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This article describes the implementation of an incremental first guess at an appropriate time
three-dimensional variational (3DVAR) data assimilation scheme, NEMOVAR, in the Met
Office’s operational 1/4 degree global ocean model. NEMOVAR assimilates observations of
sea-surface temperature (SST), sea-surface height (SSH), in situ temperature and salinity
profiles and sea ice concentration. The Met Office is the first centre to implement NEMOVAR
at 1/4 degree and the required developments are discussed, with particular focus on the
specification of the background-error covariances.

Background-error correlations in NEMOVAR are modelled using a diffusion operator.
The horizontal background-error correlations for temperature, salinity and sea ice
concentration are parametrized using the Rossby radius, which produces relatively short
correlation length-scales at mid to high latitudes, while a flow-dependent mixed-layer depth
parametrization is used to define the vertical length-scales for the 3D variables.

Results from a one-year reanalysis with NEMOVAR are presented and compared with
the preceding operational data assimilation scheme at the Met Office. NEMOVAR is shown
to provide significant improvements to SST, SSH and sea ice concentration fields, with the
largest improvements seen in regions of high variability such as eddy shedding and frontal
regions and the marginal ice zone. This improvement is associated with shorter correlation
length-scales in the extratropics and an improved fit to observations in NEMOVAR. Some
degradation to subsurface temperature and salinity fields where data are sparse is identified
and this will be the focus of future improvements to the system.
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1. Introduction

The Met Office’s global Forecasting Ocean Assimilation Model
(FOAM) has been run operationally since 1997. The model
produces analyses and forecasts of ocean currents, temperature,
salinity, sea-surface height (SSH) and sea ice concentration. These
products are used by the Royal Navy, commercially, for research
purposes and for initializing the Met Office’s seasonal prediction
system, the Global Seasonal forecast system (GloSea5).

The current configuration of the operational FOAM system was
implemented in early 2013. The system uses the hydrodynamic
model Nucleus for European Modelling of the Ocean (NEMO:
Madec, 2008) and the Los Alamos coupled sea ice model (CICE:
Hunke and Lipscomb, 2010). The global FOAM system is run
in the ORCA025 configuration, which is a 1/4 degree tripolar
grid developed at Mercator–Ocean. The grid resolution ranges
from 28 km at the Equator to 6 km at high latitudes. The global
configuration has 75 vertical levels, with 1 m vertical resolution
at the surface and decreasing resolution with increasing depth.

The FOAM system assimilates satellite and in situ sea-surface
temperature (SST) observations, in situ temperature and salinity
profiles, altimeter sea-level anomaly (SLA) observations and
satellite sea ice concentration data using a 24 h data assimilation
window. A detailed description of the operational FOAM system
is provided by Blockley et al. (2014).

An important component of the FOAM system is a data
assimilation scheme. Data assimilation allows the model fields
and observations to be combined to create an improved estimate
of the ocean state. Data assimilation is crucial for initializing
ocean model forecasts, understanding model deficiencies and
constraining drift in ocean-model simulations. There are various
centres producing global operational forecasts and analyses. These
centres employ a variety of data assimilation techniques. The
Australian Bluelink Ocean Data Assimilation System (BODAS)
uses an ensemble optimal interpolation system in a near-global
system (Oke et al., 2008), the French Mercator system uses a static
singular evolution extended Kalman (SEEK) filter (Brasseur et al.,
2005; Lellouche et al., 2013), the US Navy oceanographic centres
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use a multivariate three-dimensional variational data assimilation
system called NCODA 3DVAR (Cummings and Smedstad, 2013)
and the Japanese Meteorological Agency also use a multivariate
three-dimensional variational data assimilation scheme (Usui et
al., 2006).

A multivariate variational data assimilation scheme,
NEMOVAR (Mogensen et al., 2009, 2012), has recently been
implemented in the FOAM system. This replaces the Analysis
Correction (AC) data assimilation method (Martin et al., 2007).
NEMOVAR is an incremental 3DVAR First Guess at Appropriate
Time (FGAT) data assimilation scheme for the dynamical ocean
model in NEMO and is developed in collaboration with the Cen-
tre Européen de Recherche et de Formation Avancée en Calcul
Scientifique (CERFACS), European Centre for Medium-Range
Weather Forecasts (ECMWF) and Institut National de Recherche
en Informatique et en Automatique (INRIA)/Laboratoire Jean
Kuntzmann (LJK). A variational scheme provides more efficient
minimization and therefore better convergence than the pre-
ceding AC scheme. NEMOVAR has the particular advantage
that it has been developed specifically for NEMO and the col-
laboration ensures continual development of the system. The
flexible formulation of the NEMOVAR control vector makes
it relatively simple to include new variables. This has been
exploited in extensions to NEMOVAR, such as sea ice con-
centration assimilation and SST bias correction. There is also
ongoing work at the Met Office to implement NEMOVAR in
the Operational Sea Surface Temperature and Sea Ice Analy-
sis (OSTIA: Stark et al., 2007). A variational scheme is chosen
rather than an ensemble method, partially because of the limita-
tions on achievable ensemble size at the Met Office. This would
severely limit the performance of an ensemble data assimilation
system. NEMOVAR has some specific attractive features, which
include multivariate balance relationships (Weaver et al., 2005)
and a background-error correlation model based on an implic-
itly formulated diffusion operator (Mirouze and Weaver, 2010).
Balmaseda et al. (2012) describe the recent operational imple-
mentation of NEMOVAR in the ECMWF seasonal forecasting
system at 1 degree resolution.

The Met Office is the first centre to implement NEMOVAR
at 1/4 degree resolution. A comprehensive technical descrip-
tion of NEMOVAR at the Met Office is provided by Waters
et al. (2013). This article describes the specific developments
to the NEMOVAR system for operational, global imple-
mentation. These include developments to the background-
error standard deviations, incorporating flow-dependent vertical
length-scales and implementing a simple and efficient tech-
nique for estimating the normalization factors required by
the background-error correlation model based on the diffu-
sion operator. The performance of NEMOVAR is analyzed and
comparisons are made with the preceding AC data assimilation
system.

In section 2, the NEMOVAR system is briefly described.
The main developments to the NEMOVAR system for the
Met Office 1/4 degree implementation are discussed in section
3 and in section 4 the key differences between NEMOVAR
and AC implementations are listed. A one-year re-analysis
with NEMOVAR is used to assess the system and the
experimental set-up is described in section 5, along with the
experiment for the comparative AC re-analysis. In section
6, the results from the re-analyses are assessed and the
conclusions and focus for future developments are discussed
in section 7.

2. NEMOVAR overview

NEMOVAR is described fully in the work of Mogensen et al.
(2012) and its predecessor, OPAVAR, is described by Weaver
et al. (2003, 2005). An overview of NEMOVAR is given here to
provide a background to the developments described in the next
sections.

The fundamental equation in NEMOVAR is the incremental
cost function. This is written as follows:

J(δx) = 1

2
δxTB−1δx + 1

2
(d − Hδx)TR−1(d − Hδx), (1)

where the increment δx = x − xb is the difference between the
state vector x and its background estimate xb, d = y − H(xi)
is the innovation vector, y is the observation vector and
xi = Mt0→ti (xb). In this notation, Mt0→ti is the nonlinear
propagation model that propagates the background state to the
state at time i. The ocean state vector contains temperature
(T), salinity (S), sea-surface height (η), horizontal velocities
(u, v) and sea ice concentration (C). The observation-error
covariance matrix is denoted by R. The observation errors are
assumed uncorrelated and therefore R is a diagonal matrix. The
background-error covariance matrix, B, is a large (O(2 × 1017)
elements in the 1/4 model used here), full rank matrix. This makes
it impossible to calculate and store B or its inverse matrix B−1.
In NEMOVAR, B is defined by a parametrized covariance model,
as described in this section. The operator H is the observation
operator, while the matrix H denotes the linearized observation
operator.

The cost function is minimized iteratively using a B-
preconditioned conjugate gradient (BCG) algorithm (Algorithm 2
in Gürol et al., 2014). BCG requires matrix–vector multiplications
with B, not its inverse B−1.

An important feature of NEMOVAR is the balance operator,
which allows covariances between different ocean variables
to be accounted for. The balance relationships are specified
through the balance operator K. The inverse operator K−1

is used to transform the state vector of mutually correlated
variables, x = (T, S, η, u, v, C), into a vector of approximately
uncorrelated variables, xU = (T, SU, ηU, uU, vU, CU), where the
subscript ‘U’ denotes the unbalanced component of the variable.
This transforms the multivariate problem into a univariate
problem and thus only the univariate error covariances for xU

need to be specified. The linearized balance relationships for the
increments δx = (δT, δS, δη, δu, δv, δC), defined by Weaver et al.
(2005), are written below. Weaver et al. (2005) chose temperature
as the lead variable and therefore temperature is treated in totality
throughout. The sequence of balance transformation can be
written as

δT = δT,

δS = Kb
STδT + δSU,

δη = Kηρδρ + δηU,

δu = Kupδp + δuU,

δv = Kvpδp + δvU,

δC = δCU, (2)

where the density increment δρ and the pressure increment δp
are specified as follows:

δρ = Kb
ρTδT + Kb

ρSδS,

δp = Kpρδρ + Kpηδη. (3)

The operator Kij is the linearized balance operator and denotes
the transformation from variable j to i. The superscript ‘b’ denotes
cases when the operator has been linearized about the background
state at the beginning of that data assimilation window. In this
implementation, the state vector has been extended to incorporate
sea ice concentration. This is currently treated as a totally
unbalanced variable in the linearized balance relationships.

The temperature–salinity balance, KST, is a linearized
version of the water–mass property conservation scheme of
Troccoli and Haines (1999), where the assumption is that
the temperature–salinity relationship in the water column is
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preserved. For SSH, the balanced component, Kηρδρ, is baroclinic
while the unbalanced component is barotropic. The SSH balance,
Kηρ , is a linearized version of the Cooper and Haines (1996)
scheme, whereby changes in the SSH are associated with lifting
and lowering of the water column. The velocity balance, Kup

and Kvp, is specified using the geostrophic relationship. The
balanced density equation is the linearized equation of state,
while the balanced pressure equation is the vertically integrated
hydrostatic equation. For a more detailed description of the
balance relationships, refer to Weaver et al. (2005) and Mogensen
et al. (2012).

In NEMOVAR, the full multivariate background-error
covariance matrix B can be written as a combination of the
univariate background-error covariance matrix BU and the
balance operator matrix K:

B = KBUKT, (4)

where BU is a block diagonal matrix with each block containing
the spatial covariances of the mutually uncorrelated variables
(T, SU, ηU, uU, vU, CU). We will refer to BU as the unbalanced
background-error covariance matrix. In the absence of velocity
observations, there is no information to correct the unbalanced
components of velocity in 3DVAR, so these components can be
ignored in BU.

The unbalanced background-error covariance matrix is
rewritten as follows:

BU = D1/2CD1/2, (5)

where D1/2 is the diagonal matrix of standard deviations and C
the block diagonal matrix of correlations.

In NEMOVAR, the background-error correlations are
modelled using a diffusion equation. Successive applications
of an implicit diffusion operator are used to simulate the
matrix multiplication of an autoregressive correlation matrix.
The method is easily able to account for complex boundary
conditions, can be used to model various different autoregressive
functions and allows for geographically varying length-scales
(Mirouze and Weaver, 2010). As the number of applications of
the implicit diffusion operator tends to infinity, the modelled
correlation function is Gaussian. In our application, we use ten
applications of the diffusion operator, which provides a good
approximation to a Gaussian correlation function.

Each block of the correlation matrix has the form

C = �1/2F�1/2, (6)

where F is a diffusion operator and � = �1/2�1/2 is a matrix of
normalization factors to ensure that C has values of one along its
diagonal. The 3D diffusion operator is formulated as

F = F1/2
x F1/2

y F1/2
z W−1(F1/2

z )T(F1/2
y )T(F1/2

x )T, (7)

where Fx,y,z = F1/2
x,y,zF1/2

x,y,z are 1D implicitly formulated diffusion
operators applied along the component directions x, y or z and W
is a diagonal matrix of volume elements. Ten implicit iterations
are applied in each direction.

Calculating the normalization factors is a non-trivial and
potentially computationally expensive task. Analytical estimates
of the normalization factors can be useful when the specified
length-scales (diffusion coefficients) are constant or slowly
varying (Mirouze and Weaver, 2010; Yaremchuk and Carrier,
2012). The exact normalization factors can also be determined by
applyingO(N) applications of the diffusion equation on an initial
field of Dirac delta functions, where N is the number of grid points.
This is computationally infeasible for realistic ocean models. An
alternative method for determining the normalization factors is
the randomization method (Weaver and Courtier, 2001). The
randomization method calculates the normalization factors by

applying the diffusion operator to an ensemble of random vector
fields. This method can produce more accurate results than the
analytical method when length-scales vary rapidly, but requires
a sufficiently large ensemble size. Further information on this
aspect of the scheme is described in section 3.

The major developments made to NEMOVAR for the Met
Office implementation are the extension to assimilate sea ice
concentration, the incorporation of an SST bias correction scheme
(Martin et al., 2007; Donlon et al., 2012), the inclusion of an
altimeter bias correction system, which is incorporated as an extra
term in the cost function (Lea et al., 2008), and the specification
of the error covariances.

Sea ice concentration assimilation is incorporated by adding sea
ice concentration to the state vector (as described above). When
the ice concentration increment is positive, it is added to the first
ice category of CICE only with a specified thickness of 50 cm.
For negative ice concentration increments, ice is removed from
the lowest ice category and then, if necessary, from progressively
higher ice categories.

In the SST bias correction scheme, mismatches between
observations and reference data are used to calculate a smoothly
varying bias field that is then subtracted from the observations.
For our experiments, the biases are calculated using in situ and
Advanced Along Track Scanning Radiometer (AATSR) data as
the reference, with biases assumed to have a 7 degree length-scale.
A separate run of NEMOVAR, external to the main minimization,
is used to calculate SST bias corrections, which are then applied
during the FGAT step. Note that, with AATSR no longer available,
the operational system currently uses only in situ data as a
reference dataset for bias correction. OSTIA has begun using a
subset of the MetOp AVHRR data for reference, but this did not
improve the results in FOAM so has not been implemented.

We focus here on the developments to the error covariances in
NEMOVAR. These are discussed in the next section.

3. NEMOVAR error covariances

For the background-error covariance model (5), it is necessary
to define, for each unbalanced variable, the standard deviations
and the length-scales of the implied correlation functions of the
diffusion operator.

For the Met Office implementation, there has been particular
development of the temperature and salinity background-
error covariances, in order to account for errors that are
both temporally and spatially varying. In an ensemble system,
the evolution of the error covariances can be estimated and
updated using ensemble statistics. However, for our variational
system, non-static background-error covariances are achieved
by parametrizing the change in the background-error standard
deviations and correlations based on knowledge of the physical
processes and using the model’s background field. This may not
capture all the spatial (and temporal) variability in the errors; it is
therefore also useful to consider climatological error covariances
calculated from statistical methods. The climatological error
covariances can provide us with information on the 3D spatial
variation of the background errors, which can highlight regions
and situations where larger errors occur.

Another important development is the inclusion of a flow-
dependent vertical length-scale parametrization and an efficient
method for estimating the normalization factors at each analysis
step. These developments are discussed below. The sea ice
concentration background-error standard deviations are also
presented in this section, since the assimilation of sea ice
concentration is new in this implementation of NEMOVAR.

3.1. FOAM statistical background-error standard deviations and
correlation length-scales

FOAM statistical background-error standard deviations have been
calculated using the National Meteorological Center (NMC)
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method (Parrish and Derber, 1992) on one year of 24 and 48 h
forecast fields. The NMC method is known to underestimate the
background-error standard deviation, as it does not account for
model error. Therefore the global average NMC background-
error standard deviations are scaled using background-error
standard deviations calculated from the Hollingsworth and
Lönnberg method (Hollingsworth and Lönnberg, 1986). The
Hollingsworth and Lönnberg method uses observation minus
background values (the innovations) to estimate the error
covariances. Making the assumption that observation and
background errors are uncorrelated and that observation errors
are spatially uncorrelated allows for the estimation of the
background- and observation-error standard deviations. In this
study, the Hollingsworth and Lönnberg error standard deviations
are calculated from one year of innovation data on 1–10 degree
resolution grids (depending on observation type). The global
average estimates of the background- and observation-error
standard deviations were used to scale the NMC results. It
is necessary to use the global values for the scaling, as the
observation coverage is not sufficient to produce a robust estimate
of the Hollingsworth and Lönnberg errors at all grid points.
The calculation of the error standard deviations was separated
into four seasons to capture seasonal variability. For the AC
application, a second-order autoregressive (SOAR) correlation
function (see for example Gneiting, 1999) with two length-scales
was fitted to the NMC statistics at all global locations. The two
length-scales were fixed at 40 and 400 km. These length-scales
were chosen to represent the small-scale (mesoscale) and large
scale (synoptic-scale) processes. The function fitting produced
fields of mescoscale and synoptic-scale NMC background-error
standard deviations. Martin et al. (2007) provides more detail on
the method used to calculate these statistical error covariances.

For this article, the term ‘FOAM statistical’ is used to
define background-error standard deviations calculated using
the combination of the NMC method and Hollingsworth and
Lönnberg method described above.

In NEMOVAR, a combination of these statistical error
background standard deviations and vertical parametrizations
are used to define the temperature and unbalanced salinity
background-error standard deviations (see sections 3.2 and 3.4).
The sea ice concentration background-error standard deviations
are prescribed as the FOAM statistical errors, while the unbalanced
SSH errors are defined as the synoptic-scale FOAM background
errors. We asume that the mesoscale errors correspond to the
baroclinic errors, while a dominant proportion of the synoptic-
scale errors correspond to the barotropic errors.

3.2. Temperature background-error standard deviations

In NEMOVAR, the temperature background-error standard
deviations are parametrized based on the vertical gradients of
the temperature background field (Weaver et al., 2005; Daget et
al., 2009). The temperature background errors are assumed to be
dominated by errors due to vertical displacement of the water
mass. The largest background-error standard deviations therefore
occur in regions where the temperature is varying rapidly in the
vertical (i.e. in regions with large vertical temperature gradients).

The original parametrization was defined as follows.

(1) The temperature depth gradient field, dT/dz, is calculated
from the background fields.

(2) The depth at which the maximum value of |dT/dz| occurs
is calculated. If the maximum occurs below 300 m, this
depth is set at 300 m.

(3) The vertical gradient field is multiplied by a vertical scaling
factor δz, such that the temperature background-error
standard deviation is σT = δz(dT/dz). Where σT exceeds
the specified maximum, σmax, it is set to σmax. A lower
bound σml is set in the mixed layer and a lower bound σdo

is set in the deep ocean.
(4) Finally, a vertical smoothing is applied.

We have adapted this parametrization for the 1/4 degree model.
The scaling factor, δz, is set equal to 20m. This value was
chosen after analytical comparisons with statistical error standard
deviations of the 1/4 degree model. The maximum bound is
the NEMOVAR default of σmax = 1.5 K (see Daget et al., 2009).
The lower bound defined above is a discontinuous function,
which in the case of very low temperature stratification will
cause undesirable vertical structures in the background-error
standard deviations and a rapid convergence to the deep ocean
value below 300 m. Since the deep ocean value is assumed to be
small, this causes small background-error standard deviations
at intermediate depths and under-weights the observations
that have static error standard deviations. In the Met Office
implementation, the lower bound has been redefined as a
continuous function. This decreases smoothly from σ T

surf at the
surface to σdo in the deep ocean and is defined as follows:

σ T
min(i, j, k) = σdo + (σ T

surf (i, j) − σdo) exp

[
d(1) − d(k)

L

]
,

(8)

where d is the level depth, L is a length-scale, i and j are the
horizontal model coordinates and k is the vertical coordinate.
The parameters in Eq. (8) are chosen to be consistent with the
FOAM statistical background-error standard deviations. These
statistical error standard deviations have a global deep ocean value
of 0.098 K and this is used to set σdo in Eq. (8). The length-scale,
L, is set at 500 m and was chosen from qualitative comparisons
with the statistical background-error standard deviations. The
original parametrization has the advantage that it is flow-
dependent, but since it is a vertical parametrization it does
not account for the horizontal variability in the background-
error standard deviations. In the Met Office’s implementation,
horizontal variability is incorporated through σ T

surf (i, j) in Eq. (8),
which is set equal to the FOAM statistical surface temperature
background-error standard deviations.

Figure 1(a) compares the use of the original lower bound
and the new continuous lower bound at 170◦W, 25◦N for
a single day. The background-error standard deviations when
using the new continuous lower bound compare more closely
with the statistical error standard deviations in Figure 1(c).
The new lower bound produces background-error standard
deviations that are larger near the surface and converge less
quickly to the deep ocean value below 600 m. The final step
in the generation of the background-error standard deviations
is the application of a vertical smoothing. The smoothing in
this implementation is achieved with the same diffusion filter
that is used to model the vertical background-error correlations.
The vertical scales of the implied smoothing kernel are also the
same as those used for the temperature background errors in
B (see section 3.6). This reduces the impact of noise in the
vertical temperature gradients, accounts for errors in the position
of the thermocline in the background field and is internally
consistent, since the smoothing depends on the assumed length-
scale of the temperature background errors. Figure 1(b) shows
the impact of the vertical smoothing. The resulting background-
error standard deviation profile compares well with the statistical
background-error standard deviations (Figure 1(c)). The peak
in the parametrized values has a larger magnitude and smaller
spread; this is as expected, since the parametrized error standard
deviations represent the errors for one day, while the statistical
error standard deviations are averaged over many days.

The parametrization has been tuned to produce similar results
to the statistical error standard deviations, but has the advantage
that it is flow-dependent and able to respond to changes in the
depth of the thermocline.

3.3. Unbalanced salinity background-error standard deviations

The unbalanced salinity background-error standard deviations
in NEMOVAR are vertically parametrized based on the
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(a) (b) (c)

Figure 1. Temperature background-error standard deviation profiles at 170◦W, 25◦N on 1 January 2011. In (a), the dashed grey line shows the original NEMOVAR
parametrization with the default values σml = 0.5 K and σdo = 0.07 K, while the black line shows the parametrization using the lower bound defined in Eq. (8). Panel
(b) shows the same result as the black line in the left-hand plot, but with vertical smoothing, while (c) shows the statistical error standard deviations.

temperature–salinity gradients (dS/dT) of the background fields.
The parametrization is an empirical formulation defined by
Daget et al. (2009), which assumes that unbalanced salinity
background-error standard deviations are large in the mixed layer
but small in the deep ocean. The structure of the background-
error standard deviations is designed to be consistent with the
T –S balance. The salinity balance in NEMOVAR is a T –S
balance that approximately conserves T –S water mass properties.
From Ricci et al. (2005), the T –S structures are strong in
isentropic regions such as the thermocline, making T –S property
conservations important in these regions. However, in the mixed
layer temperature and salinity are uncorrelated and the T –S
balance does not apply. Therefore, unbalanced salinity dominates
in the mixed layer, while balanced salinity dominates in the
thermocline.

The parametrization of Daget et al. (2009) can be written as
follows:

σ SU (k) =
⎧⎨
⎩

σ SU
max d(k) ≥ zmax,

σ SU
maxα(k) d(k) < zmax,

(9)

where α(k) = (0.1 + 0.45[1 − tanh(2 ln[d(k)/zmax])]) and
σ SU

max = 2.5 psu. Daget et al. (2009) defined zmax as the depth of
the maximum dS/dT. Some modifications to the parametrization
have been made for our FOAM–NEMOVAR implementation.
In order to make the parametrization consistent with the SSH
balance, we redefined zmax to be equal to the mixed-layer depth.
The above scheme is a flow-dependent vertical parametrization.
In order to incorporate horizontal variability, σ SU

max is mod-
ified so that σ SU

max = σ SU
max(i, j) = σ S

surf (i, j), where σ S
surf (i, j) is

the FOAM statistical surface salinity background-error standard
deviation.

3.4. Sea ice concentration background-error standard deviations

The sea ice concentration background errors used in
FOAM–NEMOVAR are the FOAM statistical errors. Figure 2
shows the December–January–February sea ice concentration
background-error standard deviation in the Arctic and Antarctic.
In the Arctic, the largest errors are in the marginal ice zone. The
errors are generally large throughout the domain in the Antarctic;
this may be because these errors are for the Southern Hemisphere
summer, when melt ponds are present.

3.5. Horizontal background-error correlation length-scales

The horizontal correlation length-scales for temperature, unbal-
anced salinity and sea ice concentration in FOAM–NEMOVAR
are prescribed through the first baroclinic Rossby radius (as in
Cummings, 2005). This is calculated from annual mean fields of
temperature and salinity. The Rossby radius is assumed to corre-
spond to the scales of the ocean mesoscale processes (for example,
eddy and frontal features). The Rossby radius-dependent hori-
zontal correlation length-scales are shown in the left-hand plot in
Figure 3. The dependence of the Rossby radius on 1/f (where f
is the Coriolis parameter) becomes a problem near the Equator,
where f → 0. Thus the Rossby radius has been capped at 150 km.
This value was chosen from analysis of correlations computed
using the NMC method at the Equator. A minimum cap of 25 km
is also applied, to prevent the length-scales from being shorter
than the horizontal resolution at high latitudes. The average
horizontal length-scales are compared with the horizontal grid
resolution in the right-hand plot in Figure 3. This illustrates that
the average Rossby radius correlation length-scales exceed the grid
resolution at all latitudes. For unbalanced SSH, the correlation
length-scales are set at 4◦ to correspond with the synoptic-scale
background-error standard deviations (discussed in section 3.1).

3.6. Vertical background-error correlation length-scales

The background vertical correlation length-scales should relate
closely to the local physical ocean conditions. The temperature
and salinity in the mixed layer are assumed to be highly correlated
with the surface values. For SST assimilation, in particular, it is
beneficial to spread the information to the base of the mixed
layer, so that the wealth of SST data can lead to improvements
in the modelling of mixed layer temperatures. However, the
structure below the mixed layer is very different and therefore it
is important that information from the surface and mixed layer
is not extrapolated to the thermocline and deep ocean.

The vertical correlation length-scales developed for the
FOAM–NEMOVAR implementation are based on the length-
scales applied in Cummings (2005). Cummings (2005) used
vertical length-scales, which are inversely dependent on the
vertical density gradients. The vertical length-scales are therefore
short in highly stratified regions (i.e the thermocline) and long in
unstratified regions (i.e. the mixed layer and deep ocean). Some of
the difficulties in applying the Cummings (2005) parametrization
are in the specification of a suitable factor for scaling the inverse
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(a) (b)

Figure 2. Sea ice concentration background-error standard deviations in fractional units. (a) Arctic and (b) Antarctic regions are shown.

(a) (b)

Figure 3. (a) The horizontal correlation length-scales in km. (b) The zonally averaged horizontal correlation length-scales (black dashed line) and average zonal and
meridional grid resolution (solid grey and black lines, respectively), plotted against latitude.

vertical density gradients and applying a sensible cap for regions
where the density gradients are small. Tests with this method
found that it was difficult to find an appropriate value for capping
large values and that length-scales were sensitive to very small
features in the density gradients. Therefore, in the Met Office
implementation the vertical length-scales have been parametrized
to capture the key features of inverse vertical density gradients.
At the surface, the length-scales are set as the mixed layer depth
of the background state and then decrease linearly to 2β(kmxl) at
the mixed layer depth, where kmxl denotes the k index associated
with the mixed layer depth. The mixed layer depth is defined
using the density-dependent method of Kara et al. (2000), which
uses a density difference that is equivalent to a 0.8 K temperature
change at the surface. The function β(k) is defined as follows:

β(k) =
[

a0 + a1 tanh

(
k − 15.35

7.

)

+ a2 tanh

(
k − 48.03

13.

)]
, (10)

where a0 = 103.95m, a1 = 2.43m and a2 = 100.76m. This is the
same function used to define the vertical mesh length for the 75
level version of NEMO. Below the mixed layer depth, the vertical

length-scales are set equal to 2β(k). The parametrization is chosen
to converge to 2β(k), as this is consistent with the vertical scales
the model is able to resolve. A five-point moving average vertical
filter of the correlation length-scales is then applied to provide
a smooth transition of the length-scales in the thermocline. An
example of the vertical length-scales when the mixed layer depth
is 97 m is shown in Figure 4.

The dependence of the vertical length-scales on the background
mixed layer depth ensures that the length-scales are flow-
dependent. While there are clear advantages to specifying
temporally varying length-scales, there are also some difficulties
in its practical application. These are largely associated with the
calculation of the normalization factors for the diffusion operator
employed in C. As discussed in section 2, the analytical estimates
are only suitable for constant or slowly varying length-scales. In
this parametrization, the length-scales vary too quickly, especially
near the base of the mixed layer. However, it would be too
computationally expensive to apply the randomization method
at each analysis step. The proposed solution is a normalization
factor look-up table. Dobricic and Pinardi (2008) used a look-up
table to generate horizontal normalization factors for a global
ocean model with latitudinally varying grid resolution. They
calculated the exact normalization factors for a discrete number
of grid distances and then used these to interpolate to the correct
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Figure 4. Vertical Correlation length-scales when the mixed layer depth is 97 m.

normalization factor for each grid location. Here, a look-up table
is applied to allow for variable vertical length-scales and fixed
horizontal length-scales and is implemented in a different way.
The first step is to limit the number of vertical length-scale
parametrizations. This is done by allowing only a finite number
of mixed layer depths for the vertical parametrization. In this
implementation, 41 different mixed layer depths are used and
these are coincident with the depths of the top 41 vertical levels of
the model, with the deepest level at 565 m. The mixed layer depth
is fixed at one level for all global locations and the vertical length-
scales are calculated using the parametrization described above.
The normalization factors for this level are then calculated using
the randomization method with 3000 ensemble members; this
process is then repeated for all the other discrete levels. At the end
of this process there are 41 files, each containing normalization
factors corresponding to 1 of 41 mixed layer depths, and this
constitutes the normalization factor look-up table.

In applying this look-up table, the first step is to calculate the
mixed layer depth at each grid point. This field is then smoothed
horizontally using a Shapiro filter. The filtering is performed
to ensure that the vertical length-scales vary smoothly in the
horizontal. The next step is to generate a field of mixed layer
levels corresponding to the smoothed mixed layer depths. These
levels are currently calculated as the next level below the mixed
layer depth (but could be calculated as the closest level). If the
mixed layer depth for a particular location is deeper than the
depth of level 41, the mixed layer level is set as 41. Once a field of
mixed layer levels has been determined, the parametrized vertical
length-scales can be calculated at each location. The final step
is then to generate a field of normalization factors by extracting
a profile of normalization factors at each global position from
the look-up file with the corresponding mixed layer level. This
generates a 3D field of normalization factors composed of profiles
from the look-up table.

Figure 5 shows the relative error in the normalization factors
when they are calculated using the look-up table. The errors are
calculated as

ε =
∣∣∣∣∣
	̃ − 	

	

∣∣∣∣∣ ,

where 	̃ are the estimated normalization factors from the look-
up table and 	 are the normalization factors calculated using
the randomization method with 10 000 ensemble members. The
errors in the look-up table are generally around 1% and increase
to around 10% in some parts, such as the equatorial region
and the Antarctic Circumpolar Current (ACC). In the equatorial
region the horizontal length-scales are long, while in the ACC
region the mixed layer depth varies sharply in the horizontal. At
these locations the assumed separability of the horizontal and

(a)

(b)

Figure 5. Relative error in the normalization factors computed using the look-up
table on 1 January 2011. Panel (a) shows the surface errors, while panel (b) shows
errors at 97 m.

vertical normalization factors is less valid, as the vertical length-
scales are varying too quickly over the horizontal length-scales.
Table 1 shows the results from a correlation test. Correlations
are modelled at several different locations using the estimated
normalization factors from both the analytical method and the
look-up table. The maximum amplitudes of the correlations are
shown in the table; given the exact normalization factors, these
should be equal to 1. For these sample locations, the error in the
maximum correlation in the look-up table is no more than 5%.
This is consistent with the results in Figure 5. The results are more
variable for the analytical estimates. For locations near the surface,
errors in the correlation are very large (greater than 50%). At
depth, these errors reduce to a similar magnitude to the errors in
the look-up table. The errors in the analytical estimates are larger
at the surface, as this is a region where the vertical length-scales
are varying quickly. Below the mixed layer depth, the vertical
length-scales converge to 2β (see Eq. (10)) and the errors in
the analytical normalization factors are reduced. The results here
show that the look-up table provides a good approximation to
the randomization method with 10 000 ensemble members and
produces a vast improvement near the surface when compared
with the analytical normalization factors. It is therefore found to
be a viable and efficient alternative to applying the randomization
method at each analysis step.

4. Summary of differences between NEMOVAR and AC
schemes

In this section, the key differences between the NEMOVAR
and AC implementations are summarized. The differences are
presented in Table 2. In the AC scheme, two horizontal correlation
length-scales are used: a 40 km mesoscale component, which
approximately represents the first baroclinic Rossby radius, and
a large scale of 400 km associated with errors in the atmospheric
forcings at atmospheric synoptic scales. NEMOVAR can presently
only specify one correlation length-scale for each control variable.

c© 2014 Crown Copyright, Met Office
Quarterly Journal of the Royal Meteorological Society c© 2014 Royal Meteorological Society

Q. J. R. Meteorol. Soc. 141: 333–349 (2015)



340 J. Waters et al.

Table 1. Correlation test results.

Maximum value of correlation

Location Depth (m) Look-up table Analytical method

170◦W 0◦N 0 0.98 1.63
170◦W 30◦N 0 1.04 1.76
170◦W 30◦S 0 0.98 1.64
25◦W 0◦N 97 0.99 1.04
25◦W 30◦N 97 0.96 0.95
25◦W 30◦S 97 0.98 1.10
14◦W 52◦N 0 0.95 1.78

The temperature, unbalanced salinity and sea ice concentration
horizontal length-scales are based on the Rossby radius (as in
Cummings 2005). From Figure 3, the NEMOVAR horizontal
length-scales are much shorter than the AC length-scales in the
extratropics. For unbalanced SSH, the correlation length-scales
are defined as 4◦, similar to the 400 km used in the AC system.

For temperature and salinity, there are two vertical correlation
length-scales in the AC method: these are 200 and 100 m
and correspond to the mesoscale and synoptic components,
respectively (Martin et al., 2007). For SST, the information is
spread to the bottom of the mixed layer with a correlation of
1. In NEMOVAR, all temperature observations are assimilated
in the same manner, so SST observations are simply treated
as single-point temperature profile observations. The vertical
length-scales are parametrized based on the mixed layer depth
and were described in detail in section 3.6.

The same observation errors are used in NEMOVAR and the
AC system. These are statistical errors determined in a similar
way to the FOAM statistical background errors (Martin et al.,
2007). They are the NMC errors scaled using the Hollingsworth
and Lönnberg observation errors.

In the AC system, the SSH balance is applied through the
Cooper and Haines (1996) scheme, while geostrophic balance
is used to produce balanced velocity increments. NEMOVAR
is a fully multivariate system. Temperature, salinity, SSH and
velocities are coupled at each iteration of the minimization of

the cost function via the linearized balance operator and its
adjoint.

Both NEMOVAR and AC are implemented within a 24 h
window FGAT framework and both use the Incremental Analysis
Updates (IAU) method to apply the increments to the model
fields. For each analysis cycle, a 24 h background model run
is performed from time T0 to produce match-ups between
the observations and model at the correct observations times
(the FGAT step). These match-ups are used to calculate the
innovations, which are used in the NEMOVAR step. The
innovations are also used to calculate the innovation statistics
presented in section 6. A final 24 h IAU model run is performed
from T0 to apply all the increments (δT, δS, δη, δu, δv, δC)
gradually to the model throughout the period. This is intended
to reduce shock to the system. A 24 h analysis cycle is
chosen to balance the requirements for short-range forecasting,
while allowing enough time for reasonable spatial coverage of
observations (particularly profile observations).

5. Experiment set-up

Two experiments are presented in this study: FOAM with the
Analysis Correction Scheme (FOAM–AC) and FOAM with
NEMOVAR (FOAM–NEMOVAR). The experiments use the
same forcings, ocean model and ice model and assimilate the
same observations. The model used here is the ocean component
of NEMO (Madec, 2008) at version 3.2, coupled to the CICE sea
ice model (Hunke and Lipscomb, 2010). This is forced by surface
fields from the Met Office numerical weather prediction (NWP)
system at three-hourly frequency, with the fluxes calculated
online in the NEMO model using the CORE bulk formulae
and interpolated in time to each model time step.

Both models were initialized using 3D temperature and salinity
fields obtained from the operational FOAM system on 10 June
2010, interpolated from the 50 vertical levels used operationally
at that time to the 75 vertical levels used here. SSH and velocity
fields were initialized from zero and sea ice concentration was
initialized from a previous two and a half year reanalysis (with
sea ice concentration data assimilation). A model-only spin-up of

Table 2. Main features of the NEMOVAR and AC data assimilation systems. Entries that span the center between the AC and NEMOVAR columns represent common
system features.

AC NEMOVAR

Data assimilation method Analysis correction scheme 3DVAR

Background-error standard Statistical FOAM errors T and unbalanced S use a combination of
deviations statistical FOAM errors and parametrization.

Sea ice and SSH use statistical FOAM errors.

Horizontal background-error Two length-scales: T, unbalanced S and sea ice:
correlations 400 km (synoptic scale), single Rossby-radius-dependent scale.

40 km (mesoscale). Unbalanced SSH: 4 degrees 400 km (synoptic scale).

Vertical background-error T and S: two length-scales (100 and 200 m). T, S and SST: parametrized mixed
correlations SST: apply increments to the base layer dependent vertical length-scales.

of the mixed layer.

Observation error Statistical errors calculated with the NMC method
(Parrish and Derber, 1992) and scaled using observation errors

calculated from the Hollingsworth and Lönnberg (1986) method.

Multivariate balance Cooper and Haines (1996) scheme Multivariate system:
for SSH balance. linear balance applied at each
Geostrophic balance for velocities. iteration of the minimization of
No T/S balance. the cost function.

Initialization Incremental analysis updates (Bloom et al., 1996)
with a 24 h time-scale

Observation operator Horizontal: bilinear
Vertical: spline

Temporal: FGAT
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(a)

(b)

(c)

(d)

Figure 6. Global surface innovation statistics for (a) AATSR-SST, (b) insitu-SST, (c) SSH and (d) sea ice concentration. The solid line is the innovation standard
deviation and the dashed line is the innovation mean. The legend shows the innovation standard deviation and innovation mean statistics for the full one-year period.
The average number of observations per day for each observation type is as follows: AATSR = 95 898, in situ SST = 36 515, SSH = 53 003, sea ice = 883 040.

three weeks was carried out to allow the velocity and SSH fields
to adjust, followed by five months with data assimilation from 1
July 2010–30 November 2010.

The main reanalysis period covers the period 1 December
2010–30 November 2011. The observations assimilated during
that period are as follows.

• Satellite SST data from the Advanced Very High Resolu-
tion Radiometer (AVHRR) onboard the National Oceanic
and Atmospheric Administration (NOAA) and MetOp
satellites, Advanced Along-Track Scanning Radiometer
(AATSR) and Advanced Microwave Scanning Radiome-
ter–Earth Observing System (AMSRE) instruments. These
are obtained through the Group for High-Resolution
Sea-Surface Temperature (GHRSST) project (http://www.
ghrsst.org). These are L2P data (swath data), which have
been spatially averaged prior to assimilation using a 13 km
radius. The foundation SST is assimilated in FOAM, so SST
observations with diurnal warming are excluded by using
only observations made at night or in high winds.

• Surface temperature in situ data from ships, moored and
drifting buoys, available over the Global Telecommunica-
tions System (GTS).

• Along-track altimeter sea-level anomaly (SLA) data from
the Jason-1, Jason-2 and Envisat satellites, provided by
Aviso/CLS (http://www.aviso.oceanobs.com).

• In situ temperature and salinity profile data from the EN3
dataset (Ingleby and Huddleston, 2007).

• Sea ice concentration data from Special Sensor Microwave
Imager (SSM/I) satellites provided by EUMETSAT OSI-
SAF (http://osisaf.met.no).

6. Assessment

The assessment of the FOAM–NEMOVAR system is now
presented. We compared FOAM–NEMOVAR with the preceding
FOAM–AC system, as this provides a benchmark for our
implementation. Intercomparison studies have shown that
FOAM–AC is competitive with other operational ocean
forecasting systems (Oke et al., 2012, for example). We consider
the innovation statistics, as well as more detailed comparisons
with specific observations.

6.1. Global innovation statistics

In this section, the global innovation statistics are presented
for the FOAM–NEMOVAR and FOAM–AC trials. Innovation
statistics compare the model background with the observations
prior to assimilation. The statistics considered within this study
are the innovation standard deviation and the innovation mean.
Figure 6 shows global time series of innovation statistics for
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(a) (b)

Figure 7. Global profile innovation statistics. The grey line is FOAM–AC and the black line is FOAM–NEMOVAR. The solid line is innovation standard deviation
and the dashed line is the innovation mean. Panel (a) shows temperature profile statistics while panel (b) shows salinity profile statistics. For temperature,
FOAM–NEMOVAR innovation standard deviation (mean) = 0.599 (0.002) and FOAM–AC innovation standard deviation (mean) = 0.610 (0.016). For salinity,
FOAM–NEMOVAR innovation standard deviation (mean) = 0.121 (0.005) and FOAM–AC innovation standard deviation (mean) = 0.116 (0.001).

SST (AATSR and in situ), SSH and sea ice concentration
for FOAM–NEMOVAR and FOAM–AC. FOAM–NEMOVAR
produces a very good improvement to the innovation standard
deviation for SST, with a reduction of 14% for AATSR–SST
innovation standard deviation and 32% for in situ SST
innovation standard deviation when compared with FOAM–AC.
In Donlon et al. (2012), a target uncertainity of 0.5 K is defined
for the OSTIA innovation root-mean-square error (RMS).
The FOAM–NEMOVAR innovation statistics meet this target
comfortably, which is a very positive result. There is also a
good improvement in sea ice concentration innovation standard
deviation in FOAM–NEMOVAR relative to FOAM–AC, with the
innovation standard deviation reduced by 24% throughout the
period. In FOAM–NEMOVAR, there is a small improvement
in the SSH innovation standard deviation and this benefit
increases throughout the period. This is probably related to
the altimeter bias correction (Lea et al., 2008). The altimeter
bias correction takes several months to spin up and it seems
that, while the bias correction in FOAM–AC has stabilized
by the beginning of the trial period, the bias correction in
FOAM–NEMOVAR is continuing to improve. The reduction of
the innovation standard deviations of the surface variables in
FOAM–NEMOVAR compared with FOAM–AC are thought
to be related to the shorter correlation length-scales in the
extratropics in FOAM–NEMOVAR and the improved fit
to observations provided by the efficient minimization in
NEMOVAR. The innovation means for surface variables are small
and very similar for both FOAM–NEMOVAR and FOAM–AC.

Figure 7 shows the global innovation statistics over the full
validation period for profile temperature and salinity binned over
depth. A bootstrap method (Efron, 1979) has been applied to test
the significance of the differences in these profile statistics. The
differences in both the temperature mean error and innovation
standard deviation from the two experiments were found to
be significant at the 99% level for all depths. For salinity, the
differences in mean error and innovation standard deviation are
significant at the 98% level, except at 2000 m depth, where the
differences for innovation standard deviation are less significant.
For temperature profiles, the innovation standard deviations are
generally similar for FOAM–NEMOVAR and FOAM–AC, but
FOAM–NEMOVAR produces better results at the surface and
slightly degraded results in the thermocline (at 100 m). However,
the temperature innovation mean shows a clear degradation
at 50–300 m depth for FOAM–NEMOVAR compared with
FOAM–AC. This result is discussed in more detail in the
next section, where it is shown that this is a model bias that
FOAM–NEMOVAR is not correcting (rather than something
introduced by the assimilation).

For the salinity profiles, FOAM–NEMOVAR produces a larger
innovation standard deviation and mean innovation difference at
the surface. This is probably associated with the shorter horizontal
correlation length-scales in FOAM–NEMOVAR. While the
shorter length-scales produce improvements for all other surface
fields, surface salinity observations are very sparse and therefore
FOAM–NEMOVAR has difficulty in constraining salinity. Future
work will focus on improving the salinity statistics through
developments to the background-error correlation length-scales.

c© 2014 Crown Copyright, Met Office
Quarterly Journal of the Royal Meteorological Society c© 2014 Royal Meteorological Society

Q. J. R. Meteorol. Soc. 141: 333–349 (2015)



Variational Assimilation in a Global Ocean Model 343

(a) (b)

(c) (d)

(e) (f)

Figure 8. Binned innovation standard deviation fields for June–July–August 2011. Plots of FOAM-NEMOVAR innovation standard deviation are shown for (a) SST,
(c) SLA, (e) salinity profile, (g) temperature profile and (i) sea ice concentration. Plots of innovation standard deviations from FOAM-NEMOVAR minus innovation
standard deviations for FOAM-AC are also shown for (b) SST, (d) SLA, (f) salinity profile, (h) temperature profile and (j) sea ice concentration. For SST and SSH, 2◦
bins are used, for profile temperature and salinity 10◦ bins are used and data are binned over all depths and for sea ice concentration 5◦ bins are used.

A particular area of interest is the use of two correlation
length-scales (as in FOAM–AC). The application of a longer
length-scale may allow locations with sparse observations to
be better constrained. Results from Blockley et al. (2014) also
suggest that changing the surface fluxes has a larger impact on the
salinity statistics than changes to the data assimilation. Therefore
this degradation is relatively small compared with the impact of
changes to other model components.

Oke et al. (2012) showed in their intercomparison study that
the FOAM–AC system produces the best results for temperature
and salinity profiles. FOAM already performs well for profile
results and we have shown here that FOAM–NEMOVAR
produces improved surface innovation statistics compared with
FOAM–AC. Future developments will seek to improve the small
degradations in the profile statistics for FOAM–NEMOVAR,
but, as previously stated, FOAM–AC produces particularly good
quality profile results.

Spatial plots of the binned innovation standard deviation
for FOAM–NEMOVAR, along with the innovation standard
deviation difference for FOAM–AC and FOAM–NEMOVAR, are

shown in Figure 8 for June–July–August. In the difference plots,
regions where FOAM–NEMOVAR has improved the innovation
standard deviation compared with FOAM–AC are shown in
blue. These plots show the global distribution of the innovation
standard deviation for the two experiments and illustrate regions
where FOAM–NEMOVAR provides improvement. For SST,
there is a general reduction in the innovation standard deviation
in FOAM–NEMOVAR compared with FOAM–AC in regions
of high variability such as the Gulf Stream, Kuroshio Current
and Antartic Circumpolar Current (ACC). A similar pattern
is seen in SSH, with an improvement in FOAM–NEMOVAR
in regions of high variability. There is a region of degradation
in FOAM–NEMOVAR in the Labrador Sea. The results are
more mixed for salinity and temperature profiles. For salinity,
there is an overall degradation in FOAM–NEMOVAR; this is
consistent with the results in Figure 7. FOAM–NEMOVAR
does produce reduced innovation standard deviation in the
Amazon outflow region, Aghulus Current and Gulf Stream
region, but most other regions show a small degradation in the
statistics. This suggests that the degradation of salinity is a global
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(g) (h)

(i) (j)

Figure 8. Continued

problem. The temperature innovation standard deviations are
slightly reduced globally during the June–July–August period,
from 0.63 K in FOAM–AC to 0.62 K in FOAM–NEMOVAR.
Most improvements to the temperature statistics are seen
across the Southern Ocean region. For sea ice concentration,
there is a significant improvement in FOAM–NEMOVAR
in the marginal ice zone, where sea ice is evolving most
quickly.

The binned observations show that the main improvements
in the surface fields in FOAM–NEMOVAR occur in regions of
high variability. For SST and SSH, these are regions of frontal
and eddy shedding, while for sea ice concentration these are the
sea ice edge. For temperature and salinity profiles, the results
are more mixed, although there is a region of improvement in
FOAM–NEMOVAR in the Southern Ocean.

6.2. Subsurface mean errors

In the global innovation statistics, it was noted that there
is a pronounced negative temperature innovation mean in
FOAM–NEMOVAR at 50–300 m depth, which does not appear
in FOAM–AC. This negative bias corresponds to a warm model
bias relative to the observations at these depths. Investigations
have shown that this bias occurs only in the extratropics.
Figure 9 shows Hovmöller plots of temperature innovation
mean for the Tropical Atlantic and South Atlantic regions. The
Tropical Atlantic region is defined from (88.75◦W, 19.75◦S) to
(13.75◦E, 19.75◦N) while the South Atlantic region is defined
from (69.75◦W, 59.75◦S) to (29.75◦E, 20.25◦S). A strong negative
temperature innovation bias appears in the South Atlantic plot for
FOAM–NEMOVAR, but is not present in the Tropical Atlantic
region.

Figure 10 presents a cross-section along 40◦S of the
mean temperature increments during March–April–May 2011
for FOAM–NEMOVAR and FOAM–AC. The FOAM–AC
increments are primarily negative at 100 m depth, this feature
is not seen in FOAM–NEMOVAR. Figure 10 also shows the
March–April–May mean temperature increment fields in the

South Atlantic region at 108 m. The FOAM–AC increments are
predominantly negative at 108 m in the south of the domain,
with an overall negative bias of −0.011 K throughout the domain.
The fact that the innovation bias in FOAM–AC is significantly
reduced in Figure 9 suggests that the negative increments in Figure
10 act to counter a positive model bias. In FOAM–NEMOVAR,
the mean increments in the South Atlantic domain at 108 m are
0.001 K. The absence of a negative bias in the FOAM–NEMOVAR
increments means that the FOAM–NEMOVAR system is not
correcting this positive model bias. A key difference between the
FOAM–NEMOVAR and FOAM–AC systems is the specification
of the correlation length-scales. The FOAM–AC system uses
two correlation length-scales and the horizontal length-scales are
generally longer (particularly at high latitudes). Our investigations
with FOAM–NEMOVAR suggest that increasing the horizontal
length-scales while decreasing the vertical length-scales at the
base of the mixed layer leads to a good reduction in the bias.
A fairly extreme case was tested, where horizontal length-scales
of 150 km were applied along with vertical length-scales that
were set as 0.1β(k) at the mixed layer depth and in the deep
ocean. These changes were implemented in the first month of
the data assimilation spin-up period (July 2010). These changes
reduced the minimum global mean error in the top 1000 m in
FOAM–NEMOVAR from−0.114 to 0.0 K during this one-month
period. However, the changes also increased the South Atlantic
innovation standard deviation in FOAM–NEMOVAR to 0.785 K
from 0.658 K and similar results are seen in other regions. Clearly,
it is not practical to apply these changes directly in their current
form, due to their negative impact on the innovation standard
deviations. Shorter vertical length-scales at the base of the mixed
layer are beneficial, as they prevent the spreading of information
from the mixed layer into the thermocline. The vertical length-
scales may need to be retuned to allow for a short length-scale
at the base of the mixed layer while preserving the current
length-scales near the surface and in the deep ocean. A suitable
value for the length-scales at the base of the mixed layer will need
further investigation; the use of of 0.1β(k) (as tested above) seems
counter-intuitive, as it uses length-scales shorter than the grid
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(a) (b)

(c) (d)

Figure 9. Temperature-profile observation minus background mean error. The top plots (a, b) show the mean error in the Tropical Atlantic, while the bottom plots
(c, d) show the mean error in the South Atlantic. The right-hand plots (b, d) are from FOAM–NEMOVAR and the left-hand plots (a, c) are from FOAM–AC.

(a) (b)

(c) (d)

Figure 10. Mean temperature increments for March–April–May. The top plots are latitude cross-section plots at 40◦S for (a) FOAM-AC, (b) FOAM-NEMOVAR.
The bottom plots show the mean temperature increments at 108m in the South Atlantic domain (the same regional domain used in Figure 9) for (c) FOAM-AC,
(d) FOAM-NEMOVAR.
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Figure 11. (a) Temperature section from an XBT track, together with the corresponding temperature sections from (b) FOAM–AC and (c) FOAM–NEMOVAR.
The longitude of three specific events are marked with black dotted lines and labelled ‘i’, ‘ii’ and ‘iii’. The location of the track is shown in Figure 12.

resolution. The requirement for longer horizontal correlation
length-scales suggests that subsurface profile observations are
currently too sparse to correct the model bias using the Rossby
radius length-scales. Future developments to NEMOVAR at the
Met Office include the implementation of two horizontal length-
scales. This will allow for the application of a correlation function
with a fatter tail. This approach may be beneficial in reducing
the mean error without compromising the innovation standard
deviation. Changes to allow the application of two correlation
length-scales are currently being developed at the Met Office.
Another potential solution is to implement a T –S bias correction
scheme in NEMOVAR (Balmaseda et al., 2008, 2012). This would
allow for the model bias to be corrected without impacting on
the T and S profile assimilation. These developments will be
investigated for future implementations of FOAM–NEMOVAR
at the Met Office.

6.3. Regional case studies

In this section, some case study comparisons with observations
are made. In Figure 11, a temperature section from a cruise with
multiple XBT deployments is compared with forecast temperature
sections from FOAM–NEMOVAR and FOAM–AC. Note that
the XBT observations are assimilated into both systems, but that

the model fields presented are from the FGAT step (prior to the
assimilation of the XBT observations). The location of the XBT
track is shown in Figure 12, plotted on top of the SSH field.
Three events have been labelled in Figures 11 and 12. A generally
similar temperature structure appears in all three cross-sections.
There is a distinct difference in FOAM–NEMOVAR compared
with the observations at event (iii), where a warm eddy is present
in FOAM–NEMOVAR that does not appear in the observations.
Consideration of the SSH fields in Figure 12 shows that there is
a warm eddy displaced towards the east in FOAM–NEMOVAR
relative to FOAM–AC. The cold-core eddy at event (ii) in the
XBT is replicated by FOAM–NEMOVAR and FOAM–AC, while
the cold-core eddy at event (i) is slightly better represented in
FOAM–NEMOVAR. From Figure 12, there is a visible cold-core
eddy in the FOAM–AC SSH field, but it falls slightly south of
the XBT track. In general, FOAM and XBT temperature sections
are well matched, with the key structure in the water column and
depth of the thermocline well represented in FOAM.

Figure 12 also shows the position of drifters for a
seven-day period. The drifter positions suggest that both
FOAM–NEMOVAR and FOAM–AC capture the position of
the front well between 70◦W and 80◦W. In some regions
FOAM–NEMOVAR produces better eddy placement, for
example at (68◦W, 37◦N) and (45◦W, 34◦N), but there are a
few regions where FOAM–AC is better, for example (50◦W,
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(a)

i ii iii

(b)

Figure 12. Model SSH fields from (a) FOAM–AC and (b) FOAM–NEMOVAR on 24 September 2011 in the Gulf Stream region. On top of the SSH fields, the XBT
track from Figure 11 is plotted as the black dots with yellow outline and the location of drifters from 21 September 2011–27 September 2011 are marked by black
circles. The longitudes of the specific events marked in Figure 11 are also marked on this plot by the white dotted and labelled lines.

(a)

(b)

Figure 13. SSH field in the Kuroshio region on 22 November 2011 for (a)
FOAM-AC and (b) FOAM-NEMOVAR. Drifter positions for 19 November
2011–25 November 2011 are plotted over the SSH fields in black. Three locations
have been labelled in red as ‘d’, ‘e’ and ‘f’.

37◦N). Figure 13 shows a similar plot in the Kuroshio Current
region. The eddy placement is better in FOAM–NEMOVAR
and some regions of particular improvement are marked on the
plot. Improved position of the front in FOAM–NEMOVAR is
indicated by the label (d), while improved eddy positioning is
indicated by the labels (e) and (f).

Overall, FOAM–NEMOVAR and FOAM–AC perform well
in capturing the mesoscale features in these high variability
regions and FOAM–NEMOVAR provides improved eddy and
front positioning in the Kuroshio Current region. This is in
agreement with the SSH and SST results in Figure 8.

6.4. Atlantic meridional overturning circulation

Correctly modelling processes such as the Atlantic Meridional
Overturning Circulation (AMOC) is important for seasonal
forecasting and climate monitoring. Since FOAM–NEMOVAR
is now used to initialize the Met Office’s seasonal prediction
system, GLOSEA5, it is useful to consider the impact NEMOVAR
has on the AMOC. An in-depth assessment of the AMOC in
FOAM–NEMOVAR is presented in Roberts et al. (2013); here,
we highlight the impact of the change in data assimilation scheme
on the AMOC when all other aspects of the system are the same.

Figure 14 shows the AMOC in FOAM–NEMOVAR and
FOAM–AC compared with the RAPID observations (http://
www.rapid.ac.uk/rapidmoc/). The daily model values were
calculated by averaging the values calculated at every time step
online in FOAM, while the observations are 12 hourly RAPID
observations averaged to produce daily values. The comparison
period is for 1 December 2010–30 April 2011; this is the
only period of coincident model and RAPID data at the time
of writing. From Figure 14, there is a clear improvement in
the prediction of the AMOC in FOAM–NEMOVAR compared
with FOAM–AC. FOAM–NEMOVAR captures the magnitude
of the step change better during January 2011 and follows the
observations more closely to the end of the period. The correlation
coefficient for FOAM–NEMOVAR compared with RAPID is 0.5,
compared with 0.38 for FOAM–AC compared with RAPID. The
mean and standard deviation of the FOAM–NEMOVAR values
(14.58/5.72 Sv) are also closer to those of the data (14.21/4.48 Sv)
than the FOAM–AC run (17.05/6.74 Sv).

7. Summary and discussion

The operational FOAM system at the Met Office has been updated
to use the incremental 3DVAR system, NEMOVAR, as its data
assimilation component. A detailed description of the main
developments to NEMOVAR error covariances for the global
1/4 degree resolution model implementation is provided and
discussed. These include the specification of the error covariance
and a new efficient look-up table method for determining
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(a)

(b)

Figure 14. The Atlantic meridional overturning circulation at 1045 m: (a)
FOAM–AC and (b) FOAM–NEMOVAR.

the normalization factors required by the background-error
covariance operator at each analysis step when flow-dependent
vertical length-scales are used.

The performance of NEMOVAR is compared with the
preceding analysis correction data assimilation method within the
same FOAM set-up. The two systems were compared over a one-
year hindcast period from December 2010–November 2011. The
assessment of the system has focused on the innovation statistics
and some regional case studies, which look at comparisons
with XBT and drifter observations. The innovation statistics
show that the FOAM–NEMOVAR system provides significant
improvement to SST, SSH and sea ice concentration. The most
significant benefits to SST and SSH are seen in the frontal and
eddy-shedding regions. This result is supported by comparisons
of SSH fields and drifter positions in the Gulf Stream and
Kuroshio current region. Meanwhile, the largest improvements
to sea ice concentration are seen in the marginal sea ice regions.
The temperature-profile innovation standard deviation results
are similar in the two systems, with NEMOVAR showing an
improvement near the surface but a small degradation in the
thermocline. The surface improvements are largely attributed to
shorter correlation length-scales in the extratropics in NEMOVAR
and an improved global data assimilation solution in the 3DVAR
framework, which allows for a closer fit to observed mesoscale
features.

While there are generally good improvements to the innovation
statistics, there are still some aspects requiring development.
The mean error for temperature profiles is degraded at around
100 m in FOAM–NEMOVAR compared with FOAM–AC.
Investigations have shown that this bias is actually a model
bias that FOAM–NEMOVAR is not correcting. The salinity
results are also degraded in FOAM–NEMOVAR, with an increase
in innovation standard deviation in the top 300 m. Both the
temperature bias and salinity innovation standard deviation

results are associated with the shorter horizontal correlation
length-scales in FOAM–NEMOVAR and the sparsity of profile
observations. While the shorter horizontal correlation length-
scales have been shown to improve the surface fields with better
modelling of mesoscale features, the relative sparsity of salinity
observations and subsurface temperature make it difficult for
NEMOVAR to constrain these fields fully. Suggested solutions
are the application of two horizontal correlation length-scales
in FOAM–NEMOVAR, assimilation of satellite salinity products
and the implementation of a T –S bias correction scheme. Future
work will focus on developments in these areas.

The future for FOAM at the Met Office lies within a coupled
ocean–atmosphere model; the improvements to the surface
variables are particularly beneficial in a coupled framework
and therefore the results from the surface fields are given
the greater weight in this analysis. From this perspective,
FOAM–NEMOVAR produces significant improvements over the
FOAM–AC system. Finally, the MOC results presented in Figure
14 show a good improvement in the modelling of the AMOC
in FOAM–NEMOVAR, which is particularly important in the
context of seasonal prediction.
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Ferry N, Desportes C, Testut CE, Bricaud C, Bourdallé-Badie R, Bourdall
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