter (Karoly 1989) and the

observed Antarctic dipole mode associated with ENSO

(Yuan 2004). The APT value for this component is 15.7

FIG. 9. Anomaly correlation coefficients (ACC) between the 1-month lead hindcasts and observations for the

DJF season at lead 1 month for (a) the raw hindcasts and (b) the reconstructed hindcasts from the first three

predictable components. Also shown is a scatterplot of the percentage of grid points over the North Pacific and

North America region [green box in (a) and (b)] in each bin from 20.25 to 0.75 (interval of 0.05) for anomaly

correlation coefficients in DJF for (c) lead time 0–4 months and (d) lead 5–9 months. Only ACC above 5% sig-

nificance level shown in (a) and (b).
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months, and the fraction of global variance explained by

this component is about 15.3%. This component ex-

plains as much as 50% in certain tropical and subtropical

areas, and 30% in the South Pacific (Fig. 13b). Com-

pared to the DJF season, the APT value and the fraction

of global variance explained by PrC1 are consistently

lower in JAS, suggesting the strong seasonal variations

of the ENSO-teleconnected 300-hPa zonal wind pre-

dictability.

The observed and hindcasted time series of the lead-

ing APT in JAS as a function of initialized years from

1982 to 2014 are shown in Fig. 13b for lead times of 1–5

and 6–10months, respectively. Again, the observed time

series is very strongly correlated with the observed

Niño-3.4 index with the correlation coefficient of 0.91
(Fig. 13b), suggesting that this pattern is also strongly

ENSO-related. The skill of predicting this 300-hPa zonal

wind pattern is generally comparable to the skill of

predicting ENSO itself.

In summary, the leading predictable 300-hPa zonal

wind patterns are dynamically consistent with the lead-

ing storm-track patterns reported in section 4b for both

DJF and JAS seasons, and they are all related to ENSO.

For instance, in DJF, the equatorward jet shift is ac-

companied by its storm-track shift in the North Pacific,

and the jet weakening is associated with a storm

reduction in themid and high latitudes ofNorthAmerica;

in JAS season, the jet weakening is consistent with

a storm reduction in the zone between subtropical and

polar front jets in the South Pacific.

d. Impact on extreme events

The increase (reduction) of seasonal storm tracks en-

hances (reduces) the weather disturbances (both cy-

clones and anticyclones), so the storm-track changes

associated with ENSO are characterized by changes in

second-moment statistics (e.g., width of distribution) of

weather-relevant variables (e.g., SLP, temperature, sur-

face winds, and precipitation). Since the ENSO-related

storm-track patterns are to some extent predictable in

the model, we expect the corresponding second-moment

statistics changes to be predictable. We use the percen-

tile statistics as a measure of the distribution. Here, we

examine the 1st, 50th, and 99th percentile values of SLP,

temperature, wind, and precipitation in the DJF season

for 5-yr composites of El Niño (1982, 1986, 1991, 1997,
and 2009) and LaNiña (1988, 1999, 2000, 2007, and 2010)
respectively. The year here refers to the year of the
January.
We focus on the cross section line with maximum

storm-track predictable signals that extends from

northwestern Canada to the U.S. Midwest (Fig. 14a).

The first, 50th, and 99th percentile values of SLP, cal-

culated from the 6-hourly model and ERA-Interim data

during the composite El Niño years and La Niña years
along the cross section line, are shown in Fig. 14. The

FIG. 10. (a) The observed storm-track anomalies (color shading)

for the 2013/14 DJF season. (b) The ensemble mean and (c) one

‘‘best’’ member of the predicted storm-track anomalies initialized

on 1 Nov 2013. The black contour denotes the climatological storm

tracks. Units are hPa.

FIG. 11. The box and whisker plots for (left) the pattern corre-

lation coefficients between each ensemble member and observed

storm-track anomalies over the North Pacific and North American

region (258–708N, 1508–508W), and the spatial mean storm-track

anomalies of each ensemble member and ensemble mean for

(middle) one region (358–608N, 1108–908W) over the North American

Midwest and (right) another (358–508N, 1408–1208W) in the North

Pacific. The ensemble mean values are denoted as the red circles, and

the observed values are denoted as the black crosses. The hindcast is

the same as in Fig. 10.
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model predicts larger (smaller) 99th and smaller (larger)

first percentile values of SLP during La Niña (El Niño)
years. The 99th percentile SLP values changing with
the ENSO phases are in good agreement between ob-
servations and model simulations. The predicted 50th
percentile values changing with ENSO agree with ob-
servations only in the western half of the cross section
line, while the predicted first percentile values agree with
observations only in the eastern half of the cross section
line. The distribution width changes of SLP associated
with ENSO tend to skew to the anticyclone extremes in
both the ERA-Interim reanalysis and model hindcasts,
especially in the western half of the cross section line.
Note that the similar changes of extreme percentile
values associated with ENSO phases were found in other

short lead hindcasts (e.g., initialized later than 1 June of
the composite years), and the changes are virtually in-
distinguishable for the hindcasts initialized earlier than 1
July of the composite years (not shown).
The similar percentile values for the 2-m air temper-

ature (T2m), 10-m wind speed (W10m), and the daily

precipitation are shown in Fig. 15. The model and ob-

servation agree well on the decreased (increased) 50th

and first percentile values of T2m during La Niña (El
Niño) years, while there is no agreement between the
model and observation for the 99th percentile values
changing with the ENSO phases. For W10m, there is
a general agreement between model and observation on
the increased (decreased) 50th and 99th percentile
values during La Niña (El Niño) years, although the

FIG. 12. (a) The spatial structure of the leading predictable component (color shading) that maximized the

average predictability time of 300-hPa zonal winds in the hindcasts for the DJF season, which is called PrC1. The

black contour denotes the climatological 300-hPa zonal winds (inm s21). The shading unit is m s21 per unit standard

deviation. (b) Percent of variance of storm tracks explained by PrC1. (c) The ensemble mean time series of PrC1

averaged over lead time 0–4months (red solid) and 5–9months (blue solid) as a function of time, and the time series

of the ERA-Interim data projected onto PrC1 (black solid). (d) The anomaly correlation coefficients (ACC) be-

tween forecasts and observations (red squares) and associated 95%error bars as a function of the forecast lead time.

The green line denotes the ACC for the Niño-3.4 index.
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contrast between the two phases of ENSO for 99th
percentile values is weaker in observations. The daily
precipitation’s 99th percentile value changes associated

with ENSO phases are in low agreement between model

and observation, although the simulated daily pre-

cipitation shows a very slight coherent increased (de-

creased) 99th percentile values during LaNiña (ElNiño)
years. Interestingly, model and observations generally
agree on more rainy days during La Niña years than El
Niño years (Fig. 16).
The percentile value changes of the meteorological

variables associated with the ENSO phases are dynami-

cally consistent with the corresponding predictable storm-

track changes over NorthAmerica. During LaNiña years,
enhanced storm tracks correspond to increased anticy-
clones and cyclones over North America, leading to
a broader distribution width of SLP (i.e., larger 99th
percentile values and smaller first percentile values). The
opposite is true for El Niño years. The distribution width
changes of SLP tend to skew to the anticyclone extremes
in both the ERA-Interim reanalysis and model hindcasts.

Consequently, the distribution width changes of T2m
skew to the cold temperature extremes, since an extreme
cold event is generally linked to an extreme anticyclone
with a cold front on its leading edge. The model also
predicts coherent 10-m wind speed, daily precipitation
extremes, and rainy day ratio changes associated with
ENSO. Thus, the high-resolution model is capable of
providing the extreme-related second-order statistical
information beyond a single mean for seasonal forecasts.

5. Conclusions

The seasonal predictability of extratropical storm

tracks in GFDL’s high-resolution seasonal hindcasts has

been investigated using APT analysis. For both DJF and

JAS seasons, the leading predictable storm-track pat-

terns are ENSO-related. The positive phase of the DJF

pattern generally shows an equatorward shift of the

North Pacific and North Atlantic storm tracks, as well as

of the South Atlantic and Indian Ocean storm tracks,

and weakening of the North America and the South

FIG. 13. As in Fig. 12, but for the JAS season.
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Pacific storm tracks. Over 1980–2013, the whole pattern is

retrospectively predictable up to 9 months in advance at

the 5% significance level. The positive phase of the JAS

pattern is characterized by a poleward shift of the South

Atlantic storm tracks, a dipole structure with weakening

of storm-track activity between 408 and 608S and

strengthening between 308 and 408S in the South Pacific,

and strengthening of storm tracks in thewesternAntarctic

continent. The retrospective predictive skill of the JAS

pattern is generally lower than that of the DJF pattern.

The positive phase of the second predictable compo-

nent for the DJF seasonal hindcasts generally shows

a poleward shift and strengthening of the Southern

Hemisphere storm tracks and weakening of the North

Atlantic storm tracks. The second mode’s time series is

dominated by amultidecadal trend in both hindcasts and

observations, corresponding to the response to changes

in external forcing and AMO phases. The second pre-

dictable component for the JAS season generally shows

a band of increased storm activity between 308 and 708S
in the South Atlantic, south Indian Ocean, and the west-

ern part of the South Pacific, and the associated time se-

ries is trendlike, although the trend signal is weaker than

during the DJF season. The significant role of radiative

forcing to the seasonal prediction is also seen in the land

surface temperature predictability using the same model

(Jia et al. 2015), suggesting that seasonal climate pre-

diction is a joint initial-boundary value problem.

The ENSO-related leading predictable storm-track

component is dynamically consistent with the leading

FIG. 14. (a) The spatial structure of the leading predictable component (color shading) that maximized the average

predictability time of storm tracks in the hindcasts for the DJF season. The black contour denotes the climatological

storm tracks (in hPa). Also shown are the 1st (dots), 50th (solid), and 99th (dashed) percentile values of 6-hourly SLP

in the composite El Niño years (red) and La Niña years (blue) for (b) observation and (c) model along the cross
section line with maximum storm-track predictable signals [the thick line in (a)]. Note that the hindcasts shown here
were initialized on 1 December of the composite years.
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predictable component of the 300-hPa zonal wind dur-

ing both DJF and JAS. For example, the equatorward

jet shift in the DJF predictable mode is accompanied by

a similar storm-track shift in the North Pacific, while the

jet weakening is associated with the storm reduction in

themid and high latitudes of NorthAmerica; in JAS, the

jet weakening has a storm reduction in the zone between

the subtropical and polar front jets in the South Pacific.

The fraction of global variance explained by each pre-

dictable component for both seasons is generally lower

than about 10%; however, the predictable components can

explain a substantially large amount of the variance over

broad geographic regions. For example, the leading

predictable component of storm tracks in DJF explains

as much as 35% of the variance over much of North

America.

The FLOR model was able to retrospectively predict

the meteorological variable extreme changes associated

with ENSO over the region with the maximum pre-

dictable storm-track signals in North America (section

4d). During La Niña (El Niño) years, enhanced (re-
duced) storm tracks correspond to increased (decreased)

FIG. 15. The 1st (dots), 50th (solid), and 99th (dashed) percentile values of (top) 6-hourly 2-m air temperature,

(middle) 10-m wind speed, and (bottom) daily precipitation in the composite El Niño years (red) and La Niña years
(blue) for (left) observation and (right) model in the cross section line with maximum storm-track predictable signals
(the heavy line in the upper panel of Fig. 14). Note the hindcasts shown here were initialized on 1 December of the

composite years.
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anticyclones and cyclones, which lead to a broader
(narrower) distribution width of SLP, that is, larger
(smaller) 99th percentile values and smaller (larger) first
percentile values. The changes in distribution width of
SLP tend to skew to the anticyclone extremes in both the
ERA-Interim reanalysis and model hindcasts. Conse-
quently, the shape of the probability density of T2m
changes so as to skew toward cold temperature ex-
tremes, since an extreme cold event is generally linked to
an extreme anticyclone. The model also predicts co-
herent shifts in the statistics of extremes of 10-m wind
speed, daily precipitation extremes, and rainy day ratio
changes associated with ENSO. Hence, as it has been
able to do in the tropics when focusing on tropical cy-
clones (Vecchi et al. 2014), this high-resolution model is

capable of providing higher-order statistical information

related to extremes, thus enriching the seasonal forecast

products for the research community and decision

makers beyond the seasonal mean.

The analyzed seasonal predictability of extratropical

storm tracks may be subject to the forecast model and

the initialization methodology used. Further improve-

ments in predictive skill of extratropical storm tracks are

expected when the seasonal prediction system directly

uses FLOR as the data assimilation model and/or the

model bias is reduced.
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