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Differential operators derived from the explicit or implicit solution of a diffusion
equation are widely used for modelling background-error correlations in geophys-
ical applications of variational data assimilation. Key theoretical results underpin-
ning the diffusion method are reviewed. Solutions to the isotropic diffusion prob-
lem on both the spherical space S

2 and the d-dimensional Euclidean space R
d are

considered first. In R
d the correlation functions implied by explicit diffusion are

approximately Gaussian, whereas those implied by implicit diffusion belong to the
larger class of Matérn functions which contains the Gaussian function as a limit-
ing case. The Daley length-scale, defined as D =

√
−d/∇2c(r)

∣∣
r=0

where ∇2 is the

d-dimensional Laplacian operator and r = |r| is Euclidean distance, is used as a stan-
dard parameter for comparing the different isotropic functions c(r). Diffusion on S

2

is shown to be well approximated by diffusion on R
2 for length-scales of interest.

As a result, fundamental parameters that define the correlation model on S
2 can be

specified using more convenient expressions available on R
2.

Anisotropic Gaussian or Matérn correlation functions on R
d can be represented

by a diffusion operator furnished with a symmetric and positive-definite diffusion
tensor. For anisotropic functions c(r), the tensor D = −(∇∇Tc(r)|r=0

)−1
where ∇ is

the d-dimensional gradient operator, is a natural generalization of the (square of) the
Daley length-scale for characterizing the spatial scales of the function. Relationships
between this tensor, which we call the Daley tensor, and the diffusion tensor of
the explicit and implicit diffusion operators are established. Methods to estimate
the elements of the local Daley tensor from a sample of simulated background
errors are presented and compared in an idealized experiment with spatially varying
covariance parameters. Since the number of independent parameters needed to
specify the local diffusion tensor is of the order of the total number of grid points
N, sampling errors are inherently much smaller than those involved in the order N2

estimation problem of the full correlation function. While the correlation models
presented in this paper are general, the discussion is slanted to their application to
background-error correlation modelling in ocean data assimilation. Copyright c©
2012 Royal Meteorological Society
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1. Introduction

Various methods have been proposed for modelling
background-error correlations in geophysical applications
of variational data assimilation (VDA) (see Bannister,
2008, for example, for a thorough review of methods
used in atmospheric VDA). In ocean VDA, background-
error correlation models based on the diffusion equation
are popular. The method has its origins in the work of
Derber and Rosati (1989), who proposed the use of an
iterative Laplacian grid-point filter in order to approximate a
Gaussian correlation operator. Egbert et al. (1994) described
a close variant of the algorithm in which the Laplacian
grid-point filter could be interpreted as a pseudo-time-
step integration of a diffusion equation with an explicit
scheme. Weaver and Courtier (2001) (hereafter WC01)
described the algorithm in more detail and proposed various
extensions to account for more general correlation functions
than the quasi-Gaussian of the original Derber and Rosati
(1989) algorithm. Correlation models based on explicit
diffusion methods have been used in various VDA systems
in oceanography (Weaver et al., 2003; Di Lorenzo et al.,
2007; Muccino et al., 2008; Daget et al., 2009; Kurapov et al.,
2009; Moore et al., 2011), meteorology (Bennett et al. 1996),
and atmospheric chemistry (Geer et al., 2006; Elbern et al.,
2010).

An explicit diffusion scheme is appealing because of its
simplicity, but can be expensive if many iterations are
required to keep the scheme numerically stable. This can
occur when the local diffusion scale is ‘large’ relative to the
local grid size. To keep the explicit scheme affordable, the
correlation length-scales must be bounded even if statistics
or physical considerations suggest that larger values would
be more appropriate. This limitation can be overcome by
reformulating the diffusion model using an implicit scheme
which has the advantage of being unconditionally stable.

One-dimensional (1D) implicit diffusion operators have
been used for representing temporal and vertical correlation
functions (Bennett et al., 1997; Chua and Bennett, 2001;
Ngodock, 2005) and products of 1D implicit diffusion
operators have been used for constructing two-dimensional
(2D) and three-dimensional (3D) correlation models (Chua
and Bennett, 2001; Zaron et al., 2009). The correlation
kernels associated with the 1D implicit diffusion operator
belong to the family of Mth-order autoregressive (AR)
functions where M is the number of implicit iterations
(Mirouze and Weaver, 2010; hereafter MW10). As discussed
by MW10, the 1D implicit diffusion operator is closely linked
to the recursive filter (Lorenc, 1992; Hayden and Purser,
1995), which has been developed extensively in meteorology
for constructing correlation models in multiple dimensions
(Wu et al., 2002; Purser et al., 2003a, 2003b; Liu et al.,
2007). The recursive filter has also been employed in ocean
data assimilation systems (Martin et al., 2007; Dobricic and
Pinardi, 2008; Liu et al., 2009).

The 1D implicit diffusion approach for constructing
2D and 3D correlation models can be convenient for
computational reasons, but has limitations. For example,
with few iterations, the product of 1D implicit diffusion
operators produces a well-known spurious anisotropic
response (Purser et al., 2003a). Unphysical features can
also appear near complex boundaries, such as coastlines
or islands in an ocean model, where correlation functions
cannot always be reasonably represented by a product of

separable functions of the model’s coordinates. Correlation
models based on 2D or 3D implicit diffusion operators
can overcome these limitations but are more difficult
to implement since they involve the solution of a large
linear system (matrices of dimension O(106 × 106) or
larger in VDA). Some progress in the development of
this approach has been made by Weaver and Ricci (2004)
and Massart et al.(2012), who used sparse matrix methods
to solve a 2D implicit diffusion problem directly, and by
Carrier and Ngodock (2010) and S. Gratton (2011, personal
communication), who used iterative methods based on
conjugate gradient or multi-grid to approximate the solution
of a 2D or 3D implicit diffusion problem.

Multidimensional implicit diffusion correlation operators
can be interpreted in terms of smoothing norm splines,
which were introduced to atmospheric data assimilation by
Wahba and Wendelberger (1982) and Wahba (1982), and
discussed within an oceanographic context by McIntosh
(1990). In the norm spline approach, the background term
of the cost function in VDA is formulated in terms of a linear
combination of weighted derivative operators that penalize
explicitly the amplitude and curvature of the solution. When
the weighting coefficients are given by binomial coefficients,
the inverse of the background-error correlation operator
implied by the norm spline can be expressed as the inverse of
an implicit diffusion operator. The direct penalty approach
was popular in some of the early studies of four-dimensional
VDA (Thacker, 1988; Sheinbaum and Anderson, 1990)
but generally leads to a poorly conditioned minimization
problem (Lorenc et al., 2000). Effective preconditioning
techniques for VDA require access to the background-
error covariance operator itself. An interesting exception is
the recent study of Yaremchuk et al. (2011), who propose
a variational formulation in which the inverse of the
background-error covariance is modelled directly using the
inverse of a low-order (two-iteration) 3D implicit diffusion
operator. No apparent conditioning problems were reported
in their examples from an ocean VDA system.

The present paper has a dual purpose: first, to provide a
review of the diffusion equation as a basis for constructing
anisotropic and inhomogeneous correlation models for data
assimilation; and second, to illustrate how fundamental
parameters that control spatial smoothness properties of
these models can be estimated using ensemble methods.
Section 2 brings together key results from data assimilation
and geostatistics on the isotropic diffusion problem.
Diffusion is considered both on the sphere and in the
d-dimensional Euclidean space. Analytical expressions for
the isotropic correlation functions implied by appropriately
normalized explicit and implicit diffusion in these spaces
are presented and compared. The Daley length-scale is
used as a standard parameter for comparing the different
functions, and expressions relating it to the parameters of
the diffusion-model are established.

The results from section 2 provide the foundation for
building anisotropic correlation models with the diffusion
equation. This is discussed in sections 3 and 4. The Daley
tensor is introduced, which is defined as the negative
inverse of the tensor of second derivatives of the correlation
function evaluated at zero distance (the Hessian tensor).
The Daley tensor is an anisotropic generalization of the
Daley length-scale. Expressions relating the Daley tensor
to the diffusion tensor of the diffusion models are given.
Section 4 discusses techniques for estimating the Daley
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tensor from statistics of a sample of simulated errors
such as those that would be available from an ensemble
data assimilation system. Idealized experiments are then
presented to compare the effectiveness of two of the
estimation techniques. Conclusions are given in section
5. Appendix A provides a derivation of the relationship
between the Daley and diffusion tensors for the correlation
functions represented by the implicit diffusion equation in
R

2. Appendix B provides a derivation of the key formulae
for estimating the Daley tensor.

2. Isotropic diffusion

Coordinate systems of global atmospheric and ocean models
refer to the spherical-shell geometry of the atmosphere and
ocean. From a mathematical perspective, this leads naturally
to consideration of 2D ‘horizontal’ correlation functions on
the spherical space S

2. The product of a 2D correlation
function on S

2 and a 1D correlation function on the
bounded subset of the Euclidean space R

1 is commonly
used to construct 3D correlation functions on the spherical-
shell subspace of R

3 that defines the model domain.
This approach of separating the horizontal and vertical
correlation functions is usually justified by the fact that the
global atmospheric and ocean circulations are characterized
by scales that are much larger in the horizontal direction
(along geopotential surfaces) than in the vertical direction
(perpendicular to geopotential surfaces). In the remainder of
this section, the correlation functions that can be represented
by isotropic diffusion on S

2 and the general Euclidean space
R

d are described. Table 1 provides a brief description of the
main symbols used in this section.

2.1. Explicit diffusion on S
2

Consider the 2D diffusion equation applied to the scalar
field η(λ, φ, s):

∂η

∂s
− κ∇2η = 0, (1)

where κ > 0 is a diffusion coefficient, and

∇2 = 1

a2 cos φ

∂

∂φ

(
cos φ

∂

∂φ

)
+ 1

a2 cos2 φ

∂2

∂λ2

is the Laplacian operator in geographical coordinates
(λ, φ), λ denoting longitude (0 ≤ λ ≤ 2π), φ latitude
(−π/2 ≤ φ ≤ π/2), and a the radius of the sphere (the
Earth’s radius in our case). In the context of this paper, s is
to be interpreted as a dimensionless pseudo-time coordinate.
The diffusion coefficient then has physical units of length
squared. The solution of Eq. (1) on S

2 can be interpreted as
a covariance operator (e.g. see WC01). Let

η(λ, φ, 0) = γ s η̃(λ, φ) (2)

denote the initial condition, where γ s is a normalization
constant. The solution at some s > 0 can be expressed as the
integral operator Cs : η̃ �→ η(s),

η(λ, φ, s) =
∫

S2
cs(θ) η̃(λ′, φ′) a2 cos φ′ dλ′ dφ′, (3)

Table 1. A list of the main generic symbols used in section 2. The
specification of the superscripts α and β is summarized in the bottom table.
A quantity in R

d is supplemented with a subscript d if it depends explicitly
on the dimension of the space; otherwise it is omitted.

Symbol Description

Cα , Cβ Correlation operators on R
d and S

2

Cα(x, x′) General correlation function on R
d

x Vector of Cartesian coordinates
cα

d (r) Isotropic correlation function on R
d

r Euclidean distance
ĉ α

d (x̂) Fourier transform of cα
d(r)

x̂ Vector of spectral wave numbers
cβ(θ) Isotropic correlation function on S

2

θ Angular separation

c β
n Legendre coefficients for cβ(θ)

n Total wave number
Dα , Dβ Daley length-scale of cα

d(r) and cβ(θ)
γ α

d , γ β Normalization constants on R
d and S

2

Superscript Description

α g Regular diffusion on R
d

w Implicit diffusion on R
d

β s Regular diffusion on S
2

h Implicit diffusion on S
2

where cs(θ) is an isotropic function that depends on the
angular separation θ , 0 ≤ θ ≤ π , between points (λ, φ) and
(λ′, φ′) on the sphere:

cos θ = cos φ cos φ′ cos (λ−λ′) + sin φ sin φ′. (4)

The normalization constant γ s in Eq. (2) has been
absorbed into the function cs(θ) which has the specific
form

cs(θ) =
∞∑

n=0

cs
n P0

n(cos θ), (5)

where

cs
n = γ s

4πa2

√
2n + 1 exp

(
−κs

a2
n(n + 1)

)
, (6)

n being the total wave number, and P0
n(cos θ) the Legendre

polynomials, normalized such that P0
n(1) = √

2n + 1, fol-
lowing the usual convention in meteorology (Courtier et al.,
1998). All isotropic covariance functions on S

2 can be
expressed, as in Eq. (5), as an expansion in terms of the
Legendre polynomials (Weber and Talkner, 1993; Theorem
2.11 of Gaspari and Cohn, 1999). They are positive-definite
functions on S

2 if the spectral coefficients are positive, which
is clearly the case for all of the coefficients cs

n. Equation (3)
is thus a valid covariance operator on S

2.
The covariance function is readily transformed into a cor-

relation function (cs(0) = 1) by defining the normalization
constant as

γ s = 4πa2

( ∞∑
n=0

(2n + 1) exp
(
−κs

a2
n(n + 1)

))−1

. (7)

The fundamental parameter controlling the shape of the
correlation function is the product κs in Eq. (6). To define
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the length-scale of cs(θ), we use the standard definition
from Daley (1991, p. 110), the geometrical interpretation of
which is discussed by Pannekoucke et al. (2008). For cs(θ),
the Daley length-scale reads

Ds =
√

− 2

∇2cs|θ=0

= a

√
2∑∞

n=0 n(n + 1)
√

2n + 1 cs
n

. (8)

Equations (6) and (8) provide a relationship between
κs and Ds that allows us to control the correlation shape
(length-scale).

Now consider a discretized version of Eq. (1) in which the
first-order derivative is approximated using a forward-Euler
(explicit) scheme. This yields

η(λ, φ, sm) = η(λ, φ, sm−1) + κ �s∇2η(λ, φ, sm−1), (9)

where m is a positive integer, �s = sm − sm−1 is the step
size, and ∇2 is understood to be the Laplacian operator
in discretized form. For convenience, we can assume that
sm = m so that the step size �s = 1. This parameter can thus
be ignored hereafter without loss of generality. Repeated
applications of Eq. (9) on the interval 0 < m ≤ M leads to
the linear operator

η(λ, φ, M) = (
1 + κ∇2

)M
η(λ, φ, 0), (10)

where η(λ, φ, 0) is given by Eq. (2). For clarity we let

κ = L2, (11)

to emphasize that the coefficient is positive and can be
interpreted as the square of a scale parameter.

The key idea is that, on a numerical grid, the effect of
the integral correlation operator (3) on an arbitrary scalar
field η̃(λ, φ) can be approximated by applying a discretized
differential operator (10). This is the essence of the original
Derber and Rosati (1989) scheme. The parameter κs of the
correlation function cs(θ) can be related to the parameters
M and κ of Eq. (10) by noticing that κs = κM = ML2.
In practice, it is customary to prescribe the Daley length-
scale (Ds). Given Ds, the product ML2 can be determined
by a non-trivial inversion of Eq. (8). This has been done
by trial and error for the illustrative examples presented
in this paper. To determine M and L2 from the product
ML2, we have an additional requirement that M must be
sufficiently large (L2 sufficiently small) in order to maintain
the numerical stability of the explicit scheme. Provided M
is not too ‘large’, applying the discretized operator (10)
is an efficient way of evaluating the integral operator (3).
What defines an acceptable value of M will depend on the
application.

To represent a larger family of correlation functions than
Eqs (5) and (6), WC01 proposed a generalized diffusion
model in which the scaled Laplacian in Eq. (1) is replaced
by a linear combination of powers of scaled Laplacians:

−κ∇2 �→
P∑

p=1

κp(−∇2)p, (12)

where the diffusion coefficients κp > 0 can be related to a
general set of scale parameters Lp via the equation

κp = L
2p
p , p = 1, . . . , P. (13)

The resulting correlation functions have the same basic
form as Eq. (5) but with the cs

n given by

cs
n = γ s

4πa2

√
2n + 1 exp

−
P∑

p=1

κps

a2p
(n(n + 1))p

, (14)

and the appropriate modification to γ s to produce a unit-
amplitude function. Equation (6) is a special case of Eq.
(14) with P = 1. Unlike the standard diffusion model,
the generalized diffusion model can be used to represent
correlation functions that change sign, as illustrated in
Figure 1 of WC01. This is an appealing feature if there is
compelling evidence of negative correlations in the error
fields, although representing them with powers of Laplacian
operators would clearly increase the cost of the correlation
model.

2.2. Explicit diffusion on R
d

Now consider the diffusion equation (1) on the d-
dimensional Euclidean space R

d, where ∇2 now rep-
resents the Laplacian operator in Cartesian coordinates
x = (x1, . . . , xd). While our particular interest concerns the
spaces R

1, R
2 and R

3, it is easier to consider them as special
cases of the general diffusion problem in R

d. The initial
condition of the diffusion problem can be written as

η(x, 0) = γ
g
d η̃(x), (15)

where γ
g
d > 0 is a normalization constant and η̃(x) is

assumed to be bounded at infinity. Using the Fourier
transform (FT), the solution at ‘time’ s > 0 can be written
as a convolution operator Cg

d : η̃ �→ η(s):

η(x, s) =
∫

Rd
C(x, x′) η̃(x′) dx′, (16)

where C(x, x′) = cg(r) is the Gaussian function

cg(r) = γ
g
d

(4πκs)d/2
e−r2/4κs, (17)

r = |x − x′| being the Euclidean distance between points x
and x′ on R

d. Setting the normalization factor to

γ
g
d = (4πκs)d/2 (18)

ensures that cg(0) = 1.
The Daley length-scale for any twice differentiable,

isotropic correlation function c(r) in d dimensions is given
by

D =
√

d

tr
(−∇∇Tc

∣∣
r=0

) =
√

− d

∇2c
∣∣
r=0

, (19)

where ∇∇T is the outer product of the d-dimensional gradi-
ent operator ∇ = (∂/∂x1 . . . ∂/∂xd)T and its transpose. The

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 242–260 (2013)



246 A. T. Weaver and I. Mirouze

0 1000 2000 3000 4000
−0.2

0

0.2

0.4

0.6

0.8

(a)

(b)

Distance (km)

C
or

re
la

tio
n

M=3
M=4
M=10
Gaussian

100 101 102
10−8

10−6

10−4

10−2

Wave number (n)

V
ar

ia
nc

e

M=3

M=4
M=10
Gaussian

Figure 1. The grid-point values ch(r(θ)) (upper panel) and the variance-
power spectra

√
2n + 1 ch

n (lower panel) of sample correlation functions
generated with Eqs (5) and (30) using different values of M. The scale
parameters have been set to L = 353 km, L = 250 km and L = 125 km
for the functions corresponding to M = 3 (dashed-dotted curves), M = 4
(dashed curves) and M = 10 (dotted curves), respectively, in order to
achieve a common Daley length-scale of Dh = 500 km (see Eq. (8)). The
Gaussian correlation function cg(r(θ)) (Eq. (24)) with Dg = 500 km is
shown for reference (thick solid curves). The correlation functions in the
upper panel are plotted as a function of chordal distance (Eq. (23)). A
spectral truncation at n = 500 has been used. The lower panel is plotted on
a log-log scale.

quantity within the trace operator is the correlation Hessian
tensor (Chorti and Hristopulos, 2008). The Hessian tensor
plays a fundamental role in characterizing the anisotropic
correlation functions described later in this paper (sections 3
and 4). For the d-dimensional Gaussian function, the Daley
length-scale is

Dg=√2κs. (20)

In terms of Dg, the normalization factor is

γ
g
d=(2π)d/2(Dg)d. (21)

As before, we can approximate Eq. (16) with a differential
operator based on a discretization of the diffusion equation
using an M-step explicit scheme. In terms of the parameters
M and L2 of the explicit diffusion operator, Eqs (20) and
(21) become

Dg =
√

2ML (22)

and γ
g
d = (4Mπ)d/2Ld.

Let us consider now the interpretation of the Gaus-
sian function on S

2. First, since S
2 is embedded in R

3, a
valid isotropic correlation function on S

2 can always be
constructed from a valid isotropic correlation function in
R

3 by restricting x = (x1, x2, x3) and x′ = (x′
1, x′

2, x′
3) to be

points on the sphere. Expressing these points in geographi-
cal coordinates x = (a cos φ cos λ, a cos φ cos λ, a sin φ) and
x′ = (a cos φ′ cos λ′, a cos φ′ sin λ′, a sin φ′) leads to the
chordal distance measure

r = r(θ) = a
√

2(1 − cos θ), 0 ≤ θ ≤ π , (23)

where cos θ is given by Eq. (4). The Gaussian correlation
function on R

3 confined to the subspace S
2 is thus

cg(r(θ)) = e−(r(θ))2/2(Dg)2 = e−a2(1−cos θ)/(Dg)2
.

From Eq. (23) we notice that r depends only on cos θ ,
or alternatively θ , and that cos θ = 1 − r2/2a2, where
0 ≤ r ≤ 2a. We also recall that all isotropic correlation
functions on S

2 can be expressed as a Legendre expansion
that depends only on cos θ (Eq. (5)). It is then possible
to represent any isotropic correlation function on S

2 as a
function of either r or θ .∗

In particular, consider the representation of the Gaussian
on S

2 in terms of the Legendre polynomials. As shown in
WC01:

cg(θ) =
∞∑

n=0

cg
n P0

n(cos θ)′, (24)

where

cg
n = γ̃ g

√
2n + 1

In+1/2(ω)

I1/2(ω)

and γ̃ g = e−ω sinh(ω)

ω
,

In+1/2(ω) denoting the modified Bessel function of fractional
order n + 1/2, andω = (a/Dg)2. In view of the results on R

d,
one might expect that the correlation kernel cs(θ) implied by
diffusion on S

2 (Eq. (5)) is similar to the Gaussian correlation
function (24) on S

2. Indeed, for a given length-scale Dg, it
is possible to find a corresponding parameter κs in Eq. (6)
such that the difference between cs(θ) and cg(θ) is ‘small’
(Roberts and Ursell, 1960; Hartman and Watson, 1974).
In particular, consider the scales of interest in atmospheric
and ocean data assimilation for which ω 
 1. Matching the
n = 0 coefficients cs

0 and c
g
0 of the Legendre polynomials and

noting that

γ̃ g ≈ (Dg)2

2a2

for large ω, we obtain the approximation to the
normalization factor

γ s ≈ 2π(Dg)2. (25)

∗Isotropic correlation functions on S
2 will be written explicitly as a

function of r(θ) whenever the context requires an interpretation in
terms of chordal distance.
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Now matching the n = 1 coefficients cs
1 and c

g
1 and using

(25) leads to the approximation

κs ≈ (Dg)2

2
. (26)

WC01 illustrate the excellent agreement between cs(θ)
and cg(θ), particularly for the large scales, for a given length-
scale Dg and with κs approximated according to Eq. (26)
(see their Figure A1).

Equations (25) and (26) are none other than those derived
earlier for the diffusion problem in R

2 (cf. Eqs (21) and
(20) with d = 2). In other words, for length-scales small
compared to the radius of the Earth, we obtain the somewhat
intuitive result that diffusion on the sphere (the Cs operator)
is well approximated by diffusion on the 2D Cartesian plane
(the Cg

2 operator). For calibrating the correlation model, it
is then possible to employ the simple expressions (26) and
(25) for the length-scale and normalization factor in place
of the more complicated expressions (8) and (7).

There are two main drawbacks with the generalized
explicit diffusion model of WC01. First, the correlation
functions that can be represented by the model have limited
flexibility in the spectral domain, especially at high wave
numbers where their decay rates are at least as fast as that of
the Gaussian function. In data assimilation, this can result
in excessive smoothing of small-scale features in the analysis
(Purser et al., 2003b). Second, the explicit scheme is subject
to a stability criterion that depends on the ratio of the
length-scale and grid size, raised to the power of 2P. As a
result, many iterations may be required when the length-
scale is large compared with the grid resolution. With the
variable coefficient and anisotropic versions of the model
discussed later, the computational cost of the algorithm can
be especially high. A diffusion model based on an implicit
formulation can overcome these limitations, as described
next.

2.3. Implicit diffusion on S
2

Consider again the diffusion equation (1) but this time
discretized using a backward-Euler (implicit) scheme:

η(λ, φ, sm) = η(λ, φ, sm−1) + κ �s∇2η(λ, φ, sm), (27)

where, as in Eq. (10), we can assume sm = m and hence
�s = 1, and interpret κ as the square of a scale parameter
(Eq. (11)). Rearranging Eq. (27) and applying it repeatedly
on the interval 0 < m ≤ M leads to the ‘reverse-time’ or
inverse diffusion operator(

1 − κ∇2
)M

η(λ, φ, M) = η(λ, φ, 0). (28)

Equation (28) can be interpreted as a roughening operator
as opposed to the diffusion operator itself, which is a
smoothing operator.

Following Eq. (2), we define the initial condition as

η(λ, φ, 0) = γ h η̃(λ, φ) (29)

where γ h is a normalization constant. Weaver and
Ricci (2004) show that the differential operator
(Ch)−1 : η(M) �→ η̃ is the inverse of a correlation opera-
tor Ch : η̃ �→ η(M), where the latter is given by an integral

equation of the form (3), with isotropic correlation function
ch(θ) of the Legendre form (5) as its kernel. The spectral
coefficients of ch(θ) are strictly positive and given by

ch
n = γ h

4πa2

√
2n + 1

(
1 + L2

a2
n(n + 1)

)−M

. (30)

The normalization factor is

γ h = 4πa2

( ∞∑
n=0

(2n + 1)

(
1 + L2

a2
n(n + 1)

)−M
)−1

(31)

and the Daley length-scale is given by Eq. (8) with cs
n replaced

by ch
n .

In the explicit diffusion model, the only free parameter
was the product κsM = ML2 which controls the spatial
scale of the quasi-Gaussian correlation kernel (Eq. (6) with
s = sM). The implicit diffusion model, on the other hand,
allows for greater control of the shape characteristics of the
associated correlation kernels since both L2 and M are free
parameters. Numerically, this extra flexibility is reflected
by the important property of unconditional stability of the
implicit scheme. In the limiting case of M → ∞, with ML2

held fixed, the spectral coefficients (30) reduce to those of
the quasi-Gaussian solution which is the only correlation
function that can be represented by solving the diffusion
equation explicitly.

The upper panel in Figure 1 displays correlation functions
ch(r(θ)) for different values of M and a constant Daley
length-scale (500 km). The values are plotted as a function of
chordal distance r(θ). The Gaussian function cg(r(θ)) is also
shown for reference. Increasing the value of M decreases the
‘fatness’ of the tail of ch(r(θ)), with the Gaussian providing
the upper limit as M → ∞. The total variance of ch(r(θ)) and
cg(r(θ)) is given by their value at the origin, which is equal
to one. The coefficients

√
2n + 1 ch

n and
√

2n + 1 c
g
n give the

contribution of each wave number n to the total variance
of ch(r(θ)) and cg(r(θ)), respectively, and thus define the
variance-power spectra. The lower panel in Figure 1 shows
a log-log plot of this spectra as a function of n. Here we
see that the increased fatness in correlation shape for low
values of M is associated with higher variance and a reduced
damping rate in the small scales, slightly less variance in
the intermediate scales, and increased variance in the large
scales.

As with the generalized diffusion equation, a linear
combination of powers of scaled Laplacian operators (12)
can be introduced in Eq. (28) to yield a larger family
of correlation functions, but at extra cost. The spectral
coefficients of this larger family are given by

ch
n = γ h

4πa2

√
2n + 1

1 +
P∑

p=1

(
L2

p

a2

)p

(n(n + 1))p

−M

,

(32)

with γ h modified accordingly so that ch(0) = 1. The
smoothing spline functions introduced by Wahba (1982)
correspond to the special case of Eqs (5) and (32) for which
M = 2.

Increasing the degree P of the polynomial of the Laplacian
leads to correlation functions that oscillate about the zero
axis. This is illustrated in the upper panel of Figure 2,
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Figure 2. As Figure 1 but for sample correlation functions generated with
Eqs (5) and (32) with a fixed value of M = 4 and different values of P. The
scale parameters have been adjusted to yield a common Daley length-scale
of 500 km: L1 = 250 km with P = 1 (dashed-dotted curves), L1 = 0 and
L2 = 206 km with P = 2 (dashed curves), L1 = L2 = 0, L3 = 209 km with
P = 3 (dotted curves).

where the generalized ch(r(θ)) are displayed with different
values of P but a fixed value of M = 4. The amplitude
of the negative lobes increases with increasing value of P.
In spectral space, the negative lobes are associated with a
decrease in variance in the large scales and an increase in
variance in the intermediate scales. Increasing the value P
also leads to a steepening of the decay rate of the variance in
the smaller scales.

A straightforward variant of Eq. (32) that can be used to
enhance the oscillations while maintaining a gradual spectral
decay rate at high wave numbers is

ch
n = γ h

4πa2

√
2n + 1

1 +
P∑

p=1

ρp

(
L2

p

a2

)p

(n(n + 1))p

−M

,

(33)

where ρp is a dimensionless coefficient that can take on both
negative and positive values. This is equivalent to redefining
the diffusion coefficients (13) as κp = ρpL2p. Equation (33)
yields positive coefficients by restricting M to be even.
Examples are shown in Figure 3 for the case P = 2 and
M = 2, and a single scale parameter L1 = L2 = L. Here
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Figure 3. As Figure 1 but for sample correlation functions generated with
Eqs (5) and (33) with a fixed value of M = 2, P = 2 and ρ2 = 1, and
different values of ρ1. A single scale parameter L1 = L2 = L has been used
and adjusted to yield a common Daley length-scale of 500 km: L = 308 km
with ρ1 = −1 (dashed-dotted curves), L = 326 km with ρ1 = −1.5 (dashed
curves), and L = 340 km with ρ1 = −1.8 (dotted curves).

ρ2 has been set to one and negative values have been
used for ρ1. Increasing the magnitude of ρ1 results in
a significant increase in the amplitude of the oscillations
and a much sharper spectral peak at intermediate scales.
Notice that by setting ρ1 = 2 we recover the non-oscillatory
correlation function governed by Eq. (30) with M = 4,
which is displayed in Figure 1 (dashed curves).

On a numerical grid, Ch can be approximated by a
discrete operator that solves the linear system (28)–(29)
for a given right-hand side η̃(λ, φ). We refer to Ch as an
implicit diffusion correlation operator. Although the cost of
each iteration of an implicit diffusion operator will generally
increase relative to that of the explicit scheme, the total cost
of the implicit algorithm can easily decrease through the
possibility of performing significantly fewer iterations.

2.4. Implicit diffusion on R
d

The starting point is the following general fractional
differential operator (Cw

d )−1 : ψ �→ ψ̃ (Whittle, 1954, 1963;
Guttorp and Gneiting, 2006):

(γ w
d )−1

(
1 − L2∇2

)ν+d/2
ψ(x) = ψ̃(x), (34)
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where ψ̃(x) ∈ R
d is assumed to be bounded at infinity, ν > 0

is a smoothness parameter, and γ w
d > 0 is a normalization

constant that depends on the dimension of the space. The
FT of Eq. (34) gives the relation

ψ̂(x̂) = ĉ w
d (r̂) ̂̃ψ(x̂), (35)

where ψ̂(x̂) and ̂̃ψ(x̂) denote the FTs of ψ(x) and ψ̃(x),
respectively, and

ĉ w
d (r̂) = γ w

d(
1 + L2 r̂2

)ν+d/2
, (36)

r̂ = |x̂| being the norm of the vector of spectral wave
numbers associated with x (see also Yaglom, 1987, p. 363,
Eq. (4.130); Stein, 1999, p. 49, Eq. (32); or Gneiting et al.,
2009, p. 16, Eq. (20)). Setting

γ w
d = 2dπd/2 �(ν + d/2)

�(ν)
Ld, (37)

where �(ν) denotes the Gamma function, and applying the
inverse FT to Eq. (35) leads to an integral solution of the
general form (16), where C(x, x′) = cw(r) is a unit-amplitude
isotropic function given by

cw(r) = 21−ν

�(ν)

( r

L

)ν

Kν

( r

L

)
, (38)

Kν(r/L) denoting the modified Bessel function of the second
kind of order ν, and r = |x − x′|. Since ĉ w

d (r̂) is strictly
positive, cw(r) is a valid correlation function in R

d (Bochner’s
theorem; see Theorem 2.10 in Gaspari and Cohn, 1999).
Notice that the power spectrum ĉ w

d (r̂) depends on d but the
correlation function itself cw(r) is independent of d.

Equation (38) is a class of correlation function well known
in the geostatistical literature as the Whittle–Matérn or
Matérn family (Gneiting, 1999; Stein, 1999; Guttorp and
Gneiting, 2006). The link between this correlation family
and the fractional differential operator (34) is attributed
to Whittle (1954, 1963). Of particular interest here is the
subclass of Matérn functions that correspond to (positive)
integer values of the parameter M = ν + d/2. For this
subclass, the inverse correlation operator (Cw

d )−1 has a
greatly simplified representation for numerical applications
and can be interpreted as an M-step implicitly formulated
diffusion operator (MW10), where (cf. Eqs (15) and (16))

ψ̃(x) �→ η(x, 0) = γ w
d η̃(x),

ψ(x) �→ η(x, M).

The correlation kernels and their associated FT are given
by

cw
d(r) = 21−M+d/2

�(M − d/2)

( r

L

)M−d/2
KM−d/2

( r

L

)
, (39)

and

ĉ w
d (r̂) = γ w

d(
1 + L2 r̂2

)M .

Equation (39) yields valid correlation functions if
M > d − 1 (ν > 0; Guttorp and Gneiting, 2006). Notice

also that in contrast to the full Matérn family, the implicit-
diffusion kernels depend on d (which has been made explicit
by adding the subscript d in cw

d (r)) but their normalized
power spectrum ĉ w

d (r̂)/ ĉ w
d (0) is independent of d. For odd

values of d, Eq. (39) reduces to a polynomial of order
M − (d + 1)/2 times an exponential function; this is the
well-known class of AR functions.

Of relevance here are the spaces R
1, R

2 and R
3. The

implicit-diffusion kernels on these spaces can be written
explicitly as

cw
1(r) =

M−1∑
j=0

βj,M

( r

L

)j
e−r/L, (40)

cw
2(r) = 22−M

(M−2)!

( r

L

)M−1
KM−1

( r

L

)
, (41)

and cw
3(r) =

M−2∑
j=0

βj,M−1

( r

L

)j
e−r/L, (42)

where

βj,M = 2j(M − 1)! (2M − j − 2)!

j! (M − j − 1)! (2M − 2)!
.

From Eq. (37), the expressions for the normalization
constants become

γ w
1 = 22M−1[(M − 1)!]2

(2M − 2)!
L,

γ w
2 = 4π(M − 1) L2 (43)

and γ w
3 = 22M−1π[(M − 2)!]2(M − 1)

(2M − 4)!
L3.

Using Eq. (19), the Daley length-scale of the implicit
diffusion kernels in R

d can be evaluated as

Dw
d = √

2M − d − 2 L. (44)

Equation (44) is derived in MW10 for d = 1 and in
Appendix A for d = 2. The generalization to d > 2 follows
by noting that the correlation functions associated with
odd d all have the form (40) with M �→ M − (d − 1)/2,
while those functions with even d all have the form (41)
with M �→ M − (d − 2)/2. Equation (44) imposes further
restrictions on the choice of M where now we require

M >

{
(d + 1)/2 if d odd,
(d + 2)/2 if d even.

In R
2, for example, we require M > 2. Finally, even values

of M are more convenient than odd values of M since they
greatly simplify the derivation of a ‘square-root’ factor of
the diffusion operator, which is important for estimating
normalization factors and for preconditioning in variational
assimilation (WC01).

The explicit diffusion kernels are the limiting case of
the implicit diffusion kernels as M → ∞ with Dw

d fixed.
This is easily deduced from Eqs (36), (37) and
(44) where, for M = ν + d/2 large, Dw

d �→ Dg (Eq.
(22)), γ w

d �→ γ
g
d (Eq. (21)), and ĉ w

d (r̂) �→ γ
g
d ĉ g(r̂), where

ĉ g(r̂) = exp (−r̂2(Dg)2/2) is the FT of the d-dimensional
Gaussian function (17). Based on the similarity of the
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Figure 4. A comparison of the correlation functions ch(r(θ)) (Eqs (5) and
(30)), cw

2(r(θ)) (Eq. (41)) and cw
3(r(θ)) (Eq. (42)) for M = 4. The four sets of

curves correspond to Daley length-scales of 500 km, 1000 km, 2000 km and
4000 km (curves from left to right, respectively). Correlations are plotted
as a function of chordal distance. A spectral truncation at n = 500 has been
used for ch(r(θ)).

explicit diffusion kernels on S
2 and R

2 when (Dg/a)2  1,
one would expect similar agreement between the implicit
diffusion kernels on S

2 and R
2 when (Dw

2 /a)2  1.
Figure 4 shows the correlation function ch(r(θ)) for

M = 4 plotted as a function of chordal distance r(θ) for
four different Daley length-scales Dh (solid curves). For
comparison, the correlation functions cw

2(r(θ)) for M = 4
are also shown (dashed curves). The Daley scales Dw

2

have been set to Dh and then the corresponding L have
been computed from Eq. (44). As expected, the curves
are virtually indistinguishable for length-scales of primary
interest (<1000 km). Only when the length-scale exceeds
2000 km do noticeable differences appear, and these mainly
occur in the tail of the function. In other words, the
differential operator (Ch)−1 on S

2 can be well approximated
locally by the differential operator (Cw

2 )−1 acting on the
tangent plane R

2. The simple relations (43) and (44) can
then be used in place of the spectral expansions (31) and
(8) to provide a good approximation of the normalization
factor and length-scale. This is convenient especially with
grid-point ocean models where spectral expansions cannot
be readily computed due to the presence of complex land
boundaries.

It is important to stress, however, that cw
2(r(θ)) itself is not a

valid correlation function on S
2. A valid correlation function

on S
2 from the Matérn family is the AR function cw

3(r(θ)). For
example, Gaspari and Cohn (1999) discuss the second-order
AR (SOAR) function on S

2 (see their Eq. (2.36)). Figure 4
shows the fourth-order AR function for different length-
scales (dashed-dotted curves). The differences between
cw

3(r(θ)) and ch(r(θ)) are larger than those between cw
2(r(θ))

and ch(r(θ)) but still quite small for length-scales less than
1000 km.

A more general set of correlation functions on R
d can be

modelled using a linear combination of implicit diffusion
operators or a generalized implicit diffusion operator
constructed from the inverse of a polynomial of Laplacian
operators raised to the power of M (MW10; Yaremchuk
and Smith, 2011; or see Purser et al., 2003b, for related
approaches involving the recursive filter). The correlation

functions generated by the first approach are described by a
linear combination of Matérn functions where the weighting
coefficients for each function are specified such that the
combined function is positive definite. Gregori et al. (2008)
provide general conditions on the model parameters for
achieving this. MW10 provide an example in R

1 in which
two SOAR functions are combined to produce a correlation
function with negative lobes.

The second approach is analogous to the one outlined
in section 2.3 for the problem on S

2 (Eqs (32) and (33)).
Hristopulos (2003), Hristopulos and Elogne (2007) and
Yaremchuk and Smith (2011) have studied extensively
the special case M = 1 and P = 2 on R

d for which the
parameter settings κ1 = ρ L2 and κ2 = L4 with ρ < 0
and satisfying ρ2 < 4 yield a family of positive-definite,
oscillatory functions such as those illustrated in Figure 3 on
S

2. With all of these approaches, however, the advantages
of increasing the flexibility in the correlation model have to
be carefully measured against the increase in computational
cost that results from the need to solve additional or more
complicated large linear systems, and the difficulty of having
to estimate additional parameters.

3. Anisotropic diffusion

Isotropic correlation models are commonly used in data
assimilation algorithms because of their simplicity and
computational convenience. There is no reason, however,
to expect actual background-error correlations to be
isotropic in geophysical fluids such as the ocean. On the
contrary, one would expect them to be strongly anisotropic,
particularly near coastlines, bathymetry, or ocean fronts.
General anisotropic correlation models allow for preferential
stretching or shrinking of the correlation functions along
arbitrary directions. With a diffusion-based correlation
model this can be done using a diffusion tensor, as
outlined in this section. To fix the concepts and definitions,
we focus mainly on the homogeneous and anisotropic
problem. Methods for estimating the parameters of a
general inhomogeneous and anisotropic diffusion model
are described in section 4.

3.1. Homogeneity and anisotropy

Consider the 2D diffusion equation on R
2,

∂η

∂s
− ∇ · κ∇η = 0, (45)

where κ ∈ R
2 × R

2 is an anisotropic, but constant diffusion
tensor

κ =
(

κxx κxy

κyx κyy

)
(46)

which is assumed to be symmetric (κyx = κxy) and positive
definite (κxxκyy > κ2

xy) so that κ is guaranteed to be
invertible. The diagonal terms of the tensor determine the
strength of the diffusion in the coordinate directions x and
y, while the off-diagonal elements allow the principal axes
of the diffusion to be rotated relative to x and y.

The solution of Eq. (45) is a straightforward extension
of the solution to the isotropic problem (Pannekoucke
and Massart, 2008; Pannekoucke, 2009). Given the initial
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condition η(x, y, 0) = γ
g
2 η̃(x, y), the solution can be

expressed as Eq. (16) (with d = 2) where the kernel is
given by the Gaussian function

cg( r̃ ) = γ
g
2

4π s|κ |1/2
e−̃r 2/4s, (47)

|κ | denoting the determinant of κ , and r̃ the non-
dimensional distance measure

r̃ =
√

(x − x′)T κ−1 (x − x′), (48)

with x = (x, y)T. From this definition, κ can also be
interpreted as the aspect tensor of the Gaussian function
(47) (Purser et al., 2003b). The elements of κ have physical
units of length squared. Setting

γ
g
2 = 4π s |κ |1/2

ensures that cg(0) = 1.
For a homogeneous and at least twice-differentiable

correlation function, we can define the Hessian tensor
(Swerling, 1962; Hristopulos, 2002; Chorti and Hristopulos,
2008), which for the 2D Gaussian function is

Hg = − ∇ ∇Tcg
∣∣̃
r=0

, (49)

where ∇∇T is the outer product of the 2D gradient operator
∇ = (∂/∂x ∂/∂y)T and its transpose. The correlation
Hessian tensor is of interest here since it is a quantity that
can be estimated from sample statistics of background error
(see section 4). Following the basic procedure described in
Appendix A, it is straightforward to verify that

Hg = 1

2s
κ−1. (50)

In the isotropic case, κ = κ I and hence Hg = (Dg)−2I
where (Dg)2 = 2κs is the square of the Daley length-scale.
The inverse of the tensor (49)

Dg := (Hg)−1 (51)

can thus be considered as a generalization of the (square of
the) Daley length-scale to the anisotropic case. We will thus
refer to this quantity as a Daley tensor.

For the 3D diffusion equation, the diffusion tensor
κ ∈ R

3 × R
3 contains six independent elements:

κ =
 κxx κxy κxz

κyx κyy κyz

κzx κzy κzz

 (52)

where κyx = κxy, κzx = κxz and κzy = κyz. In direct analogy
with the 2D problem, the integral solution involves a 3D
Gaussian kernel with aspect tensor given by (52), and
normalization constant given by γ

g
3 = (4π s)3/2|κ |1/2 (cf. Eq.

(18)). The relationships (49)–(51) hold for the 3D problem
with ∇ now interpreted as the 3D gradient operator.

To approximate a 2D or 3D anisotropic and homogeneous
Gaussian correlation operator numerically, we can solve Eq.
(45) with an explicit scheme,

η(x, M) = γ
g
d (1 + ∇ · κ∇)M η̃(x),

where from Eqs (50) and (51)

κ = 1

2M
Dg, (53)

and the operator 1 + ∇ · κ∇ is understood to be in discrete
form. If the non-diagonal tensor elements of κ are zero,
which can always be achieved by rotating the model
coordinates to be aligned with the principal axes of the
ellipse or ellipsoid implied by Eq. (48) (see, for example,
Xu, 2005), then the 2D or 3D Gaussian operator can be
replaced by a product of 1D Gaussian operators acting
independently along each direction x, y and z. Ignoring
boundary conditions, each 1D Gaussian operator can in
turn be approximated by a 1D diffusion operator discretized
using an M-step explicit scheme.

Extending these results to the d-dimensional implicit case,
we can define a set of anisotropic and homogeneous Matérn
correlation operators, with ν = M − d/2, as solutions to the
following linear system (cf. Eq. (34)):

(γ w
d )−1(1 − ∇ · κ∇)Mη(x, M) = η̃(x),

where

γ w
d = 2dπd/2 �(M)

�(M − d/2)
|κ |1/2. (54)

The associated correlation functions are given by

cw
d( r̃ ) = 21−M+d/2

�(M−d/2)
r̃ M−d/2 KM−d/2( r̃ ) , (55)

with r̃ defined by Eq. (48). As for the Gaussian, we can derive
the following relationships between the Hessian tensor of
cw

d( r̃ ) and diffusion tensor κ (see Appendix A):

Hw
d = − ∇ ∇Tcw

d

∣∣̃
r=0

,

Dw
d := (

Hw
d

)−1
,

κ = 1

2M − d − 2
Dw

d .

 (56)

The solution described in section 2.4 corresponds to the
isotropic case κ = L2 I with L2 = (Dw

d )2/(2M − d − 2).

3.2. Inhomogeneity and anisotropy

Analytical expressions for the correlation kernels of the
anisotropic diffusion operators in R

d with spatially varying
diffusion tensors κ(x) are not known in general. Paciorek
and Schervish (2006) describe a family of anisotropic and
inhomogeneous correlation functions that generalize the
standard isotropic and homogeneous Gaussian and Matérn
family. These correlation functions have the form

Cg
(

x, x′) = β
(

x, x′) exp
(−̃r 2/2

)
(57)

for the Gaussian-like function, and

Cw
d(x, x′) = β

(
x, x′)

× 21−M+d/2

�(M−d/2)
r̃ M−d/2KM−d/2( r̃ ) (58)

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 242–260 (2013)



252 A. T. Weaver and I. Mirouze

for the Matérn-like functions (ν = M − d/2) where

r̃ =
√

(x − x′)T

(
A(x) + A(x′)

2

)−1

(x − x′)

and

β
(

x, x′) = |A(x) |1/4 |A(
x′) |1/4

×
∣∣∣∣1

2

(
A(x) + A

(
x′))∣∣∣∣−1/2

,

A(x) and A
(

x′) denoting the (symmetric and positive
definite) aspect tensors at points x and x′, respectively.
Equations (57) and (58) with A(x) ≈ 2s κ(x) for the
Gaussian-like function and A(x) ≈ κ(x) for the Matérn-
like functions can be considered as the approximate kernels
of the explicit and implicit forms of the anisotropic diffusion
operator when the diffusion tensors κ(x) vary slowly
and smoothly in space. This is illustrated in MW10 who
provide examples in 1D comparing a two-step implicit-
diffusion kernel and an inhomogeneous version of the SOAR
function for different spatial distributions of the length-scale
parameter.

4. Specifying the anisotropic tensor

The elements κxz, κzx, κyz and κzy of the 3D diffusion
tensor account for anisotropy between the horizontal
and vertical directions. The importance of these terms
compared to the diagonal terms is related to the choice
of vertical coordinate in the correlation model. In an
ocean model, for example, a natural vertical coordinate
is a hybrid coordinate involving a standard geopotential (z)
coordinate in unstratified regions such as the mixed layer, an
isopycnal (ρ) coordinate in strongly stratified regions, and
a terrain-following (s) coordinate near the ocean bottom,
the latter being particularly important in shallow coastal
regions (Haidvogel and Beckmann, 1999). In this hybrid
coordinate system, the flow is more naturally decoupled into
‘horizontal’ and ‘vertical’ processes. If the same coordinate
system is adopted for a background-error correlation model
then it is reasonable to assume, at least from a physical
viewpoint, that the non-diagonal tensor elements κxz, κzx,
κyz and κzy, and possibly κxy and κyx, are small and can
be neglected. However, anisotropy in background-error
correlations can also arise from the assimilation of data,
especially when the data coverage is irregular. In general,
the relative importance of the diagonal and non-diagonal
terms of the tensor can only be determined after a thorough
diagnostic study involving, for instance, the direct estimation
of the elements of the Daley tensor.

Many ocean models used for global- and basin-
scale circulation studies employ a z coordinate. WC01
illustrated how a standard isopycnal diffusion tensor
used to parametrize mixing of unresolved processes
in a z-coordinate ocean model could also be used
to transform the coordinates of a background-error
correlation model formulated as an explicit 3D diffusion
operator. An analogous coordinate transformation was
proposed within the framework of Optimal Interpolation
by Balmaseda et al. (2008). While the isopycnal correlation
model has appealing features, the implementation based on
the explicit scheme proposed by WC01 is too expensive

for routine applications since a prohibitively high number
of iterations is required to maintain numerical stability
in regions of strong isopycnal gradients. Moreover, the
specification of the Daley length-scales must be performed in
isopycnal space, which makes estimating them more difficult
in a z-coordinate model. In the remainder of this section
we explore alternative methods for defining anisotropic and
inhomogeneous correlations, which involve estimating the
Daley tensor directly in the model coordinate system.

4.1. Ensemble estimation methods

Given an estimate of the Daley tensor, the anisotropic
response of the explicit diffusion operator can be calibrated
using Eq. (53), which relates the Daley tensor of the
Gaussian function to the diffusion tensor. Alternatively, the
anisotropic response of the implicit diffusion operator can be
calibrated using the third expression in (56), which relates
the Daley tensors of the ν = M − d/2 Matérn functions
to the diffusion tensor. Several authors have proposed
methods for estimating the Daley tensor using perturbations
from an ensemble of model states (Belo Pereira and Berre,
2006; Pannekoucke and Massart, 2008; Pannekoucke, 2009;
Sato et al., 2009). The basic procedure is outlined below.
Two of the methods will then be compared in idealized
experiments using the diffusion equation. For simplicity, we
focus on the 2D case.

Assume that an ensemble of Ne model states is available
and that the distribution of these states about their mean is
a good approximation of the true probability distribution
function (pdf) of the model-state (background) error ε. In
variational assimilation, this pdf is assumed to be Gaussian
and thus fully described by its mean (E[ε(x)] = 0) and
covariance function

B
(

x, x′) = E
[
ε(x) ε

(
x′)] , (59)

where E[ · ] denotes the expectation operator. The associated
correlation function C(x, x′) can be determined from the
factorization

C
(

x, x′) = B
(

x, x′)
σ(x) σ (x′)

, (60)

where

σ (x) =
√

E
[
ε(x)2

]
is the standard deviation of ε at x. Assuming that C(x, x′) is
at least twice differentiable then we can define the symmetric
tensor

T
(

x, x′) = −∇ ∇′ TC
(

x,x′) ,

where ∇ = (∂/∂x ∂/∂y)T and ∇′ = (∂/∂x′ ∂/∂y′)T. The
local correlation Hessian tensor is the value of T at x = x′.
Assume further that, in a neighbourhood of x, C

(
x,x′)

can be well approximated by a homogeneous function
C̃(r) where r = x−x′ = (x − x′, y − y′)T = (̃x, ỹ)T. Letting
∇̃ = (∂/∂ x̃ ∂/∂ ỹ )T, then we can define

T̃(r) = −∇̃ ∇̃TC̃(r) , (61)

such that T̃(0) ≈ T(x, x) (see Appendix B).
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Let H(x) = T(x, x) denote the local correlation Hessian
tensor at x. Pannekoucke and Massart (2008) and
Pannekoucke (2009) assume a Gaussian form for the
correlation function and then invert this function at each
point x to estimate H(x) in terms of sample correlation
estimates with neighbouring points. Belo Pereira and
Berre (2006) propose an alternative method for estimating
H(x), which does not require a prior assumption on the
functional form of the correlations. Their method leads to
the expression

Ĥ(x) = ∇ε(x) (∇ε(x))T − ∇σ̂ (x) (∇σ̂ (x))T

(̂σ (x))2 , (62)

where

∇ε(x) (∇ε(x))T = 1

Ne − 1

Ne∑
l=1

∇εl(x) (∇εl(x))T

and (̂σ (x))2 = (ε(x))2 = 1
Ne−1

∑Ne
l=1 (εl(x))2 .

The gradient terms can be estimated numerically using
finite differences. When the correlation function is strictly
homogeneous, Ĥ is equivalent to the constant tensor
T̃(0) (Eq. (61)) if the sampling operator is replaced by
the expectation operator (see Appendix B). Note that
the derivation of Eq. (62) is based on the rather general
assumptions of differentiability and local homogeneity of
the correlation function. A specific assumption about the
actual form of the correlation function is implied only
when Ĥ is employed with a particular diffusion operator
(explicit or M-step implicit scheme). Hristopulos (2002) and
Chorti and Hristopulos (2008) describe a related approach in
geostatistics which involves estimating the aspect ratios and
orientation angle required to transform the local covariance
Hessian tensor into isotropic form.

Multidimensional Gaussian correlation operators can be
applied efficiently using a combination of 1D recursive
filters or 1D diffusion operators (Purser et al., 2003a, 2003b;
MW10). For anisotropic Gaussian operators, the so-called
triad (hexad) algorithm (Purser et al., 2003b; Purser, 2005)
allows one to determine from the aspect tensor of the 2D
(3D) Gaussian function, the three (six) generalized grid-
lines along which the 1D filters should be applied. Within
that framework, various flow-dependent formulations of the
aspect tensor have been proposed (De Pondeca et al., 2006;
Liu et al., 2007, 2009; Sato et al., 2009). Of particular interest
here is the hybrid formulation of Sato et al. (2009) where
the inverse of the aspect tensor of the Gaussian function
is defined as a linear combination of a ‘conventional term’
based on a quasi-isotropic, static formulation (A−1

iso ) and
an ‘ensemble term’ formed from the sample covariance
of the gradient of the ensemble-generated perturbations,
normalized by the sample variance of the perturbations:

Â
−1

(x) = αA−1
iso (x) + βH̃(x) (63)

where

H̃(x) = ∇ε(x) (∇ε(x))T

(̂σ (x))2 , (64)

and α and β are weighting coefficients. Sato et al. (2009)
provide a heuristic derivation of Eqs (63)–(64). They are
equivalent to Eq. (62) when α = 0 and β = 1, and when
the standard deviations are constant. As with the hybrid
covariance formulations that involve combining static and
ensemble-based expressions of the full covariance matrix
(Wang et al., 2008), the static term in the aspect tensor is
intended to give the estimate more robustness especially
when the ensemble size is small, although accounting for it
requires extra parameters that must be tuned empirically.

Finally, with small ensemble sizes it can be advantageous
to apply a local spatial averaging or filtering operator to
the estimated variances and covariances in order to reduce
the effects of sampling error (see, for example, Berre and
Desroziers (2010) for a thorough review of recent work in
this area). Letting F denote a particular filtering operator
then the expressions for the filtered estimate of the inverse
tensor are given by Eqs (62) and (63)–(64) with

∇ε(x) (∇ε(x))T �→ F
(

∇ε(x) (∇ε(x))T
)

,

(̂σ (x))2 �→ F
(
(̂σ (x))2) ,

and σ̂ (x) �→
√

F
(
(̂σ (x))2).

4.2. Numerical experiments

In this section we perform idealized experiments to evaluate
and compare the effectiveness of Eq. (62) and Eqs (63)–(64)
for estimating the parameters of an anisotropic tensor. For
simplicity, we focus on the 2D anisotropic diffusion problem
and the solution algorithm based on the explicit scheme.
Furthermore, for the tensor estimated using Eqs (63)–(64),
only the special case α = 0 and β = 1 is considered.

The experimental design is as follows. First, we define the
‘true’ covariance matrix of the problem as

B = � �1/2 L �1/2 �,

where L is the M-step explicit diffusion operator
(1 + ∇ · κ∇)M discretized using a standard centred finite-
difference scheme on a uniform grid, � = �1/2�1/2 is
a diagonal matrix of normalization factors, and � is a
diagonal matrix of standard deviations σ . With constant
parameters and ignoring the influence of boundaries, B
defines a Gaussian covariance matrix.

Next, a sample of Ne spatially uncorrelated random
vectors ε̂ l, l = 1, . . . , Ne, are produced on the grid, where the
distribution of each ε̂ l is taken to be Gaussian with E[ε̂ l ] = 0
and E[ε̂ l ε̂ l

T] = I. Each vector ε̂ l is then transformed into a
new vector ε l such that E[ε l ε

T
l ] = B. This is done using the

‘square-root’ of the B-operator,

ε l = � �1/2 L1/2 ε̂ l,

where L = L1/2L1/2, the exponent 1/2 implying M/2
iterations of the explicit diffusion operator (with M taken to
be even). The sample covariance matrix constructed from
the ensemble of ε l vectors provides an estimate of the true
covariance matrix:

B ≈ 1

Ne − 1

Ne∑
l=1

ε′
lε

′
l
T, (65)

where ε′
l = ε l − 1

Ne

∑Ne
k=1 εk.
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Our interest here is not to try to reconstruct the full
covariance matrix from (65) but rather, with the help of
Eq. (62) or Eq. (64), to try to reconstruct the anisotropic
tensor used in L to generate the ε l. Indeed, the sampling
errors resulting from estimating the local anisotropic tensor
can be expected to be much smaller than those resulting
from estimating the full covariance matrix. For the 2D
problem, the tensor estimation requires, at each grid point,
sample estimates of the standard deviation of ε and of the
three independent tensor elements involving the gradient
of ε, i.e. a total of 4N elements where N is the total
number of grid points. This is much smaller than the
(N2 + N)/2 independent elements required to determine
the full covariance matrix.

The numerical experiments are performed in a
square domain on a 2D grid xi,j = (xi, yj) where xi =
i�x, i = 1, . . . ,

√
N, and yj = j�y, j = 1, . . . ,

√
N. Here,

�x = �y = 1 unit and N = 200 × 60, and thus the effective
size of the B matrix is (1.2 × 104) × (1.2 × 104). Neumann
boundary conditions are employed at the solid walls located
at the domain edges. As a result, the implied correlation
function near the boundary is slightly modified from the
target Gaussian (MW10).

At each grid point xi,j, the ‘true’ diffusion tensor κ for L
is defined according to (cf. Eq. (53))

κ i,j = 1

2M
Di,j, (66)

where Di,j is the local Daley tensor which is formulated as

Di,j = Ri,jDi,jR
−1
i,j ,

Di,j being a diagonal matrix and Ri,j a rotation matrix (R−1
i,j =

RT
i,j). The elements (Dxx)i,j, (Dyy)i,j and (Dxy)i,j = (Dyx)i,j of

Di,j are thus determined by the diagonal elements (Dxx)i,j

and (Dyy)i,j of Di,j and by the rotation angle θi,j of Ri,j. For
the experiments described here, θi,j = θ is constant, while
the parameters (Dxx)i,j and (Dyy)i,j are specified as a simple
oscillatory function of the spatial coordinates xi,j:

(Dxx)i,j = A1f (xi,j) + B1,

(Dyy)i,j = −A1f (xi,j) + B1,

where

f (xi,j) = cos

(
2πxi

X

)
cos

(
2πyj

Y

)
,

A1 = 1
2

(
Dmax − Dmin

)
, B1 = 1

2

(
Dmax + Dmin

)
, and

X = Y = 20. Similarly, the variances are specified as

σ 2
i,j = A2f (xi,j) + B2,

where A2 = 1
2

(
σ 2

max − σ 2
min

)
and B2 = 1

2

(
σ 2

max + σ 2
min

)
.

Experiments are performed with different values of the
parameters θ , Dmin, Dmax, σ 2

min and σ 2
max (see Table 2).

The normalization factors γi,j of the diagonal matrix �
are approximately given by the expression

γi,j ≈ 2π |Di,j|1/2. (67)

This approximation was used by Pannekoucke and
Massart (2008), for example, and is reasonable if the

diffusion tensor varies in space on a scale much larger
than the local correlation scale and with a proper treatment
of the boundary conditions (MW10). The factors can be
estimated to a higher accuracy using more refined analytical
approximations (Purser et al., 2003b; Purser, 2008a, 2008b;
MW10; Yaremchuk and Carrier, 2012) or randomization
methods (WC01; Yaremchuk and Carrier, 2012). They can
also be computed exactly using the δ-function method
(WC01; MW10). In this idealized study, we employ the
exact normalization method in order to avoid introducing
a bias in the ensemble perturbations and thus complicating
the interpretation of the results. In practice, however,
the exact computation is generally not affordable and
hence the representation of covariances using the diffusion
equation will also be affected by approximations in the
normalization factors. The errors that can result from
using the approximate expression (67) are illustrated in
the experiments below.

The estimation of the tensor via the statistical relationships
(62) and (64) is achieved using centred finite-differences.
Estimates of the first derivatives of the error and its
standard deviation produce values at the interface of the
grid cells, i.e. at the half-integer points (i + 1/2, j) for the
x-component and (i, j + 1/2) for the y-component. The
sample variance of these quantities is computed directly at
these points to evaluate the numerator in the expressions
for the diagonal elements of the tensor. The off-diagonal
elements involve estimates of the cross-product of the
x- and y-components of the derivatives. This requires
interpolation of one of the component derivatives to the
point where the other component derivative is defined. To
estimate the cross-product at (i + 1/2, j), the x-component
derivative that is defined there is multiplied with an estimate
of the y-component derivative obtained by averaging
its values from the four surrounding points (i, j + 1/2),
(i + 1, j + 1/2), (i, j − 1/2) and (i + 1, j − 1/2), and vice-
versa for estimating the cross-product at (i, j + 1/2). To
compute the denominator in the expressions for the tensor
elements, the sample variance of the error is interpolated
from (i, j) points to (i + 1/2, j) or (i, j + 1/2) points. In
order to use the estimated tensor elements in the diffusion
equation, the elements are first averaged to the (i, j) points
and then the off-diagonal elements averaged to force
symmetry. The estimated tensor is then inverted at each
point and used with the relation (66) to define the diffusion
tensor at each point. Finally, interpolation is used to define
the values of the tensor elements at the half-integer points
(i + 1/2, j) or (i, j + 1/2) where they are required with the
centred-difference formulation of ∇ · κ∇.

Table 2 summarizes the results from sev-
eral experiments with different parameter settings
P = (θ , Dmin, Dmax, σmin, σmax). Three cases are considered.
In the first case, the principal axes of the anisotropic cor-
relations are aligned with the grid-lines, and the variance
is constant: P1 = (0, 3, 6, 1, 1). The second case extends
the first case by allowing the variances to vary in space:
P2 = (0, 3, 6, 1, 5). Finally, the third case extends the second
case by rotating the principal axes of the anisotropic corre-
lations relative to the grid-lines: P3 = (π/4, 3, 6, 1, 5). The
quality of the estimation is measured in terms of the domain-
averaged bias and root-mean-square error (RMSE) of the
estimates of the elements (Hxx, Hyy, Hxy). (The results for the
estimates of Hyx are not given since they are almost identical
to those of Hxy). For reference, the domain-averaged RMS
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Table 2. Bias and RMSE of the estimates of the correlation Hessian tensor elements (Hxx, Hyy , Hxy) using expressions (62) (Ĥ) and (64) (H̃). The second
column lists the parameter settings in the ‘true’ covariance model and the third column indicates the choice of ensemble size (Ne) and spatial filtering
scale (Navg) used in the estimation process. The RMS of the true values of (Hxx, Hyy , Hxy) are (5.3, 5.3, 0) × 10−2 when θ = 0, and (5.0, 5.0, 1.7) × 10−2

when θ = π/4.

Exp (θ , Dmin, Dmax, σmin, σmax) (Ne, Navg) Method (Hxx, Hyy , Hxy)

Bias ×10−2 RMSE ×10−2

1 (0, 3, 6, 1, 1 ) (100, 0) Ĥ (0.06, 0.20, 0.0) (1.2, 1.6, 0.46)
2 (0, 3, 6, 1, 1 ) (100, 0) H̃ (−0.01, 0.15, 0.0) (1.2, 1.6, 0.47)
3 (0, 3, 6, 1, 1 ) (10, 0) Ĥ (0.33, 0.39, 0.07) (4.6, 4.8, 2.1)
4 (0, 3, 6, 1, 1 ) (10, 0) H̃ (0.92, 0.99, 0.10) (4.9, 5.2, 2.2)
5 (0, 3, 6, 1, 5 ) (100, 0) Ĥ (−0.07, −0.22, 0.0) (1.2, 1.6, 0.47)
6 (0, 3, 6, 1, 5 ) (100, 0) H̃ (1.2, 1.1, −0.01) (2.5, 2.8, 1.2)
7 (π /4, 3, 6, 1, 5) (100, 0) Ĥ (−0.22, −0.40, 0.01) (1.4, 1.7, 0.85)
8 (π /4, 3, 6, 1, 5) (100, 0) H̃ (1.1, 0.88, 0.0) (2.6, 2.7, 1.4)
9 (π /4, 3, 6, 1, 5) (10, 0) Ĥ (0.17, 0.10, −0.02) (4.0, 4.5, 2.3)
10 (π /4, 3, 6, 1, 5) (10, 1) Ĥ (0.33, 0.28, 1.9) (3.3, 3.6, 1.9)
11 (π /4, 3, 6, 1, 5) (10, 3) Ĥ (0.51, 0.45, −0.36) (2.0, 2.2, 2.8)
12 (π /4, 3, 6, 1, 5) (100, 1) Ĥ (0.02, 0.14, −0.07) (1.2, 1.4, 0.86)
13 (π /4, 3, 6, 1, 5) (100, 3) Ĥ (0.31, 0.19, −0.32) (0.98, 1.0, 1.1)

of the true values of (Hxx, Hyy, Hxy) are (5.3, 5.3, 0) × 10−2

when θ = 0, and (5.0, 5.0, 1.7) × 10−2 when θ = π/4.
With P1, Ĥ (Eq. (62)) and H̃ (Eq. (64)) produce similar

results with a relatively large ensemble (Ne = 100) as one
might expect since the true variances are constant (Exps 1–2
in Table 2). Interestingly, however, Ĥ is noticeably more
accurate than H̃ with a small ensemble size (Ne = 10; Exps
3–4). When the variances are spatially varying (P2 and P3),
the errors for H̃ become significantly larger, whereas those
for Ĥ are similar to the constant variance case (Exps 5-8).
This illustrates the importance of the second term in Eq.
(62).

Local spatial filtering is beneficial for reducing the RMSE
especially when the ensemble size is small (Ne = 10; Exps
9–11). With the raw ensemble estimates (Navg = 0), the
RMSE is comparable to the RMS of the true signal
(Exps 3–4, 9). Here, a very simple filtering procedure has
been used in which the estimate at xi,j is obtained by
averaging estimates at points within Navg grid points of
(i, j) where in the examples considered Navg = 1 or 3. This
increases the size of the averaging sample at each point to
Neff = (2Navg + 1)2 × Ne, except near the boundary where
fewer points are used in the averaging process. While
increasing the value of Navg reduces the RMSE, it does so at
the expense of increasing the bias in the estimates. With a
larger ensemble (Ne = 100), good results are obtained when
a ‘light’ filtering is applied (Navg = 1), with both the bias
and RMSE being reduced relative to the no filtering case
for all but the off-diagonal elements which are very slightly
degraded (Exps 7, 12–13). The filter in this example is very
simple and the choice of filtering scale is somewhat ad hoc.
More sophisticated (objective) filters could be expected to
perform better as discussed by Raynaud et al. (2009) and
Berre and Desroziers (2010), and recently by Raynaud and
Pannekoucke (2012) within the context of filters based on
diffusion.

The correlations obtained using the ‘true’ tensor with
the parameter settings P3 are illustrated at selected points
in Figure 5(a). Figure 5(b) shows the corresponding
correlations estimated directly from the sample covariance
matrix (Eq. (65)) with a 100-member ensemble. Sampling
errors are large and manifest themselves as spurious
non-local correlations. In contrast, the diffusion-based

correlation model is localized by construction. The
correlations resulting from estimating the diffusion tensor
from the 100-member ensemble are shown in Figure 5(c).
The estimated correlations are in good agreement with the
true correlations and notably capture prominent anisotropic
features such as the rotation of the principal axes relative
to the grid lines. The third correlation pattern from the
left boundary is computed with respect to a point that is
located midway between maximum and minimum values
of Dxx, Dyy and σ 2 where the spatial derivative of these
parameters is maximum and thus where one would expect
the local homogeneous assumption to be least valid. At this
location the estimated errors are largest and up to 20%
(Figure 5d). The breakdown of homogeneity also affects
the accuracy of the approximate expression (67) for the
normalization factors. This can be seen in Figure 5 parts
(e) and (f), which show the estimated correlations and
associated error when approximate normalization factors
from Eq. (67) are used in place of the exact factors that
were used to produce Figure 5(c). The amplitude of the
error now reaches 50% for the third correlation pattern (the
colour bar is truncated at 30%) and is noticeably larger
for the other correlation patterns as well. Finally, Figure 5
parts (g) and (h) show the correlations and associated
errors obtained using the tensor estimated with Ne = 10
combined with local spatial averaging. While the correlations
are not as accurate as those with Ne = 100, they are still
reasonable approximations. The maximum error for the
third correlation pattern is approximately 25% and reaches
36% when the approximate normalization factors are used
(not shown).

5. Summary and conclusions

Accounting for general background-error correlations
effectively and efficiently is a considerable challenge in
geophysical data assimilation. In VDA, general background-
error correlation models can be defined using differential
operators constructed numerically from the explicit or
implicit solution of a diffusion equation. Theoretical
results underpinning the diffusion approach to correlation
modelling were reviewed in this paper. First, the isotropic,
constant-coefficient diffusion problem was considered both
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Figure 5. (a) The ‘true’ correlations at selected points in the domain. (b) The correlations estimated directly from the sample covariance matrix (Eq. (65))
with 100 ensemble members. The correlations produced using the diffusion equation with the diffusion tensor estimated with (c) 100 members, no local
spatial averaging, and exact normalization; (e) 100 members, no local spatial averaging, and normalization factors approximated using Eq. (67); and (g)
10 members, local spatial averaging with a 7 × 7 grid-point window, and exact normalization. The differences between the correlations obtained using
the estimated diffusion tensor and the true correlations are illustrated in panels (d), (f) and (h).

on the sphere and in the d-dimensional Euclidean space R
d.

The covariance functions (kernels) of the integral solution
operators implied by explicit and implicit diffusion in
these spaces were identified. The solutions on the sphere
were shown to be well approximated by the solutions
on R

2 for scales of interest in ocean and meteorological
data assimilation. Expressions relating the diffusion model
parameters to the parameters that control the length-scale
and amplitude (normalization factor) of the covariance
function were also given. These results provided the basis
for constructing more general correlation operators via
anisotropic diffusion, which was the focus of the second part
of the paper.

Anisotropic diffusion was considered in R
d. The

anisotropic diffusion problem is characterized by a diffusion
tensor that controls the direction of the covariance response,
as well as its scale and amplitude. Solutions to the

anisotropic, constant-tensor diffusion problem are integral
operators that involve covariance kernels with the same
basic form as those of the isotropic, constant-coefficient
problem. With the explicit scheme, these functions are
approximately Gaussian, whereas with the implicit scheme
they are members of the larger Matérn family (e.g., in R

3 they
are AR functions). For the anisotropic functions, distance is
defined by a norm whose metric is given by the inverse of
the diffusion tensor. This metric can in turn be related to the
correlation Hessian tensor which is defined by the tensor of
second-derivatives of the correlation function evaluated at
zero separation. The importance of this tensor is that it can
be related to quantities that can be estimated directly from
ensemble statistics. The inverse of the correlation Hessian
tensor was referred to as the Daley tensor in this paper
in view of its close connection to the conventional Daley
length-scale in the isotropic case.
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Ensemble data assimilation methods can be used to
provide flow-dependent estimates of the background-
error covariances. In realistic applications, the number of
independent background-error covariances that need to be
estimated is huge and the number of ensemble members
that can be affordably run is very limited. Methods are then
required to synthesize the ensemble-covariance information
to avoid manipulating huge covariance matrices, on the one
hand, and to reduce the effects of sampling error, on the
other.

The correlation information in the ensemble can be
synthesized using a diffusion model with an anisotropic and
spatially varying tensor.† Procedures for estimating the local
Hessian tensor (which in turn can be related to the diffusion
tensor) from ensemble perturbations were described and
compared in idealized numerical experiments. The method
of Belo Pereira and Berre (2006), which assumes local
homogeneity of the correlation function but accounts for
spatially varying variances, was shown to work particularly
well, and is well suited for the automated computations
required in a cycled ensemble data assimilation system.
Local spatial filtering of the tensor was critical with small
ensemble sizes (order 10), but the raw ensemble with 100
members gave good results without spatial filtering in our
example. In general, a carefully designed objective filter
would be beneficial in order to maximize the signal-to-
noise ratio of the ensemble-estimates of the tensor elements
in a similar way that it has been shown to be beneficial
to the ensemble estimation of background-error variances
(Raynaud et al., 2009; Berre and Desroziers, 2010).

In realistic applications, the numerical stability condition
associated with explicit diffusion schemes can severely
limit their computational efficiency. In particular, many
iterations are likely to be needed with general anisotropic and
inhomogeneous diffusion models that employ ensemble-
estimated tensors. Implicit diffusion schemes are more
robust but require solving a large linear system for which
efficient methods that are well-suited to massively parallel
machines are required. This important practical aspect of
the problem was not addressed in this paper and should be
the subject of further research.

Acknowledgements

Financial support from the French National Research
Agency (ANR) COSINUS programme (VODA project,
no. ANR-08-COSI-016), the RTRA STAE foundation
(ADTAO project), the European Framework Programme
7 (COMBINE project, GA 226520), and the French
LEFE-ASSIM programme is gratefully acknowledged. This
work benefited from discussions with Loik Berre, Serge
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Appendix A

The Daley tensor of the 2D implicit-diffusion kernels

In this appendix we show that the expression for the Daley
tensor of the 2D implicit-diffusion kernels cw

2( r̃ ) (Eq. (55)
with d = 2) is related to the diffusion tensor by Eq. (56).
For clarity of notation the subscript and superscript of
cw

2( r̃ ) will be dropped hereafter. The relationships between
the Daley and diffusion tensors for the implicit-diffusion
kernels in higher dimensions and for the Gaussian function
(Eqs (49)–(51)) are straightforward to verify following the
basic procedure outlined here.

From the chain rule, the three independent elements of
the outer product in the first equation of (56) can be written
as

∂2c

∂x2
= ∂2c

∂ r̃ 2

(
∂ r̃

∂x

)2

+ ∂c

∂ r̃

(
∂2 r̃

∂x2

)
,

∂2c

∂y2
= ∂2c

∂ r̃ 2

(
∂ r̃

∂y

)2

+ ∂c

∂ r̃

(
∂2 r̃

∂y2

)
,

∂2c

∂x ∂y
= ∂2c

∂ r̃ 2

(
∂ r̃

∂x

) (
∂ r̃

∂y

)
+ ∂c

∂ r̃

(
∂2 r̃

∂x ∂y

)
.


(68)

Expressing Eq. (55) with d = 2 as

c( r̃ ) = αM r̃ M−1KM−1( r̃ ) , (69)

where αM = 22−M/(M−2)! and M > 2, and using the
following recurrence relation for the modified Bessel
functions of the second kind of integer order n (Eq. 9.6.26
of Abramowitz and Stegun, 1970),

∂Kn

∂ r̃
= − n

r̃
Kn − Kn−1,

where Kn = Kn( r̃ ), allows us to write

∂c

∂ r̃
= −αM r̃ M−1KM−2,

∂2c

∂ r̃ 2
= −αM

(
r̃ M−2KM−2 − r̃ M−1KM−3

)
.

 (70)

The inverse of the symmetric diffusion tensor (46) can be
written as

κ−1 =
(

κ−1
xx −τκ−1

xy

−τκ−1
xy κ−1

yy

)
,

where τ = 1/(µ − 1) and µ = κxxκyy/κ
2
xy. In expanded

form the nondimensional distance measure (48) then reads

r̃ 2 = κ−1
xx

(
x − x′)2 + κ−1

yy

(
y − y′)2

− 2τκ−1
xy

(
x − x′) (

y − y′) . (71)

From Eq. (71) we can derive the following relations

∂ r̃

∂x
= r̃ −1X,

∂ r̃

∂y
= r̃ −1Y ,

∂2 r̃

∂x2
= − r̃ −3X2 + r̃ −1κ−1

xx ,

∂2 r̃

∂y2
= − r̃ −3Y2 + r̃ −1κ−1

yy ,

∂2 r̃

∂x ∂y
= − r̃ −3X Y − r̃ −1τκ−1

xy ,



(72)
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where

X = κ−1
xx

(
x − x′) − τκ−1

xy

(
y − y′) ,

Y = κ−1
yy

(
y − y′) − τκ−1

xy

(
x − x′) .

Substituting Eqs (70) and (72) in Eq. (68) yields

∂2c

∂x2
= αM

(̃
r M−3KM−3 X2 − r̃ M−2KM−2 κ−1

xx

)
,

∂2c

∂y2
= αM

(̃
r M−3KM−3 Y2 − r̃ M−2KM−2 κ−1

yy

)
,

∂2c

∂x ∂y
= αM

(̃
r M−3KM−3 X Y + r̃ M−2KM−2 τκ−1

xy

)
.

Since c(0) = 1, for all allowable M, we have from Eq. (69)
the general relation

r̃ n Kn( r̃ )
∣∣∣̃
r=0

= 1

αn+1
.

Hence

∂2c

∂x2

∣∣∣∣̃
r=0

= αM

αM−2
X2

∣∣∣∣̃
r=0

− αM

αM−1
κ−1

xx

∣∣∣∣̃
r=0

, (73)

∂2c

∂y2

∣∣∣∣̃
r=0

= αM

αM−2
Y2

∣∣∣∣̃
r=0

− αM

αM−1
κ−1

yy

∣∣∣∣̃
r=0

, (74)

∂2c

∂x ∂y

∣∣∣∣̃
r=0

= αM

αM−2
X Y

∣∣∣∣̃
r=0

+ αM

αM−1
τκ−1

xy

∣∣∣∣̃
r=0

.

The first term on the right-hand side of each of the
above equations vanishes since X = Y = 0 at r̃ = 0, while
the common coefficient of the second term in each equation
is

αM

αM−1
= 1

2M − 4
.

Thus we obtain the relationship governed by (56) with
d = 2.

In the isotropic case, κxx = κyy = L2 and τκ−1
xy = 0.

Equations (73) and (74) can then be averaged and inverted
to yield the standard definition of the square of the 2D Daley
length-scale involving the Laplacian operator (Eq. (44) with
d = 2).

Appendix B

Estimating the Hessian tensor from an ensemble of
simulated errors

In this appendix we provide a derivation of Eq. (62) for
the special case of a homogeneous correlation function.
The derivation is similar to the one given in the Appendix
of Belo Pereira and Berre (2006) except for notational
changes and greater emphasis here on some of the underlying
assumptions.

The starting point is the general expression (59) for the
covariance function B

(
x, x′) of the ensemble of model-state

errors. We consider here the 2D case where x = (x, y)T

and x′ = (x′, y′)T, and assume that B
(

x, x′) is at least twice
differentiable. We can express the covariance function of

the derivatives of the ensemble errors as follows (Swerling,
1962; Daley, 1991, p. 156):

Bxx′
(

x, x′) = E

[(
∂ε(x)

∂x

) (
∂ε

(
x′)

∂x′

)]
= ∂2B

(
x, x′)

∂x ∂x′ ,

Byy′
(

x, x′) = E

[(
∂ε(x)

∂y

) (
∂ε

(
x′)

∂y′

)]
= ∂2B

(
x, x′)

∂y ∂y′ ,

Bxy′
(

x, x′) = E

[(
∂ε(x)

∂x

) (
∂ε

(
x′)

∂y′

)]
= ∂2B

(
x, x′)

∂x ∂y′ ,

Byx′
(

x, x′) = E

[(
∂ε(x)

∂y

) (
∂ε

(
x′)

∂x′

)]
= ∂2B

(
x, x′)

∂y ∂x′ .

Using Eq. (60) the derivatives on the right-hand side of the
above equations can be evaluated in terms of the standard
deviations σ(x) and correlation function C

(
x, x′). Focusing

on the first of these equations this yields

Bxx′
(

x, x′) =
(

∂σ(x)

∂x

) (
∂σ

(
x′)

∂x′

)
C

(
x, x′)

+ σ(x)

(
∂σ

(
x′)

∂x′

)(
∂C

(
x, x′)
∂x

)

+ σ
(

x′) (
∂σ(x)

∂x

)(
∂C

(
x, x′)

∂x′

)

+ σ(x) σ
(

x′) ∂2C
(

x, x′)
∂x ∂x′ .

Under the assumption of homogeneous cor-
relations, we can write C

(
x, x′) = c(r) where

r = x − x′ = (x − x′, y − y′)T (Gaspari and Cohn, 1999).
Using the chain rule, the derivatives of C with respect to
x, x′, y and y′ can be rewritten in terms of derivatives of
c with respect to x̃ = x − x′ and ỹ = y − y′. For Bxx′

(
x, x′)

this gives

Bxx′
(

x, x′) =
(

∂σ(x)

∂x

)(
∂σ

(
x′)

∂x′

)
c(r)

+ σ(x)

(
∂σ

(
x′)

∂x′

) (
∂c(r)

∂ x̃

)
− σ

(
x′) (

∂σ(x)

∂x

) (
∂c(r)

∂ x̃

)
− σ(x) σ

(
x′) ∂2c(r)

∂ x̃ 2
.

Evaluating the above equation at x = x′ (r = 0), and
noting that ∂c(r) /∂ x̃|r=0 = 0 since c(r) is maximum at
r = 0 and that c(0) = 1, yields

Bxx(x, x) =
(

∂σ(x)

∂x

)2

− (σ (x))2 ∂2c(r)

∂ x̃ 2

∣∣∣∣
r=0

,

which can be rearranged as

− ∂2c(r)

∂ x̃ 2

∣∣∣∣
r=0

= 1

σ 2

(
Bxx(x, x) −

(
∂σ

∂x

)2
)

, (75)
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where σ = σ (x). A similar analysis for the other covariance
functions yields

− ∂2c(r)

∂ ỹ 2

∣∣∣∣
r=0

= 1

σ 2

(
Byy(x, x) −

(
∂σ

∂y

)2
)

, (76)

− ∂2c(r)

∂ x̃ ∂ ỹ

∣∣∣∣
r=0

= 1

σ 2

(
Bxy(x, x) −

(
∂σ

∂x

)(
∂σ

∂y

))
, (77)

− ∂2c(r)

∂ ỹ ∂ x̃

∣∣∣∣
r=0

= 1

σ 2

(
Byx(x, x) −

(
∂σ

∂y

) (
∂σ

∂x

))
. (78)

In tensor notation, the left-hand side of Eqs (75)–(78)
is equivalent to Eq. (61) evaluated at r = 0, while the
right-hand side of the equations can be identified with the
right-hand side of Eq. (62).
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