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Abstract

Abstract Multigrid and domain decomposition methods provide efficient algorithms
for the numerical solution of partial differential equations arising in the modelling of
many applications in Computational Science and Engineering. This manuscript covers
certain aspects of modern iterative solution methods for the solution of large-scale prob-
lems issued from the discretization of partial differential equations. More specifically,
we focus on geometric multigrid methods, non-overlapping substructuring methods and
flexible Krylov subspace methods with a particular emphasis on their combination.
Firstly, the combination of multigrid and Krylov subspace methods is investigated on a
linear partial differential equation modelling wave propagation in heterogeneous media.
Secondly, we focus on non-overlapping domain decomposition methods for a specific
finite element discretization known as the hp finite element, where unrefinement/refine-
ment is allowed both by decreasing/increasing the step size h or by decreasing/increasing
the polynomial degree p of the approximation on each element. Results on condition
number bounds for the domain decomposition preconditioned operators are given and
illustrated by numerical results on academic problems in two and three dimensions.
Thirdly, we review recent advances related to a class of Krylov subspace methods allow-
ing variable preconditioning. We examine in detail flexible Krylov subspace methods
including augmentation and/or spectral deflation, where deflation aims at capturing
approximate invariant subspace information. We also present flexible Krylov subspace
methods for the solution of linear systems with multiple right-hand sides given simul-
taneously. The efficiency of the numerical methods is demonstrated on challenging
applications in seismics requiring the solution of huge linear systems of equations with
multiple right-hand sides on parallel distributed memory computers. Finally, we expose
current and future prospectives towards the design of efficient algorithms on extreme
scale machines for the solution of problems coming from the discretization of partial
differential equations.

Keywords Algebraic multigrid method (AMG); Augmentation; Balancing
Neumann-Neumann (BNN); Block Krylov subspace method; Block size reduction; De-
flation; Finite Element Tearing and Interconnecting (FETI); Flexible Krylov subspace
method; Full Approximation Scheme (FAS); Full Multigrid (FMG); Helmholtz equa-
tion; High Performance Computing (HPC); hp finite element method; Iterative method;
Krylov subspace method; Linear systems of equations with multiple right-hand sides;
Multigrid method; Non-overlapping domain decomposition method; Preconditioning;
Spectral deflation; Substructuring method; Variable preconditioning.
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1. Introduction

Scope and goals
Scope
Computational Science and Engineering (CSE) is a multidisciplinary field aiming at
simulating complex phenomena by exploiting the power of modern computational re-
sources. In this respect, the simulation of physical phenomena governed by nonlinear
and time-dependent partial differential equations (PDEs) plays a major role. Beyond
simulation, current CSE research projects focus more and more on the optimization or
on the control of those complex physical phenomena governed by PDEs. Hence, effi-
cient solution methods for the numerical solution of partial differential equations must
be provided. In this manuscript, we consider standard discretization methods for the
numerical approximation of deterministic PDEs ranging from finite difference, finite
volume or finite element methods (in both h and hp versions, respectively). Since the
problems considered are often of multiscale nature, it is highly relevant to represent
the different scales of the physical phenomena. Consequently, the discretization of the
continuous equations usually reduces the problem to the solution of an huge nonlinear
algebraic system of equations. In this setting, we will exclusively consider efficient and
numerically stable parallel algorithms based on iterative methods for the solution of
such algebraic systems. This is the main scope of the manuscript, where analysis and
performance of such algorithms will be specifically examined on applications related to
fluid dynamics, geophysics and structural mechanics.

This scope involves multiple areas of research. Theoretical aspects in functional anal-
ysis and calculus of variations are needed to analyse questions related to the existence,
unicity and behavior of solutions of PDEs. Furthermore, the discretization of infinite
dimensional problems requires knowledge of function spaces and approximation theory.
Finally, the solution of discretized finite dimensional problems is investigated through
matrix computations, where efficient and numerically stable algorithms are favoured on
massively parallel architectures. In this manuscript, we mostly concentrate on the al-
gebraic iterative computational aspects but we are certainly aware that all these topics
are interconnected; see [153, 171, 176, 199] for enlightening discussions on this aspect.

Optimality and scalability of iterative methods
We refer the reader to standard textbooks on iterative methods to discover the plethora
of available algebraic methods [15, 24, 133, 140, 180, 194, 217, 257]. The central notion
of preconditioning is addressed in the monographs [90, 194, 217, 253, 257] and in the
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1. Introduction

survey papers [27, 262]. We next define optimality and scalability of iterative methods,
two terms that are frequently used throughout the manuscript; see [246, Chapter 1,
Definitions 1.2 and 1.3].

Definition 1.1. Optimality. An iterative method for the solution of a linear system
is said to be optimal, if its rate of convergence to the exact solution is independent of
the size of the system.

Here, optimality is ensured if the rate of convergence is independent of the size of
the finite element space employed (meshsize h for h approximations and polynomial
degree for hp approximations) or of the meshsize h for finite difference or finite volume
discretizations.

To introduce parallelism when considering mesh-based simulations of PDEs, the
global computational domain in space is usually partitioned into smaller subdomains
[226]. A one-to-one mapping between processors and subdomains is then used in the
standard implementation of the numerical methods.

Definition 1.2. Scalability. An iterative method for the solution of a linear system
is said to be scalable, if its rate of convergence does not deteriorate when the number
of subdomains grows.

Definitions 1.1 and 1.2 are given in the context of the solution of linear systems of
equations and can be easily extended to the nonlinear case.

Goals

The overall objective in the manuscript is the analysis and development of advanced
numerical methods for the simulation of PDE-based applications that are able to effi-
ciently exploit the power of parallel computers. In this regard, we have in mind two
specific goals

• Analysis and implementation of optimal or scalable linear solvers for
systems arising from mesh-based implicit simulation of PDEs.

This is the major key step when solving PDEs implicitly. Depending on the nature
of the PDEs, optimal or scalable solvers may be designed. Finally, we note that
the situation is much more intricate, when systems of PDEs are considered.

• Analysis and implementation of optimal or scalable algorithms beyond
linear solvers.

The partial differential equations of interest are often nonlinear and possibly time-
dependent. Hence, the design of optimal or scalable algorithms for nonlinear sys-
tems of equations is of utmost importance in practice. Furthermore, the time
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variable may offer an additional possibility for introducing parallelism. If success-
ful, this would lead to optimal or scalable algorithms that are parallel in both
time and space.

To reach these goals, we consider the combination of multilevel methods (of either
geometric multigrid or domain decomposition type) and of Krylov subspace methods
to design efficient numerical algorithms for the solution of large-scale problems com-
ing from the discretization of partial differential equations. We refer the reader to the
monographs [15, 133, 166, 194, 217, 257] and the comprehensive survey paper [224]
for details on theoretical and practical aspects of Krylov subspace methods. In the
manuscript, we will pay a specific attention to the numerical properties of the combina-
tion of Krylov subspace methods and multilevel preconditioners. We briefly study the
most salient properties of those multilevel preconditioners next.

Geometric multigrid methods are known to be optimal iterative methods for certain
classes of discretized elliptic PDEs [39, 40, 141]. In the case of a Laplace operator with
constant coefficients, the full multigrid method (FMG) [39, 234] is considered to be
asymptotically optimal, that is, the number of arithmetic operations required is pro-
portional to the number of grid points, with only a small constant of proportionality; see
[40, Chapter 7], [247, Appendix C] and [208] for the corresponding analysis. In addition,
the Full Approximation Scheme (or Full Approximation Storage) (FAS) [39] and [40,
Chapter 8] has been demonstrated to be an effective nonlinear multilevel method [141]
for the solution of discretized partial differential equations. Hence, multigrid methods
provide particularly relevant algorithms to consider in our framework. For further de-
tails, we refer the reader to the standard monographs [40, 45, 141, 177, 234, 247] for
the mathematical analysis of linear and nonlinear geometric multigrid methods. Paral-
lelization of geometric multigrid methods is especially discussed in [247, Chapter 6].

Domain decomposition refers to the splitting of a partial differential equation into
coupled problems on smaller subdomains forming a partition of the original computa-
tional domain [204, 226]. This splitting can be performed at the continuous, discrete
level or at the algebraic level. While parallelism is natural due to the domain parti-
tioning, the key question in domain decomposition is how to select the subproblems
to ensure that the rate of convergence of the iterative method is fast. We consider
iterative substructuring domain decomposition methods equipped with a coarse space,
that are known to provide scalable algorithms for the solution of linear elliptic partial
differential equations. We refer the reader to the monographs [80, 204, 226, 246] for
historical comments and detailed analysis of various domain decomposition methods.
The abstract theory of Schwarz methods (the earliest domain decomposition algorithm
is the alternating Schwarz method) is presented in [246, Chapters 2 and 3], while an
algebraic theory has been proposed in [29, 111, 113]. Finally, we mention the review
article by Xu [267] and the book chapter by Oswald [247, Appendix B] for a description
of an abstract theory of multilevel methods in terms of subspace decomposition.
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Outline

The remainder of the manuscript is divided into four chapters.

Chapter 2 is related to the study of geometric multigrid methods for the solution
of the Helmholtz equation in three-dimensional heterogeneous media. This is known
as a difficult problem for iterative methods [100] and optimal solvers have not been
proposed yet. We analyse the combination of geometric multigrid preconditioners and
Krylov subspace methods in this setting. Then we illustrate the main properties of
the resulting numerical methods on a realistic application in exploration seismology
requiring the solution of linear systems of billion of unknowns in practice. Scalability
properties are investigated on massively parallel computers.

Chapter 3 is related to the study of domain decomposition preconditioners for hp fi-
nite element approximations on anisotropic meshes in two and three dimensions. When
simulating physical phenomena exhibiting boundary layers or singularities, geometri-
cally refined meshes towards corners, edges or faces must be used in a hp finite element
formulation. In consequence, two- or three-dimensional meshes with high aspect ratios
have to be employed in practice. Hence, the condition number of the stiffness matrix
rapidly deteriorates: it grows exponentially with the spectral polynomial degree k. The
solution of such linear systems with iterative methods is thus especially difficult. We fo-
cus on two non-overlapping domain decomposition preconditioners known as Balancing
Neumann-Neumann and FETI, respectively. We give condition number bounds for the
preconditioned operators and prove that the proposed numerical methods are scalable
in such a context. Numerical experiments supporting this conclusion are studied in
detail on academic partial differential equations in two and three dimensions.

Chapters 2 and 3 have provided several examples of variable multilevel precondition-
ers (i.e. the preconditioner is not a fixed linear operator). These preconditioners must
be used with a specific class of Krylov subspace methods named flexible Krylov subspace
methods. In addition to preconditioning, it is known that deflation and augmentation
are two features that can improve the rate of convergence of Krylov subspace meth-
ods. Hence, in Chapter 4, we propose and analyse flexible Krylov subspace methods
combining spectral deflation and/or augmentation. We also derive advanced flexible
Krylov subspace methods for the solution of linear systems with multiple right-hand
sides given simultaneously. The efficiency of the numerical methods is finally demon-
strated on challenging large-scale applications in seismics requiring the solution of huge
linear systems of equations with multiple right-hand sides on parallel distributed mem-
ory computers.

In Chapter 5, we briefly explore prospectives towards the numerical solution of de-
terministic or stochastic partial differential equations on future computing platforms.
Indeed, new algorithms should be designed to be able to exploit as efficiently as possi-
ble the power of extreme scale computers. We address a few research prospectives on
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both multilevel preconditioners and Krylov subspace methods. Current prospectives
are illustrated on applications related to porous media flows in reservoir modelling or
structural mechanics.

The manuscript ends with two appendices and references.

How to read the manuscript
Chapters 2, 3 and 4 aim at providing an overview of the main results that have been
obtained so far. To go further in the analysis, the reader is referred first to the five se-
lected publications proposed in Appendix B, and then to the bibliography, respectively.
Emphasis is made on multilevel preconditioners and Krylov subspace methods, while
material related to partial differential equations can be found in reference textbooks.
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2. Geometric multigrid methods for
three-dimensional heterogeneous
Helmholtz problems

2.1. Objectives and contributions
2.1.1. Objectives
In this chapter, we focus on geometric multigrid methods for the solution of linear sys-
tems of equations arising from the discretization of partial differential equations. We
exclusively concentrate on a specific partial differential equation, the Helmholtz equa-
tion written in the frequency domain, modelling acoustic wave propagation phenomena
in an infinite medium. We are especially interested in solving wave propagation phe-
nomena in three-dimensional heterogeneous media, as required in applications such as
exploration seismology (oil exploration, earthquake modelling) and acoustic scattering.

Large scale heterogeneous Helmholtz problems are notoriously difficult to solve; see
[96, 100] for comprehensive surveys. Hence, providing robust iterative solution methods
with respect to both the mesh size and the frequency is still an open question, despite
the numerous attempts in the applied mathematics community related to, e.g., sparse
direct methods, domain decomposition or multigrid methods. In this chapter, our
objectives are twofold

• to propose and analyse geometric multigrid methods used as preconditioners of
Krylov subspace methods for the solution of large-scale linear systems arising in
this setting,

• to provide detailed numerical experiments focusing on the scalability properties
of the resulting numerical methods on massively parallel computers.

2.1.2. Contributions
The main contributions presented in this chapter are

• a multilevel extension of the geometric two-grid preconditioner for the solution of
three-dimensional heterogeneous Helmholtz problems proposed in [58] (also given
in Appendix B.4),

• a brief analysis of the resulting multilevel preconditioner based on rigorous Fourier
analysis given in [58],
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• a detailed report on numerical experiments, when discretizations based on either
second order or high order finite difference schemes are used.

These contributions concern algorithmic, theoretical and computational aspects of
multigrid methods, respectively.

Past contributions For the sake of brevity, we address a single (and currently chal-
lenging) topic in this chapter. Geometric multigrid methods for elliptic scalar PDEs
or nonlinear systems of PDEs have been considered by the author in the past. Indeed,
in his PhD thesis [252], the author proposed geometric multigrid methods in two and
three dimensions for the solution of linear systems with symmetric positive semidefinite
matrices in the context of Computational Fluid Dynamics [201, 202]. In addition, he
also proposed a nonlinear geometric multigrid method based on the Full Approximation
Scheme (FAS) [39] for the fully coupled solution of the incompressible Navier-Stokes
equations in three dimensions [252, Section 3.10] (see also [251] and [76] (given in Ap-
pendix B.1) for the derivation of the discrete formulation). We refer the reader to
[201, 202, 252] for a detailed description of these numerical methods, where numerical
experiments on both academic and realistic problems in fluid mechanics are reported
showing the efficiency of the linear and nonlinear multigrid solvers. Optimal solvers in
the sense of Definition 1.1 (i.e. the number of iterations is found to be independent of
the number of unknowns) were designed for such applications in Computational Fluid
Dynamics on both sequential and vector computing platforms at that time.

2.1.3. Specific notation

Classical generic notation specific to the multigrid setting is introduced here. Given a
physical domain Ω, the fine and coarse discrete levels denoted by h and H are associated
with discrete grids Ωh and ΩH , respectively. In geometric multigrid methods, a geomet-
ric construction of the coarse grid ΩH is considered. The discrete coarse grid domain
ΩH is then obtained from the discrete fine grid domain Ωh by doubling the mesh size
in each direction, as is standard in vertex-centered geometric multigrid [234]. Given a
continuous operator A defined on Ω, we assume that AH represents a suitable approx-
imation of the fine grid operator Ah on ΩH . We also introduce IH

h ∶ G(Ωh) → G(ΩH)
a restriction operator, where G(Ωk) denotes the set of grid functions defined on Ωk.
Similarly Ih

H ∶ G(ΩH) → G(Ωh) will represent a given prolongation operator. More pre-
cisely, we select as a prolongation operator trilinear interpolation and as a restriction
its adjoint which is often called the full weighting operator [234]. We refer the reader
to [247, Section 2.9] for a complete description of these operators in three dimensions.

2.1.4. Synopsis

We first propose a selective (and therefore incomplete) literature review related to nu-
merical methods for the simulation of wave propagation in heterogeneous media in
Section 2.2. In Section 2.3, we briefly describe the continuous and discrete settings.
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Then, we exclusively focus on multigrid methods used as preconditioners for the solu-
tion of large scale Helmholtz problems. We first describe in detail the complex shifted
Laplace preconditioner (Section 2.4) and then introduce the two-grid preconditioners
that have been proposed (Sections 2.5 and 2.6, respectively). In Section 2.7 we analyse
by rigorous Fourier analysis the main properties of the improved two-grid precondi-
tioner and illustrate its salient properties on a realistic three-dimensional problem in
geophysics in Section 2.8. Conclusions are proposed in Section 2.9.

2.2. Literature review

In a finite element setting, it is known that the standard variational formulation of the
Helmholtz equation is sign-indefinite (i.e. not coercive) [181]. This means that it is diffi-
cult to find error estimates for the Galerkin method that are explicit in the wavenumber,
and to prove anything a priori about how iterative methods behave when solving the
Galerkin linear system. The literature on iterative solvers for discrete Helmholtz prob-
lems is thus quite rich and we refer the reader to the survey papers [96, 100] for a
taxonomy of advanced preconditioned iterative methods based on domain decomposi-
tion or multigrid methods. We briefly comment on a few references amongst this rich
literature.

Advanced sparse direct solvers Recent advances in sparse direct methods based on
Gaussian elimination (multifrontal methods) have allowed the efficient treatment of
large matrices; see, e.g., the monographs [73, 84]. Factorization based on low-rank
approximation or hierarchically structured solvers have been designed to considerably
lower the complexity in both factorization and solution phases; see, e.g., [259, 260].
In such a setting, applications to the Helmholtz equation in heterogeneous media have
been provided in [10, 263] in the context of the MUMPS software [7, 8, 9]. In this
family, we mention the moving PML sweeping method [203] based on a block incomplete
LDU factorization. Hierarchical H-matrix compression techniques are key aspects in
this algorithm leading to attractive complexities. If N denotes the total number of
unknowns, the computation of the preconditioner requiresO(Nα) operations with α > 1,
whereas the action of the preconditioner requires O(Nlog N) operations. This is the
first method with this property.

Domain decomposition methods We refer the reader to [246, Section 11.5.2] for an
excellent review of domain decomposition preconditioners for the solution of Helmholtz
problems. We note that, in the case of homogeneous media, the FETI-H non-overlapping
domain decomposition method [101], a generalization of the FETI method [103] dis-
cussed in Section 3.4 for Helmholtz type problems, exhibits a rate of convergence that
is independent of the fine grid step size, the number of subdomains, and the wavenum-
ber. The case of heterogeneous media is of course much more complex, as expected.
Recent advances related to non-overlapping domain decomposition methods have been
proposed; the research has focused on the design of optimized interface (or transmis-
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sion) conditions; see, e.g., [117, 232, 254]. In [232], Stolk proposed a rapidly converging
domain decomposition method with transmission conditions based on the perfectly
matched layer that leads to a numerical method with a near linear complexity. The
method is scalable in the sense of Definition 1.2, i.e., the number of iterations is essen-
tially independent of the number of subdomains.

Multigrid methods When the medium is homogeneous (or similarly when the wavenum-
ber is uniform), efficient multigrid solvers have been proposed in the literature. We
mention the wave-ray multigrid method [41] which exploits the structure of the error
components that standard multigrid methods fail to eliminate [43]. In this chapter, we
prefer to focus on the case of three-dimensional Helmholtz problems defined in hetero-
geneous media for which the design of iterative methods that are robust with respect
to the frequency for such indefinite problems is currently an active research topic.

In [25] Bayliss et al. considered preconditioning the Helmholtz operator with a dif-
ferent operator. A few iterations of the symmetric successive over-relaxation method
were then used to approximately invert a Laplace preconditioner. Later this work was
generalized by Magolu Monga Made et al [170] and Laird and Giles [163], who proposed
a Helmholtz preconditioner with a positive sign in front of the Helmholtz term. In [95,
99] Erlangga et al. further extended this idea: a modified Helmholtz operator with a
complex wavenumber (i.e., where a complex term (hereafter named complex shift) mul-
tiplies the square of the wavenumber) was used as a preconditioner of the Helmholtz
operator. This preconditioning operator is referred to as a complex shifted Laplace op-
erator in the literature. This idea has received a lot of attention over the last few years;
see among others [98, 99, 123]. Indeed, with an appropriate choice of the imaginary
part of the shift, standard multigrid methods can be applied successfully, i.e., the con-
vergence of the multigrid method as a solver or as a preconditioner applied to a complex
shifted Laplace operator is mathematically found to be mesh independent at a given
frequency [207]. Nevertheless, when a multigrid method applied to a shifted Laplace
operator is considered as a preconditioner for the Helmholtz operator, the convergence
is found to be frequency dependent as observed in [37, 207]. This behaviour occurs
independently of the way the preconditioner is inverted (approximately or exactly). A
linear increase in preconditioner applications versus the frequency is usually observed
on three-dimensional problems in heterogeneous media. In practice, preconditioning
based on a complex shifted Laplace operator is considered nowadays as a successful
algorithm for low to medium range frequencies.

At high frequency (or equivalently at large wavenumbers), numerical results on the
contrary show a steep increase in the number of outer iterations (see, e.g., [207] for
a concrete application in seismic imaging). The analysis of the shifted Laplace pre-
conditioned operator provided in [123] has indeed shown that the smallest eigenvalues
in modulus of the preconditioned operator tend to zero as the wavenumber increases.
Hence, it becomes essential to combine this preconditioner with deflation techniques to
yield an efficient numerical method as analysed in [97, 222]. As far as we know, the
resulting algorithms have not yet been applied to concrete large-scale applications on
realistic three-dimensional heterogeneous problems. This is indeed a topic of current
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research most likely due to the complexity of the numerical method. Alternatives are
required and will be proposed in this chapter.

Two recent approaches First we would like to mention the recent approach proposed
by Zepeda-Núñez and Demanet [270] based on the combination of domain partition-
ing and integral equations with application to two-dimensional acoustic problems. The
method decomposes the domain into layers, and uses transmission conditions in bound-
ary integral form to explicitly define polarized traces, i.e., up- and down-going waves
sampled at interfaces. The method exhibits an online runtime of O(N/P ) in two di-
mensions, where N is the number of degrees of freedom and P is the number of nodes,
in a distributed memory environment, provided that P = O(N1/8). A low number of
Krylov subspace iterations is obtained on realistic two-dimensional heterogeneous prob-
lems independently of the frequency, making this algorithm very competitive. As far
as we know, this method has not yet been extended to three-dimensional problems.
Secondly, Liu and Ying [168, 169] have proposed enhancements of the sweeping precon-
ditioner leading to a O(N) complexity for both the setup phase and the preconditioner
application with numerical experiments in three dimensions.

2.3. Problem setting

We specify the continuous and discrete versions of the heterogeneous Helmholtz problem
that we consider throughout this chapter.

2.3.1. Mathematical formulation at continuous level

Given a three-dimensional physical domain Ωp of parallelepiped shape, the propagation
of a wavefield in a heterogeneous medium can be modelled by the Helmholtz equation
written in the frequency domain [238]

−
3
∑
i=1

∂2u

∂x2
i

− (2πf)2
c2 u = δ(x − s), x = (x1, x2, x3) ∈ Ωp. (2.1)

In equation (2.1), the unknown u represents the pressure wavefield in the frequency
domain, c the acoustic-wave velocity in ms−1, which varies with position, and f the
frequency in Hertz. The source term δ(x−s) represents a harmonic point source located
at s = (s1, s2, s3) ∈ Ωp. The wavelength λ is defined as λ = c/f and the wavenumber
as 2πf/c. A popular approach - the Perfectly Matched Layer formulation (PML) [30,
31] - has been used in order to obtain a satisfactory near boundary solution, without
many artificial reflections. Artificial boundary layers are then added around the physical
domain to absorb outgoing waves at any incidence angle as shown in [30]. We denote
by ΩP ML the surrounding domain created by these artificial layers. This formulation
leads to the following set of coupled partial differential equations with homogeneous

11



2. Geometric multigrid methods for three-dimensional heterogeneous Helmholtz problems

Dirichlet boundary conditions imposed on Γ, the boundary of the domain

−
3
∑
i=1

∂2u

∂x2
i

− (2πf)2
c2 u = δ(x − s) in Ωp, (2.2)

−
3
∑
i=1

1
ξxi(xi)

∂

∂xi
( 1
ξxi(xi)

∂u

∂xi
) − (2πf)2

c2 u = 0 in ΩP ML/Γ, (2.3)

u = 0 on Γ, (2.4)

where the one-dimensional ξxi function represents the complex-valued damping function
of the PML formulation in the i-th direction, selected as in [195]. The set of equations
(2.2, 2.3, 2.4) defines the forward problem related to acoustic imaging in geophysics
that will be considered in this chapter. We note that the proposed numerical method
can be applied to other application fields, where wave propagation phenomena appear
as well.

2.3.2. Mathematical formulation at a discrete level
Second-order finite difference scheme

As frequently used in the geophysics community, we have considered a standard second-
order accurate seven-point finite difference discretization of the Helmholtz problem (2.2,
2.3, 2.4) on a uniform equidistant Cartesian grid of size nx×ny ×nz (see [200, Appendix
A] for a complete description of the discretization). We denote later by h the corre-
sponding mesh grid size, Ωh the discrete computational domain and nP ML the number
of points in each PML layer. A fixed value of nP ML = 10 is used hereafter. Since a
stability condition has to be satisfied to correctly represent the wave propagation phe-
nomena [66], we consider a standard second-order accurate discretization scheme with
10 points per wavelength. This implies that the mesh grid size h and the minimum
wavelength in the computational domain must satisfy the following inequality [66]

h

min(x1,x2,x3)∈Ωh
λ(x1, x2, x3)

≤ 1
10

.

Hereafter, we have considered the following relation to determine the step size h, given
a certain frequency f and an heterogeneous velocity field c

h =
min(x1,x2,x3)∈Ωh

c(x1, x2, x3)
10 f

. (2.5)

Dispersion minimizing finite difference scheme

Since standard second-order finite difference schemes are often found to be too dispersive
[66], we have considered dispersion minimizing finite difference schemes. These schemes
are especially recommended when targeting the solution of heterogeneous Helmholtz
problems at high frequency, since they provide a pollution-free solution [65, 195, 233,
248]. In the context of multilevel algorithms, these schemes are also relevant for the

12



2.4. Complex shifted Laplace multigrid preconditioner

discretization of the coarse grid operator in order to provide the same dispersion level
on both the coarse and fine scales [233]. This feature has also been found beneficial
by several authors, see, e.g., [65, 233, 249]. Hereafter, we have considered the compact
finite difference scheme proposed by Harari and Turkel [143] based on Padé approxi-
mations, which leads to a finite difference discretization with a 27 point stencil in three
dimensions. This scheme is formally third-order accurate on general Cartesian grids
and fourth-order accurate on uniform grids. Following [25], given reference values for
both the frequency fref and the step size href and denoting by q the discretization
order of the finite difference scheme, we have used the following condition to determine
the step size h, given a certain frequency f

hq f q+1 = hq
ref f q+1

ref . (2.6)

Properties of the discrete linear system

The discretization of the forward problem (2.2, 2.3, 2.4) with finite difference schemes
leads to the following linear system Ah xh = bh, where Ah ∈ Cnh×nh is a sparse complex
matrix which is non Hermitian and non symmetric due to the PML formulation [31,
200, 228] and where xh, bh ∈ Cnh represent the discrete frequency-domain pressure field
and source, respectively. In addition, the right-hand side is usually very sparse. The
conditions (2.5 or 2.6) require solving large systems of equations at the (usually high)
frequencies of interest for the geophysicists, a task that may be too memory expensive
for standard [228, 229] or advanced sparse direct methods exploiting hierarchically semi-
separable structure [259, 260] on a reasonable number of cores of a parallel computer
(see Section 2.2). Consequently, preconditioned Krylov subspace methods are most of-
ten considered and efficient preconditioners must be developed for such problems. We
describe next in detail three preconditioners that have been proposed for the solution
of the forward problem related to acoustic imaging.

2.4. Complex shifted Laplace multigrid preconditioner
We briefly present a popular preconditioner for the Helmholtz equation, since it will
serve as a basis for the method presented in Section 2.6.

2.4.1. Algorithm and components

In [98, 99] Erlangga et al. have exploited the pioneering idea to define a preconditioning
operator based on a different partial differential equation for which a truly multilevel
solution is possible. The corresponding set of equations reads as

−
3
∑
i=1

∂2u

∂x2
i

− (1 + iβ)(2πf)2
c2 u = δ(x − s) in Ωp, (2.7)

−
3
∑
i=1

1
ξxi(xi)

∂

∂xi
( 1
ξxi(xi)

∂u

∂xi
) − (1 + iβ)(2πf)2

c2 u = 0 in ΩP ML/Γ, (2.8)

13



2. Geometric multigrid methods for three-dimensional heterogeneous Helmholtz problems

u = 0 on Γ, (2.9)

where the parameter 1 + iβ ∈ C is called the complex shift1. We introduce a sequence
of l grids denoted by Ω1,⋯, Ωl (with Ωl as the finest grid) and of appropriate operators
S
(β)
k (k = 1,⋯, l). Here S

(β)
k is simply obtained from the finite difference discretization

of (2.7, 2.8, 2.9) on Ωk. S
(β)
k is later called the complex shifted Laplace operator on

Ωk. In order to describe the algorithm in detail, we denote by Ik−1
k ∶ G(Ωk) → G(Ωk−1)

a restriction operator from Ωk to Ωk−1, Ik
k−1 ∶ G(Ωk−1)→ G(Ωk) a prolongation operator

from Ωk−1 to Ωk and C the cycling strategy (which can be of V , F or W type). The
complex shifted multigrid algorithm is then sketched in Algorithm 2.1. An illustration
is depicted in Figure 2.1.

Algorithm 2.1 Multigrid cycle (with a hierarchy of l grids) applied to S
(β)
l yl = wl.

yl =Ml,C(wl).
Input: Assume that the following is given

• S
(β)
k ∈ Cnk×nk ▷ complex shifted Laplace operators discretized on Ωk

(k = 1,⋯, l)
• wl ∈ Cnl ▷ right-hand side given on Ωl

• yl ∈ Cnl ▷ initial guess given on Ωl

1: Pre-smoothing: Apply νβ iterations of ωl-Jacobi to S
(β)
l yl = wl to obtain the ap-

proximation y
νβ

l .
2: Restrict the fine level residual: wl−1 = I l−1

l (wl − S
(β)
l y

νβ

l ).
3: Solve approximately the coarse problem S

(β)
l−1 yl−1 = wl−1 with initial approximation

y0
l−1 = 0l−1: Apply recursively γ cycles of multigrid to S

(β)
l−1 yl−1 = wl−1 to obtain the

approximation yl−1. On the coarsest level (l = 1) apply ϑβ cycles of GMRES(mβ)
preconditioned by νβ iterations of ω1-Jacobi to S

(β)
1 y1 = w1 as an approximate

solver.
4: Perform the coarse level correction: ỹl = y

νβ

l + I l
l−1yl−1.

5: Post-smoothing: Apply νβ iterations of ωl-Jacobi to S
(β)
l yl = wl with initial approx-

imation ỹl to obtain the final approximation yl.

In Algorithm 2.1, the γ parameter controls the type of cycling strategy of the multigrid
hierarchy, see, e.g., [234]. Trilinear interpolation and full-weighting are used as prolon-
gation and restriction operators, respectively. An approximate solution on the coarsest
level is considered as in the two-grid approach proposed next in Section 2.5. We note
that the approximation at the end of the cycle yl can be represented as yl =Ml,C(wl)
where Ml,C is a nonlinear function, since a Krylov subspace method (namely precon-
ditioned GMRES(mβ)) is used as an approximate solver on the coarsest grid Ω1. The

1In [99] the authors have introduced the complex shifted Laplace with a negative imaginary part
for the shift in the case of first- or second-order radiation boundary conditions. Due to the PML
formulation considered in this paper, we have used a shift with positive imaginary part to derive an
efficient preconditioner as explained in [200, Section 3.3.2].
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Ωh

Ω2h

Ω4h

Figure 2.1.: Complex shifted Laplace multigrid cycle applied to S
(β)
l yl = wl sketched in

Algorithm 2.1. M3,V (left) and of M3,F (right). A ● symbol represents a
smoothing step, while the ◻ symbol represents an approximate coarse grid
solution.

multigrid cycle of Algorithm 2.1 is based on a Jacobi smoother as promoted in [98]
and slightly differs from the original algorithm proposed in [98]. Indeed Erlangga et al.
[98] have used the matrix-dependent interpolation operator of [269], a Galerkin coarse
grid approximation to deduce the discrete coarse operators and an exact solution on
the coarsest grid. For three-dimensional applications, Erlangga [96] and Riyanti et al.
[207] have proposed a multigrid method with a two-dimensional semi-coarsening strat-
egy combined with line-wise damped Jacobi smoothing in the third direction. A cycle
of multigrid acting on this complex shifted Laplace operator is then considered as a
preconditioner for the Helmholtz operator.

2.4.2. Properties

Since its introduction, this preconditioning technique based on a different partial dif-
ferential equation has been widely used, see, e.g., [37, 65, 94, 93, 207, 233, 255] for
applications in three dimensions. The theoretical properties of this preconditioner have
been investigated in [123], where it has been shown that the eigenvalues of the precon-
ditioned operator move to zero as the frequency increases. An immediate consequence
is that a strong increase in terms of preconditioner applications is observed for the
medium to high frequency range. This has been shown in [100] by Fourier Analysis
in a one-dimensional setting. We note that a theoretical analysis in the framework of
finite element discretization has been proposed more recently; see [114]. An illustration
is given in Figure 2.2 for a realistic application described in Section 2.8. Although
the frequency (10 Hz) is moderate, we observe Ritz and harmonic Ritz values close
to the origin in the complex plane as expected. This induces an increase in terms of
preconditioner applications as reported later in Section 2.8.

Hence, deflation or augmentation methods have to be employed in combination with
preconditioning to improve the convergence rate of the numerical method; see Chapter
4. This has been recently pursued in [222]. Nevertheless, these techniques may be
expensive especially for applications in three dimensions at high frequency.
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Figure 2.2.: EAGE/SEG Salt dome problem (f = 10 Hz, 927 × 927 × 287 grid). Ritz
and harmonic Ritz values (circles and crosses, respectively) of FGMRES(5)
with two different variable preconditioners: M3,V (left part) and M3,F

(right part) along convergence. Figure 7 of [58].

2.5. Basic two-grid preconditioner

We briefly examine the two-grid preconditioner proposed by Xavier Pinel in his PhD
thesis [200]. We will use this geometric preconditioner in the numerical experiments
related to the solution of linear systems with multiple right-hand sides presented in
Chapter 4.

2.5.1. Algorithm and components

The two-grid cycle to be used as a preconditioner is sketched in Algorithm 2.2, where it
is assumed that the initial approximation z0

h is equal to zero on Ωh, denoted later by 0h.
As in [92, 250], polynomial smoothers based on GMRES [218] have been selected for
both pre- and post-smoothing phases. Here a cycle of preconditioned GMRES(ms) on
Ωh involves ms matrix-vector products with Ah and msν iterations of damped Jacobi.
Finally, we note that the approximation at the end of the cycle zh can be represented
as zh = T (vh) where T is a nonlinear function due both to the use of a polynomial
method based on GMRES as a smoother and to the approximate solution obtained on
the coarse grid.

2.5.2. Properties

In the framework of indefinite Helmholtz problems with homogeneous velocity field,
solving only approximately the coarse level problem has been analysed by rigorous
Fourier analysis in [200]. Theoretical developments supported by numerical experiments
have notably shown that solving the coarse level problem approximately may lead to an
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Algorithm 2.2 Two-grid cycle applied to Ahzh = vh. zh = T (vh).
Input: Assume that the following is given

• Ah ∈ Cnh×nh ▷ Helmholtz operator discretized on the fine grid Ωh

• AH ∈ CnH×nH ▷ Helmholtz operator discretized on the coarse grid ΩH

• vh ∈ Cnh ▷ right-hand side given on Ωh

• zh ∈ Cnh ▷ initial guess given on Ωh

1: Polynomial pre-smoothing: Apply ϑ cycles of GMRES(ms) to Ahzh = vh with ν
iterations of ωh-Jacobi as a right preconditioner to obtain the approximation zϑ

h .
2: Restrict the fine level residual: vH = IH

h (vh −Ahzϑ
h).

3: Solve approximately the coarse problem AHzH = vH with initial approximation
z0

H = 0H : Apply ϑc cycles of GMRES(mc) to AHzH = vH with νc iterations of
ωH -Jacobi as a right preconditioner to obtain the approximation zH .

4: Perform the coarse level correction: z̃h = zϑ
h + Ih

H zH .
5: Polynomial post-smoothing: Apply ϑ cycles of GMRES(ms) to Ahzh = vh with

initial approximation z̃h and ν iterations of ωh-Jacobi as a right preconditioner to
obtain the final approximation zh.

efficient two-grid preconditioner. We refer the reader to [200, Section 3.4] for a complete
analysis on three-dimensional academic model problems. Nevertheless, one of the main
difficulties related to the two-grid preconditioner presented in this section is that the
coarse linear system becomes indefinite as the frequency grows due to the condition
(2.5). This is illustrated in Figure 2.3. Consequently, to derive an efficient numerical
method in the high frequency range, it is mandatory to find an efficient coarse grid
preconditioner. This is the main goal of the new multigrid preconditioner presented
next.

2.6. Improved two-grid preconditioner

We now introduce the main contribution of this chapter. This two-grid preconditioner
will be later analysed in Section 2.7 and related detailed numerical experiments will be
reported in Section 2.8.

2.6.1. Algorithm and components

We introduce a multigrid cycle acting on a complex shifted Laplace operator as a pre-
conditioner for the coarse grid system AHzH = vH defined on ΩH . The complex shifted
Laplace operator is simply obtained by direct coarse grid discretization of equations
(2.7,2.8,2.9) on ΩH . The new cycle can be seen as a combination of two cycles defined
on two different hierarchies. Firstly, a two-grid cycle using Ωh and ΩH only as fine and
coarse levels respectively is applied to the Helmholtz operator. Secondly, a sequence
of grids Ωk (k = 1,⋯, l) with the finest grid Ωl defined as Ωl ∶= ΩH is introduced. On
this second hierarchy a multigrid cycle applied to a complex shifted Laplace opera-
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Figure 2.3.: EAGE/SEG Salt dome problem (f = 10 Hz, 927 × 927 × 287 grid) using a
basic two-grid preconditioner. Cumulative Ritz and harmonic Ritz values
(circles and crosses, respectively) obtained when solving the coarse grid
problems AHzH = vH . FGMRES(10) is used as a Krylov subspace solver on
the coarse level. Hence 10 Ritz (or harmonic) approximations are obtained
per cycle.

tor S
(β)
H ∶= S

(β)
l is then used as a preconditioner when solving the coarse level system

AHzH = vH of the two-grid cycle. The new combined cycle is sketched in Algorithm
2.3.

The notation Tl,C uses subscripts related to the cycle applied to the shifted Laplace
operator (i.e. number of grids l of the second hierarchy and cycling strategy C (which
can be of V , F or W type), respectively). The combined cycle then involves discretiza-
tion of operators on l+1 grids in total. Hence later in the numerical experiments we will
compare Tl,C with Ml+1,C . Figure 2.4 shows a possible configuration with a three-grid
cycle applied to the shifted Laplace operator. The combined cycle is related to the re-
cursively defined K-cycle introduced in [193]. Nevertheless, we note that the combined
cycle relies on a preconditioning operator on the coarse level that is different from the
original operator. The approximation at the end of the cycle zh can be represented
as zh = Tl,C(vh) where Tl,C is a nonlinear function obtained as a combination of func-
tions introduced in Sections 2.4 and 2.5, respectively. Consequently, this cycle leads
to a variable nonlinear preconditioner which must be combined with an outer flexible
Krylov subspace method [223, 224] and [253, Chapter 10].

2.6.2. Properties

As an illustration, Figure 2.5 represents the cumulative Ritz and harmonic Ritz infor-
mation obtained along convergence on the coarse level. The approximations are located
on the right part of the complex plane and are relatively clustered. This is a favourable
situation when using flexible GMRES as an approximate coarse solver. The comparison
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Algorithm 2.3 Combined cycle applied to Ahzh = vh. zh = Tl,C(vh).
Input: Assume that the following is given

• Ah ∈ Cnh×nh ▷ Helmholtz operator discretized on the fine grid Ωh

• AH ∈ CnH×nH ▷ Helmholtz operator discretized on the coarse grid ΩH

• vh ∈ Cnh ▷ right-hand side given on Ωh

• zh ∈ Cnh ▷ initial guess given on Ωh

• S
(β)
k ∈ Cnk×nk ▷ complex shifted Laplace operators discretized on Ωk

(k = 1,⋯, l)
1: Polynomial pre-smoothing: Apply ϑ cycles of GMRES(ms) to Ahzh = vh with ν

iterations of ωh-Jacobi as a right preconditioner to obtain the approximation zϑ
h .

2: Restrict the fine level residual: vH = IH
h (vh −Ahzϑ

h).
3: Solve approximately the coarse problem AHzH = vH with initial approximation

z0
H = 0H : Apply ϑc cycles of FGMRES(mc) to AHzH = vH preconditioned by a

cycle of multigrid applied to S
(β)
l yl = wl on Ωl ≡ ΩH yielding yl = Ml,C(wl) to

obtain the approximation zH .
4: Perform the coarse level correction: z̃h = zϑ

h + Ih
HzH .

5: Polynomial post-smoothing: Apply ϑ cycles of GMRES(ms) to Ahzh = vh with
initial approximation z̃h and ν iterations of ωh-Jacobi as a right preconditioner to
obtain the final approximation zh.

with Figure 2.3 is striking. We refer the reader to Section 2.8 for a complete analysis
of the efficiency of the new multigrid preconditioner on a realistic three-dimensional
problem.

We will investigate the properties of the improved two-grid preconditioner theoreti-
cally. We will mostly rely on rigorous Fourier analysis to select appropriate smoothers
and to analyse the two-grid iteration error matrix. This is examined next.

2.7. Fourier analysis of multigrid preconditioners
In this section, we provide a two-grid rigorous Fourier analysis to select appropriate
relaxation parameters in the smoother and to understand the convergence properties
of the two-grid methods used as a preconditioner introduced in Sections 2.4, 2.5 and
2.6. For this analysis only, we consider a two-grid method based on a Jacobi smoother,
standard coarsening, full-weighting, trilinear interpolation and exact solution on the
coarse grid, applied to a model problem of Helmholtz type discretized with a standard
second-order finite difference scheme. We refer the reader to [234, 239] for the theoretical
foundations of rigorous Fourier analysis.

2.7.1. Notation specific to Fourier analysis

Throughout Section 2.7, we consider the complex shifted Laplace equation with a uni-
form wavenumber given by k = 2πf/c on the unit cube Ω = [0, 1]3 and with homogeneous
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Ω3

Ω2

Ω1

Ωh

ΩH

AHzH = vH AHzH = vH

Cycle applied to the original Helmholtz operator

used as a preconditioner when solving
Cycle applied to the complex shifted Laplace operator S

(β)
3 ≡ S

(β)
H

Figure 2.4.: Combined cycle applied to Ahzh = vh sketched in Algorithm 2.3 using T3,F .
The two-grid cycle is applied to the Helmholtz operator (left part), whereas
the three-grid cycle to be used as a preconditioner when solving the coarse
grid problem AHzH = vH is shown on the right part. This second multigrid
cycle acts on the shifted Laplace operator with β as a shift parameter.
Figure 1 of [58].
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Figure 2.5.: EAGE/SEG Salt dome problem (f = 10 Hz, 927× 927× 287 grid) using an
improved two-grid preconditioner T2,V . Cumulative Ritz and harmonic Ritz
values (circles and crosses, respectively) obtained when solving the coarse
grid problems AHzH = vH . FGMRES(10) is used as a Krylov subspace
solver on the coarse level. Hence 10 Ritz (or harmonic) approximations are
obtained per cycle.

20



2.7. Fourier analysis of multigrid preconditioners

Dirichlet boundary conditions on the boundary of the domain:

−∆u − κ2
βu = g in Ω, (2.10)
u = 0 on ∂Ω, (2.11)

with κβ defined as κ2
β = (1 + βi)k2, where β denotes a real parameter lying in [0, 1]. A

classical tool in multigrid theory to deduce information about the two-grid convergence
rate is based on a rigorous Fourier analysis (RFA) [247, Section 3.3.4]. To perform
this analysis, we introduce some additional notation. Firstly, we discretize the model
problem (2.10, 2.11) on an uniform mesh of step size χ = 1/nχ. We denote by L

(β)
χ

the corresponding discrete operator on the fine grid Ωχ = Gχ ∩ [0, 1]3 where Gχ is the
infinite grid and by D

(β)
χ the matrix corresponding to the diagonal part of L

(β)
χ . The

discrete eigenfunctions of L
(β)
χ :

ϕl1,l2,l3
χ (x, y, z) = sin(l1πx) sin(l2πy) sin(l3πz)
with l1, l2, l3 = 1, ..., nχ − 1 and (x, y, z) ∈ Ωχ,

generate the space of all fine grid functions, F (Ωχ), and are orthogonal with respect to
the discrete inner product on Ωχ:

(vχ, wχ) ∶= χ3 ∑
(x,y,z)∈Ωχ

vχ(x, y, z)wχ(x, y, z) with vχ, wχ ∈ F (Ωχ).

The space of all fine grid real-valued functions F (Ωχ) can be divided into a direct sum of
(at most) eight-dimensional subspaces - called the 2χ-harmonics [247, Equation (3.4.1)]
- :

El1,l2,l3
χ = span[ϕl1,l2,l3

χ ,−ϕ
nχ−l1,nχ−l2,nχ−l3
χ ,−ϕ

nχ−l1,l2,l3
χ , ϕ

l1,nχ−l2,nχ−l3
χ ,

−ϕ
l1,nχ−l2,l3
χ , ϕ

nχ−l1,l2,nχ−l3
χ ,−ϕ

l1,l2,nχ−l3
χ , ϕ

nχ−l1,nχ−l2,l3
χ ],

for l1, l2, l3 = 1,⋯, nχ/2.

The dimension of El1,l2,l3
χ , denoted by ηl1,l2,l3

χ , is eight, four, two and one if zero, one,
two or three of the indices l1, l2, l3 is equal to nχ/2, respectively. Similarly as on the
fine grid Ωχ, we introduce the discrete eigenfunctions of the coarse grid operator L

(β)
2χ

on the space of all coarse grid functions F (Ω2χ) with Ω2χ = G2χ ∩ [0, 1]3:

ϕl1,l2,l3
2χ (x, y, z) = sin(l1πx) sin(l2πy) sin(l3πz),

with l1, l2, l3 = 1, ...,
nχ

2
− 1 and (x, y, z) ∈ Ω2χ.

El1,l2,l3
2χ is then defined as span[ϕl1,l2,l3

2χ ] since the eigenfunctions of L2χ coincide up to
their sign on Ω2χ for l1, l2, l3 = 1,⋯, nχ/2 [247]. We denote later by ` the multi-index ` =
(l1, l2, l3), by Lχ = {` ∣1 ≤max(l1, l2, l3) < nχ/2} and by Hχ = {` ∣nχ/2 ≤max(l1, l2, l3) <
nχ} the sets of multi-indices corresponding to the low-frequency and high-frequency
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harmonics, respectively. We also define the set L=χ = {` ∣1 ≤max(l1, l2, l3) ≤ nχ/2}. Later
in this section, the Fourier representation of a given discrete operator Mχ is denoted
by M̂χ and the restriction of M̂χ to E`

χ with ` ∈ Lχ is denoted by M̂χ(`) = M̂χ∣E`
χ

in short. The Fourier representation of the discrete Helmholtz operator L
(β)
χ and the

Jacobi iteration matrix J
(β)
χ are denoted by L̂

(β)
χ and Ĵ

(β)
χ , respectively. To write the

Fourier representation of these operators in a compact form, we also introduce the ξi

parameters such that ξi = sin2 ( liπχ

2
) for i = 1, 2, 3. Finally we denote by χ = h the

finest mesh grid size considered, nh the corresponding number of points per direction
and kχ the wavenumber on the grid with mesh size χ.

2.7.2. Smoother analysis

The multigrid method acting on a complex shifted Laplace operator presented in Algo-
rithm 2.1 is based on a Jacobi smoother as used in [98] in two dimensions. Indeed in
[98] it has been numerically shown that this method enjoys good smoothing properties
on all the grids of the hierarchy when the relaxation parameters ωχ are well chosen. In
Proposition 2.1, we give the Fourier representation of the Jacobi iteration matrix J

(β)
χ

applied to the complex shifted Laplace matrix L
(β)
χ . Then we derive related smoothing

factors and, by numerical experiments, we deduce appropriate damping parameters to
obtain good smoothing properties in three dimensions.

Proposition 2.1. The harmonic spaces E`
χ for ` ∈ L=χ are invariant under the Jacobi

iteration matrix J
(β)
χ = Iχ−ωχ(D(β)χ )−1L

(β)
χ (J(β)χ ∶ E`

χ Ð→ E`
χ, for ` ∈ L=χ). The operator

J
(β)
χ is orthogonally equivalent to a block diagonal matrix of (at most) 8×8 blocks defined

as:

Ĵ(β)χ (`) = Iη`
χ
− ( ωχχ2

6 − (κβχ)2) L̂(β)χ (`), ` ∈ L=χ, (2.12)

where L̂
(β)
χ denotes the representation of the complex shifted Laplace operator L

(β)
χ with

respect to the space E`
χ and η`

χ the dimension of E`
χ, respectively. With the notation

introduced in Section 2.7.1, if ` ∈ Lχ, the representation of L̂
(β)
χ with respect to E`

χ is a
diagonal matrix defined as:

L̂(β)χ (`) = diag

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

4
χ2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(ξ1 + ξ2 + ξ3)
(3 − ξ1 − ξ2 − ξ3)
(1 − ξ1 + ξ2 + ξ3)
(2 + ξ1 − ξ2 − ξ3)
(1 + ξ1 − ξ2 + ξ3)
(2 − ξ1 + ξ2 − ξ3)
(1 + ξ1 + ξ2 − ξ3)
(2 − ξ1 − ξ2 + ξ3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

−κ2
β

−κ2
β

−κ2
β

−κ2
β

−κ2
β

−κ2
β

−κ2
β

−κ2
β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, ` ∈ Lχ. (2.13)
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2.7. Fourier analysis of multigrid preconditioners

If one of the indices of ` equals nχ/2, L̂
(β)
χ (`) degenerates to a diagonal matrix of

dimension η`
χ. Its entries then correspond to the first η`

χ entries of the matrix given on
the right-hand side of relation (2.13).

Proof. See Proposition 1 in [58]. Obviously, since the eigenfunctions spanning E`
χ are

eigenfunctions of L
(β)
χ , the harmonic spaces E`

χ (` ∈ Lχ) are invariant under L
(β)
χ and

hence invariant under J
(β)
χ . The representation of L

(β)
χ with respect to the harmonic

space E`
χ is obtained by writing the eigenvalues of the basis functions of E`

χ in terms of
ξi, a straightforward calculation that only involves trigonometric identities.

The representation of the Jacobi iteration matrix in the Fourier space obtained in
Proposition 2.1 allows us to easily investigate its smoothing properties, i.e., to compute
the smoothing factor µ versus various parameters (β, mesh grid size χ, wavenumber kχ

and relaxation parameter ωχ, respectively). With ν denoting the number of relaxation
sweeps, the smoothing factor µ(β, χ, kχ, ωχ) is defined as follows [265]

µ(β, χ, kχ, ωχ) = max
`∈L=χ
∣(ρ(Q̂χ(`) (Ĵ(β)χ (`))ν)1/ν ∣, (2.14)

where Q̂χ is the matrix representation of a projection operator that annihilates the
low-frequency error components and leaves the high-frequency components unchanged
[234], e.g., Q̂χ(`) = diag((0, 1, 1, 1, 1, 1, 1, 1)T ) for ` ∈ Lχ. In addition if we assume
that κβχ (or similarly kχχ) is a given constant (which is the case in practice due
to the stability condition to be satisfied) it is then possible to deduce the supremum
µ⋆(β, χ, kχ, ωχ) of the smoothing factor over χ as

µ⋆(β, χ, kχ, , ωχ) = max
⎧⎪⎪⎨⎪⎪⎩
∣1 − ωχ

2 − κ2
βχ2

6 − κ2
βχ2 ∣, ∣1 − ωχ

12 − κ2
βχ2

6 − κ2
βχ2 ∣

⎫⎪⎪⎬⎪⎪⎭
, (2.15)

or similarly

µ⋆(β, χ, kχ, ωχ) =max{∣1 − ωχ +
4ωχ

6 − (1 + iβ)k2
χχ2 ∣, ∣1 − ωχ −

6ωχ

6 − (1 + iβ)k2
χχ2 ∣} . (2.16)

For a fixed value of kχχ this formula can then give guidance in choosing the optimal
relaxation parameters and in understanding how the optimal value of the relaxation
parameter ω⋆χ depends on kχχ and on β, respectively. Indeed a simple calculation gives
the real-valued optimal relaxation parameter as

ω⋆χ = 1 − 1
7 − k2

χχ2 .

We notice that the optimal value of the relaxation parameter does not depend on the
shift parameter β and note that we recover the optimal relaxation parameter and the
supremum of the smoothing factor of the Jacobi method for the Poisson equation in
three dimensions when kχ is set to zero [247, Section 2.9.2].
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2. Geometric multigrid methods for three-dimensional heterogeneous Helmholtz problems

2.7.3. Preconditioner analysis

Assumptions on the components of the cycle

In this paragraph, we assume that both the fine grid operator and the smoother leave the
spaces E`

χ invariant for ` ∈ L=χ. As shown in Proposition 2.1, L
(β)
χ and the corresponding

Jacobi iteration matrix J
(β)
χ do satisfy this invariance property. Furthermore we assume

that the transfer operators I2χ
χ , Iχ

2χ satisfy the following relations

I2χ
χ ∶ E`

χ → span[ϕ`
2χ], Iχ

2χ ∶ span[ϕ`
2χ]→ E`

χ, for ` ∈ Lχ. (2.17)

and that the coarse discretization operator leaves the subspace span[ϕ`
2χ] invariant for

` ∈ Lχ. We note that the discrete coarse Helmholtz matrix L
(β)
2χ satisfies this last prop-

erty and that the trilinear interpolation and its adjoint also satisfy relation (2.17) [247].

Proposition 2.2. If the previous assumptions are satisfied, the iteration matrix of the
two-grid cycle (M (β)

χ ∶ E`
χ Ð→ E`

χ, for ` ∈ L=χ) leaves the spaces of 2χ-harmonics E`
χ

with an arbitrary ` ∈ L=χ invariant. The Fourier representation of the two-grid iteration
matrix M

(β)
χ is as a block-diagonal matrix of (at most) 8 × 8 blocks defined as:

M̂ (β)
χ (`) = (Ĵ(β)χ (`))νK̂

(β)
χ,2χ(`)(Ĵ

(β)
χ (`))ν for ` ∈ L=χ, (2.18)

with K̂
(β)
χ,2χ(`) = I8 − [c dT ]/Λ(β)2χ if ` ∈ Lχ, where Λ(β)2χ =

4
χ2 ((1 − ξ1)ξ1 + (1 − ξ2)ξ2 + (1 −

ξ3)ξ3) − κ2
β and c ∈ R8 , d ∈ C8, are defined as follows

⎧⎪⎪⎪⎨⎪⎪⎪⎩

c1 = (1 − ξ1)(1 − ξ2)(1 − ξ3), c2 = ξ1ξ2ξ3, c3 = ξ1(1 − ξ2)(1 − ξ3), c4 = (1 − ξ1)ξ2ξ3,
c5 = (1 − ξ1)ξ2(1 − ξ3), c6 = ξ1(1 − ξ2)ξ3, c7 = (1 − ξ1)(1 − ξ2)ξ3, c8 = ξ1ξ2(1 − ξ3),
d = L̂

(β)
χ (`) c, where L̂

(β)
χ (`) is defined in equation (2.13).

If one of the indices of ` is equal to nχ/2, K̂
(β)
χ,2χ(`) is reduced to the identity matrix of

dimension η`
χ.

Proof. See Proposition 2 in [58]. Under the assumptions given above, it is straight-
forward to prove that the iteration matrix of the two-grid cycle leaves E`

χ for ` ∈ L=χ
invariant. We obtain formula (2.18) by just combining the Fourier representation of
each of its components. The complete details of these trigonometric calculations can
be found in [200, Section 3.3.1].

For the sake of brevity, the reader can find in [58] the complete numerical results re-
lated to the rigorous Fourier analysis. This analysis has allowed us to select appropriate
relaxation parameters in the Jacobi method that lead to acceptable smoothing factors
on all the grids of a complex shifted multigrid method in three dimensions (Figure 3
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of [58]). We have also shown the suitability of the complex shifted multigrid precondi-
tioner on the coarse level of a combined two-grid method (left part of Figure 4 of [58]).
Although rigorous Fourier analysis corresponds to a simplified analysis, numerical ex-
periments performed on a homogeneous velocity field studied in Section 5.2 of [58] have
supported these conclusions. We next investigate the performance of the preconditioner
on a realistic three-dimensional heterogeneous Helmholtz problem.

2.8. Numerical results on the SEG/EAGE Salt dome model

We illustrate the performance of the various preconditioners presented in Sections
2.4, 2.5 and 2.6 combined with Flexible GMRES(m) for the solution of the acoustic
Helmholtz problem (2.2, 2.3, 2.4) on a realistic heterogeneous velocity model used as a
benchmark in the geophysics community. The SEG/EAGE Salt dome model [11] is a
velocity field containing a salt dome in a sedimentary embankment. It is defined in a
parallelepiped domain of size 13.5× 13.5× 4.2 km3. The minimum value of the velocity
is 1500 m.s−1 and its maximum value is 4481 m.s−1. This test case is considered as
challenging due to both the occurrence of a geometrically complex structure (salt dome)
and to the truly large dimensions of the computational domain. In the subsections 2.8.2
to 2.8.4, we address three important aspects: the robustness with respect to frequency,
the strong scalability properties and the complexity analysis of the numerical method.

2.8.1. Settings

In the two-grid cycle of Algorithm 2.2, we consider as a smoother the case of one cycle
of GMRES(2) preconditioned by two iterations of damped Jacobi (ϑ = 1, ms = 2 and
ν = 2), a restarting parameter equal to mc = 10 for the preconditioned GMRES method
used on the coarse level and a maximum number of coarse cycles equal to ϑc = 10. In
the complex shifted multigrid cycle of Algorithm 2.1, we use a shift parameter equal to
β = 0.5 and two iterations of damped Jacobi as a smoother (νβ = 2). On the coarsest
level we consider as an approximate solver one cycle of GMRES(10) preconditioned by
two iterations of damped Jacobi (ϑβ = 1, mβ = 10 and νβ = 2). The previous parameters
were also used in Algorithm 2.3, with an exception made for ϑc set to 2. Finally, the
relaxation coefficients considered in the Jacobi method were determined by rigorous
Fourier analysis and are given by the following relation [58]

(ωh, ω2h, ω4h, ω8h) = (0.8, 0.8, 0.2, 1). (2.19)

We consider a value of the restarting parameter of the outer Krylov subspace method
equal to m = 5 as in [59, 200]. The unit source is located at

(s1, s2, s3) = (h nx1/2, h nx2/2, h (nP ML + 1))

where, e.g., nx1 denotes the number of points in the first direction. A zero initial
guess x0

h is chosen and the iterative method is stopped when the Euclidean norm of the
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2. Geometric multigrid methods for three-dimensional heterogeneous Helmholtz problems

residual normalized by the Euclidean norm of the right-hand side satisfies the following
relation

∣∣bh −Ahxh∣∣2
∣∣bh∣∣2

≤ 10−5. (2.20)

2.8.2. Robustness with respect to the frequency

As pointed out earlier, an increase of the frequency does lead to an increase in the
number of unknowns. Thus it is of paramount importance to analyse the behaviour
of the numerical methods when the frequency grows. In this section we analyse the
different preconditioners in this respect. The numerical results presented here (see [58])
have been obtained on Babel, a IBM Blue Gene/P computer located at IDRIS (each
node of Babel is equipped with 4 PowerPC 450 cores at 850 Mhz) using a Fortran
90 implementation with MPI [134] in complex single precision arithmetic (see [247,
Chapter 6] for the practical aspects related to the parallelization of geometric multigrid).
Physical memory on a given node (4 cores) of Babel is limited to 2 GB. This code was
compiled by the IBM compiler suite with the best optimization options and linked with
the vendor BLAS and LAPACK subroutines.
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T
f(Hz) h Grid # Cores Prec T (s) M (GB)

2.5 60 231 × 231 × 71 4 12 146 0.6
5 30 463 × 463 × 143 32 25 316 4.5

10 15 927 × 927 × 287 256 71 927 35.9
20 7.5 1855 × 1855 × 575 2048 248 3346 288.1
40 3.75 3711 × 3711 × 1149 16384 1000† 13912 2304.1

T2,V

f(Hz) h Grid # Cores Prec T (s) M (GB)
2.5 60 231 × 231 × 71 4 11 98 0.6

5 30 463 × 463 × 143 32 16 147 4.6
10 15 927 × 927 × 287 256 28 270 36.6
20 7.5 1855 × 1855 × 575 2048 73 748 293.8
40 3.75 3711 × 3711 × 1149 16384 283 3101 2349.9

M3,V

f(Hz) h Grid # Cores Prec T (s) M (GB)
2.5 60 231 × 231 × 71 4 98 132 0.5

5 30 463 × 463 × 143 32 217 300 3.8
10 15 927 × 927 × 287 256 445 638 30.5
20 7.5 1855 × 1855 × 575 2048 2485 4102 244.8
40 3.75 3711 × 3711 × 1149 16384 8000† - 1957.8

M3,F

f(Hz) h Grid # Cores Prec T (s) M (GB)
2.5 60 231 × 231 × 71 4 122 193 0.5

5 30 463 × 463 × 143 32 184 298 3.8
10 15 927 × 927 × 287 256 334 561 30.5
20 7.5 1855 × 1855 × 575 2048 2149 3764 244.8
40 3.75 3711 × 3711 × 1149 16384 8000† - 1957.8

Table 2.1.: Robustness with respect to frequency. Preconditioned flexible methods for
the solution of the Helmholtz equation for the heterogeneous velocity field
EAGE/SEG Salt dome using a second-order discretization with 10 points
per wavelength such that relation (2.5) is satisfied. Prec denotes the num-
ber of preconditioner applications, T the total computational time in sec-
onds and M the requested memory in GB. Two-grid (T ), complex shifted
multigrid cycles (M3,V , M3,F ) and combined cycles (T2,V ) are applied as
a preconditioner of FGMRES(5). Numerical experiments performed on a
IBM BG/P computer. A † superscript indicates that the maximum number
of preconditioner applications has been reached. Table IV of [58].

Table 2.1 collects the number of preconditioner applications (Prec), computational
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times (T) and maximum requested memory (M) for these variants (see also [58, Figure
8] for the plot of the convergence histories of the different numerical methods). With
respect to the two-grid cycle T , the new combined cycle T2,V is found to require a
reduced number of preconditioner applications. Indeed, if we consider the case of f =
20 Hz, we observe a significant reduction of preconditioner applications when comparing
the two-grid preconditioner T with the combined two-grid cycle T2,V (248 versus 73).
This also leads to a dramatic reduction of computational times (3346 s versus 748 s at
f = 20 Hz). The T2,V strategy always delivers the minimum computational times among
the four preconditioners with a clear advantage at medium to large frequencies. In this
range the complex shifted Laplace multigrid preconditioner is found to require a large
number of preconditioner applications, as expected. Nevertheless, we would like to stress
that the shifted preconditioner presented in Algorithm 2.1 is based on a combination
of standard multigrid components. It is most likely that the use of Galerkin coarse
grid approximation or of operator-dependent transfer operators would be beneficial to
improve the properties of the preconditioner when considering heterogeneous Helmholtz
problems. Despite the simplicity of the shifted preconditioner we remark that both
M3,V and M3,F strategies are more attractive than the two-grid preconditioner T
in terms of computational times at small to medium range frequencies (2.5 Hz, 5 Hz
and 10 Hz respectively). However at high frequencies (20 Hz and 40 Hz) a significant
increase in terms of preconditioning applications is observed for bothM3,V andM3,F .
We also notice that a shifted preconditioner based on a F-cycle is preferable when large
frequencies are considered, i.e. solving approximately the coarse problem twice in a
given cycle is found to be beneficial to the outer convergence.

2.8.3. Strong scalability

Hereafter, we only consider the T2,V preconditioner which has been found to be efficient
in Section 2.8.2 (see also [58] for additional numerical experiments that support this
conclusion). The numerical results presented in Sections 2.8.3 and 2.8.4 have been
obtained on Turing, a IBM Blue Gene/Q computer located at IDRIS (each node of
Turing is equipped with 16 PowerPC A2-64 bit cores at 1.6 Ghz) using a Fortran 90
implementation with MPI in complex single precision arithmetic. Physical memory on
a given node (16 cores) of Turing is limited to 16 GB.
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T2,V

f(Hz) Grid # Cores Prec T (s) τs

20 2303 × 2303 × 767 16384 29 586 1.00
20 2303 × 2303 × 767 32768 29 302 0.97
20 2303 × 2303 × 767 65536 29 164 0.89
20 2303 × 2303 × 767 131072 29 87 0.84

Table 2.2.: Strong scalability analysis. Preconditioned flexible methods for the solution
of the Helmholtz equation for the heterogeneous velocity field EAGE/SEG
Salt dome using a dispersion minimizing discretization scheme with 10 points
per wavelength such that relation (2.6) is satisfied. Prec denotes the number
of preconditioner applications, T the total computational time in seconds
and τs a scaled parallel efficiency defined in relation (2.21). T2,V is applied
as a preconditioner for FGMRES(5). Numerical experiments performed on
a IBM BG/Q computer.

We are interested in the strong scalability properties of the numerical method. Hence,
we consider the acoustic wave propagation problem at a fixed frequency (20 Hz) on a
growing number of cores. In these numerical experiments, we consider the dispersion
minimizing discretization scheme [143]; see Section 2.3.2. The step size h is determined
by relation (2.6) with fref = 10 Hz, href = 15 and qref = 4. Table 2.2 collects the number
of preconditioner applications (Prec) and computational times (T) versus the number
of cores. We note that the number of preconditioner applications is independent of the
number of cores, which is a nice property. Next, we define a scaled parallel efficiency as

τs =
Tref

T
/ Cores

Coresref
, (2.21)

where Tref and Coresref denote reference values for the computational time and number
of cores, respectively. We collect the corresponding values in Table 2.2. We note that
a perfect scaling corresponds to the value of 1. In practice, we note that τs is close to
this value. Only the last numerical experiment performed on 131072 cores leads to a
moderate degradation in terms of scaled parallel efficiency. This is partly due to the
increased number of communications, which leads to a significant decrease in the ratio
computation/communication.

29



2. Geometric multigrid methods for three-dimensional heterogeneous Helmholtz problems

2.8.4. Complexity analysis

T2,V

f(Hz) Grid # Cores Prec T (s) M (TB)
15 1586 × 1586 × 492 131072 19 30 0.56
20 2303 × 2303 × 767 131072 29 87 1.67
25 3071 × 3071 × 1023 131072 37 236 3.79
30 3839 × 3839 × 1279 131072 45 552 7.20
35 4607 × 4607 × 1535 131072 57 1158 12.2
40 5631 × 5631 × 1791 131072 69 2458 20.9

Table 2.3.: Complexity analysis. Preconditioned flexible methods for the solution of
the Helmholtz equation for the heterogeneous velocity field EAGE/SEG Salt
dome. A dispersion minimizing discretization scheme with 10 points per
wavelength is used such that relation (2.6) is satisfied. Prec denotes the
number of preconditioner applications, T the total computational time in
seconds and M the requested memory in TB. T2,V is applied as a precondi-
tioner of FGMRES(5). Numerical experiments performed on a IBM BG/Q
computer.

We analyse the complexity of the numerical method with respect to the frequency
or to the problem size. In this experiment, the number of cores is kept fixed, while
the frequency grows from 15 Hz to 40 Hz. The case of f = 40 Hz leads to a linear
system with approximately 56.7 billion unknowns, the solution of which is certainly
out of reach of numerical methods based on sparse direct methods described in Section
2.2. Results are given in Table 2.3. The number of preconditioner applications is rather
moderate and is found to grow almost linearly with respect to the frequency. This linear
dependency has been also observed for the complex shifted Laplace preconditioner in
relation with other dispersion minimizing finite difference schemes [65], although on
problems of smaller size. This behaviour is a quite satisfactory result, since huge linear
systems can be solved in a reasonable amount of time on a parallel distributed memory
machine. This result is especially interesting in the context of inverse problems (here
acoustic full waveform inversion), where the solution of forward problems represents a
major computational kernel. Figure 2.6 shows the evolution of the required memory
(M) and computational time (T ) versus the problem size (left part and right part,
respectively). If N denotes the total number of unknowns, the computational time T is
found to behave asymptotically as Nα with α = 1.32. Finally, the memory requirements
grow linearly with the problem size, as expected since no sparse factorization is involved
either at the global or local levels in the multigrid preconditioner. This is also a nice
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Figure 2.6.: Complexity analysis of the improved two-grid preconditioned Krylov sub-
space method. Evolution of memory requirements and computational time
versus problem size. EAGE/SEG Salt dome using a dispersion minimizing
discretization scheme with 10 points per wavelength such that relation (2.6)
is satisfied. Results of Table 2.3.

feature of the numerical method.

2.9. Additional comments and conclusions

Summary In this chapter, we have focused on the analysis of multigrid precondition-
ers for the solution of wave propagation problems related to acoustic imaging. We have
briefly reviewed the literature on multilevel preconditioners including domain decom-
position and multigrid methods. As a main contribution, we have proposed a two-grid
preconditioner for the numerical solution of Helmholtz problems in three-dimensional
heterogeneous media. This two-grid cycle is applied directly to the original Helmholtz
operator and relies on an approximate coarse grid solution. A second multigrid method
applied to a complex shifted Laplace operator is then used as a preconditioner for the
approximate solution of this coarse problem. Next, we have studied the convergence
properties of this preconditioner with rigorous Fourier analysis. Finally, we have high-
lighted the efficiency of the new multigrid preconditioner on a concrete application in
geophysics requiring the solution of indefinite problems of huge dimension (billions of
unknowns) obtained after discretization by standard second order or dispersion mini-
mizing finite difference schemes. Numerical results have demonstrated the usefulness of
the combined algorithm on a realistic three-dimensional application at high frequency.
Finally, a complexity analysis has been provided to close this chapter. This analysis
has shown that the proposed numerical method is neither scalable with respect to the
frequency nor optimal, which is unfortunately a common feature of most approaches
for the solution of three-dimensional heterogeneous Helmholtz problems; however, see
[168, 169, 270] for promising algorithms.
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Collaboration The geometric multigrid preconditioner for heterogeneous Helmholtz
problems has been developed in collaboration with Henri Calandra (TOTAL), Serge
Gratton and Xavier Pinel with financial support from TOTAL. I have collaborated with
Jean Piquet and Michel Visonneau on geometric multigrid methods for the applications
in Computational Fluid Dynamics.

Software realization The proposed numerical methods have been written in Fortran
90 and MPI with linear algebra kernels relying on BLAS/LAPACK. During the project,
the simulation code has been ported and validated on many parallel computing plat-
forms (both internal and external). In this chapter, I have decided to report numerical
experiments only on IBM BG/P or BG/Q platforms and refer the reader to [162, 200]
for simulations on other computing platforms. Specific versions of the code have been
integrated by Xavier Pinel and Rafael Lago, respectively, into the DIVA library at TO-
TAL. A pure MPI version of the code has been used on massively parallel platforms.
A natural extension would be to consider a hybrid implementation based on MPI and
OpenMP for addressing modern multicore architectures more efficiently.

Short-term prospectives In the wave propagation community, designing efficient and
robust numerical methods for the solution of heterogeneous Helmholtz problems is a
long standing question. In [58], we contributed to the design of geometric two-grid pre-
conditioners and proposed numerical experiments in the context of seismic imaging. The
proposed multigrid preconditioners have been recently used in the solution of inverse
problems in seismics in the low frequency regime; see [77, 78]. A detailed comparison of
the efficiency of the various numerical methods (including, e.g., advanced sparse direct
solvers, domain decomposition and multigrid) on benchmark problems would be very
helpful for the whole community. Finally, the simulation of acoustic-elastic wave prop-
agation problems in exploration seismology becomes an emerging trend. As short-term
perspectives, finding the appropriate approximation method and designing a related
multigrid preconditioner in such a context is highly relevant. To conclude, to address
the coming of extreme scale computers, we are aware that both the multilevel precon-
ditioner and the outer Krylov subspace method need to be revised. Communication-
avoiding or minimizing multigrid and Krylov subspace methods must be designed for
such a purpose. This appears as an important milestone before addressing the numerical
solution of both forward and inverse problems in seismic imaging on future computing
platforms.
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3. Non-overlapping domain decomposition
methods for hp finite element methods

3.1. Objectives and contributions
3.1.1. Objectives
hp finite element methods are specific finite element methods, where the approximation
in each element of maximum diameter h is a polynomial of degree k (see, e.g., [220] and
references therein). Higher accuracy of the discrete solution is achieved by refining the
mesh and/or by increasing the polynomial degree. hp finite element methods have been
used in many applications in Computational Science and Engineering (CSE) such as
Computational Fluid Dynamics, electromagnetics or structural mechanics; we refer the
reader to the monographs [152, 220] for further details and references. This discretiza-
tion method is known to be especially appropriate when accurate and/or dispersion free
solutions of partial differential equations are required. Theoretically, a major feature
is that hp finite element approximations converge exponentially fast when the mesh
is refined using a suitable combination of h-refinements and p-refinements [17]. The
exponential convergence makes the method a very attractive choice compared to most
other finite element methods which only converge at an algebraic rate. When simulating
physical phenomena exhibiting boundary layers or singularities, geometrically refined
meshes towards corners, edges or faces must be used to guarantee this rate of con-
vergence [220]. As a consequence, two- or three-dimensional meshes with high aspect
ratios have to be employed in practice. Hence, the condition number of the stiffness
matrix rapidly deteriorates: it grows exponentially with the spectral polynomial degree
k [220]. The solution of such linear systems with iterative methods is thus especially
difficult. In this chapter, we consider non-overlapping domain decomposition methods
for the solution of partial differential equations discretized by hp finite element methods
in two and three dimensions. Our objectives are twofold

• to propose and analyse popular non-overlapping domain decomposition methods
used as preconditioners of Krylov subspace methods for the solution of linear
systems resulting from the hp finite element discretization of scalar or vector
problems,

• to provide detailed numerical experiments supporting the theoretical condition
number bounds that have been established.

In this chapter, we mainly concentrate on the analysis of the domain decomposition
preconditioners and provide condition number bounds of the preconditioned operator.
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3. Non-overlapping domain decomposition methods for hp finite element methods

Our main interest is to investigate if we can design scalable domain decomposition
preconditioners for the solution of elliptic partial differential equations discretized with
the hp finite element method on anisotropic meshes in the sense of Definition 1.2.
We point out that non-overlapping domain decomposition preconditioners are natural
candidates for parallel preconditioners, see, e.g., [156, 226, 246] for related discussions.
This important topic is not touched in this chapter however. Finally, we refer the reader
to the monographs [152, 220, 227] for the various aspects related to both the analysis
and the efficient implementation of hp finite element methods.

3.1.2. Contributions
The main contributions presented in this chapter are

• the analysis of two non-overlapping domain decomposition methods of balancing
Neumann-Neumann [172] and one-level FETI type [103] on anisotropic meshes
for the solution of scalar problems in two and three dimensions with the hp finite
element method,

• the numerical illustration of the performance of the proposed domain decomposi-
tion preconditioners on selected academic examples.

The theoretical contribution extends the pioneering theoretical developments of Pavarino
[198] concerning the design of non-overlapping domain decomposition preconditioners
of Neumann-Neumann type for spectral element methods. Indeed, Pavarino has proved
a condition number bound for the preconditioned operator PNN in [198] as

κ(PNN) ≤ C (1 + log(k))2,

where the constant C is independent not only of the polynomial degree k and of the
number of substructures, but also of the values of the coefficients in the partial dif-
ferential equation; see [246, Chapter 7] for further details on domain decomposition
preconditioners for spectral finite element methods.

As additional contributions, we have also contributed to the theory of iterative sub-
structuring methods for the solution of hp finite element approximations of vector prob-
lems in two dimensions in [244]. As an application, we have considered the solution of
algebraic systems arising from edge element approximations in two dimensions [245].
Similarly to the scalar case, we have proposed an algorithm with a rate of convergence
that is independent of possibly large jumps of the coefficients and mesh aspect ratios.
We refer the reader to [245] for additional theory and numerical results supporting the
theory. For the sake of brevity, these contributions are not presented here.

3.1.3. Synopsis
In Section 3.2, we review a few issues related to hp finite element approximations that
appear as useful later. Then, we successively discuss the analysis of the balancing
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3.2. hp finite element approximation on geometrically refined meshes

Neumann-Neumann preconditioner in Section 3.3 and of the one-level FETI precon-
ditioner in Section 3.4, respectively. In both sections, we derive the analysis of the
preconditioners in matrix form to make easier the understanding of the related algo-
rithms. Numerical experiments are provided in Sections 3.3.4 and 3.4.4, respectively.
Finally, in Section 3.5, we provide the basis of a theory required to prove the condition
number bounds given in Sections 3.3.2 and 3.4.2 in a variational setting. Conclusions
are proposed in Section 3.6.

3.2. hp finite element approximation on geometrically refined
meshes

We first introduce the academic problem that is considered throughout this chapter and
briefly review a few aspects related to hp finite element approximations, meshes and
domain partitioning, respectively.

3.2.1. Problem setting
We consider a linear, elliptic problem on a bounded polyhedral domain Ω ⊂ R3 of unit
diameter, formulated variationally as:
find u ∈H1

0(Ω), such that

a(u, v) = ∫Ω
(ε ρ(x)∇u ⋅ ∇v + c u v)dx = f(v), v ∈H1

0(Ω), (3.1)

where c, ε are non-negative real coefficients. H1(Ω) is the space of square summable
functions with square summable first derivatives, and H1

0(Ω) its subspace of functions
that vanish on ∂Ω. The functional f(⋅) belongs to the dual space H−1(Ω). Here
x = (x, y, z) denotes the position vector. The coefficient ρ(x) > 0 can be discontinuous,
with very different values for different subregions of Ω, but we allow it to vary only
moderately within each subregion. Without decreasing the generality of our results,
we will only consider the piecewise constant case i.e. ρ(x) = ρi, x ∈ Ωi. Later we
consider the purely diffusion problem derived from (3.1) as a model problem to derive
the condition number bound for the balancing Neumann-Neumann and one-level FETI
preconditioners.

3.2.2. hp finite element approximations
We now specify a particular choice of finite element spaces. Let T be a mesh consisting
of affinely mapped cubes. Given a polynomial degree k ≥ 1, we consider the following
finite element spaces

X =Xk(Ω;T ) = {u ∈H1
0(Ω) ∣ u∣K ∈ Qk(K), K ∈ T } . (3.2)

Here Qk(K) is the space of polynomials of maximum degree k in each variable on K.
In the following, we may drop the reference to k, Ω, and/or T whenever there is no
confusion.
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3. Non-overlapping domain decomposition methods for hp finite element methods

In this analysis, interpolating Lagrange polynomials on Gauss-Lobatto nodes are used
as a particular nodal basis of Xk(Ω;T ). The set of Gauss-Lobatto points GLL(k) is
the set of (distinct and real) zeros of (1 − x2)L′k(x), with Lk the Legendre polynomial
of degree k (cf. [35, Sect. 3]) and the quadrature formula based on GLL(k) has order
2k − 1. In this work, quadrature formulas based on GLL(k) are chosen. Given the
nodes GLL(k)3 on the reference element Q̂ = (−1, 1)3, our basis functions on Qk(Q̂)
are defined as tensor products of k-th order Lagrange interpolating polynomials on
GLL(k). More details on spectral element methods can be found in, e.g., [35].

We always assume that the meshes are regular, i.e., the intersection between neigh-
boring elements is either a vertex, or an edge, or a face that is common to both elements.
A finite element approximation of (3.1) consists of finding u ∈X, such that

a(u, v) = f(v), v ∈X. (3.3)

3.2.3. Geometrically refined meshes
We now introduce a class of geometrically graded meshes. They are determined by
a mesh grading factor σ ∈ (0, 1) and a refinement level n ≥ 0. The number of layers
is n + 1 and the thinnest layer has a width proportional to σn (see Figures 3.1 and
3.2 for illustrations in three and two dimensions, respectively). Robust exponential
convergence of hp finite element approximations is achieved if n is suitably chosen.
For singularity resolution, n is required to be proportional to the polynomial degree
k; see [12, 17]. For boundary layers, the width of the thinnest layer mesh needs to be
comparable to that of the boundary layer; see [178, 220, 221].

A geometric boundary layer mesh T = T n,σ
bl is obtained as tensor products of meshes

that are geometrically refined towards the faces. The mesh T n,σ
bl is built from an initial

shape-regular macro-triangulation T 0, possibly consisting of just one element, which is
successively refined. Every macroelement can be refined isotropically or anisotropically
as a face, edge, or corner patch. A refinement towards a corner is shown in left part
of Figure 3.1. We refer the reader to [242, 243] for more details on the construction of
these meshes. Note that the mesh aspect ratio is equal to σ−n ∼ σ−k, since n needs to
be comparable to k for exponential convergence. A geometric boundary layer mesh T
satisfies the following two properties
Property 3.1. T is obtained from an initial shape-regular coarse mesh T 0 (called
macromesh) by local isotropic or anisotropic refinement.
Property 3.2. Anisotropic refinement is always performed towards the boundary ∂Ω
of the computational domain Ω and never towards the interior.

Figures 3.1 (left part) and 3.2 highlight these features.

3.2.4. Domain partitioning and assembly phase
Iterative substructuring methods rely on a non-overlapping partition of Ω, T DD = {Ωi},
into substructures. Let M denote the number of substructures with Hi the diameter of
Ωi and H =max(Hi) the maximum of their diameters. A subdomain Ωi is called floating
if the intersection of ∂Ωi with ∂Ω is empty. We recall that we have only considered
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the case of Dirichlet boundary conditions. We define the boundaries Γi = ∂Ωi ∖ ∂Ω and
the interface Γ as their union. The sets of Gauss-Lobatto nodes and the corresponding
degrees of freedom on ∂Ωi, Γi, Γ, and ∂Ω are denoted by ∂Ωi,h, Γi,h, Γh, and ∂Ωh,
respectively.

The main geometric assumption on the substructures is that they are shape-regular.
This property appears to be essential to obtain the condition number bound. Indeed,
Property 3.1 allows us to satisfy this condition easily by choosing the macromesh as the
subdomain partition

T DD = T 0.

A consequence of Property 3.2 is then that, when two substructures share an interior
vertex, the local meshes are shape-regular in the neighbourhood of this vertex, since
anisotropic refinement is only performed towards the boundary ∂Ω.

3.3. Preconditioner in the primal space: the balancing
Neumann-Neumann method

In this section, we describe and analyse a hybrid Schwarz algorithm known as the bal-
ancing Neumann-Neumann method [172]. We first derive the method in a matrix form,
give the condition number bound and finally provide numerical experiments supporting
the theory.

3.3.1. Derivation

After subassembling, the stiffness matrix A is reordered according to the domain de-
composition partitioning. The nodal points interior to the substructures (subset I) are
ordered first, followed by those on the interface Γ (subset Γ). Similarly, for the local
stiffness matrix relative to a substructure Ωi, we have

A(i) =
⎛
⎝

A
(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ

⎞
⎠

.

First, the unknowns in the interior of the substructures are eliminated by block
Gaussian elimination. Unknowns on ∂Ωi ∩ ∂Ω are treated as interior and they are also
eliminated. In this step, the Schur complement S = SNN with respect to the interior
variables is formed. The resulting linear system for the nodal values on Γ can be written
as

SNN uΓ = gΓ. (3.4)

Given the local Schur complement associated with the substructure Ωi and the local
right-hand side

Si = A
(i)
ΓΓ −A

(i)
ΓI A

(i)−1

II A
(i)
IΓ gΓi

= bΓi
−A

(i)
ΓI A

(i)−1

II b
(i)
I , (3.5)
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the global Schur complement and the corresponding right-hand side gΓ can be written
as

S = SNN =
M

∑
i=1

RT
i SiRi gΓ =

M

∑
i=1

RT
i gΓi

, (3.6)

where the restriction matrix Ri is a matrix of zeros and ones which extracts the vari-
ables on the local interface Γi from a vector of nodal values on Γ. The balancing
Neumann-Neumann preconditioner Ŝ−1 [172] provides a preconditioned operator PNN

of the following form

PNN = Ŝ−1SNN = P0 + (I − P0)(
M

∑
i=1

Pi)(I − P0). (3.7)

Here P0 is associated with a low dimensional global coarse problem, whereas each
operator Pi is associated with one substructure. More precisely, the local operators
Pi are defined as

Pi = RT
i DiS

†
i DiRiSNN , (3.8)

where the matrices Di are diagonal and S†
i denotes either the inverse of Si, if Si is

non-singular as for subdomains that touch ∂Ω, or a pseudoinverse of Si, if Si is singular
as for floating domains. In order to define the matrices {Di}, we need to introduce a
scaling function δ†

i , which is a finite element function defined on the boundary ∂Ωi; cf.
[81, 82, 172, 198, 219]. To do so, it is enough to assign its values at the nodes in Γi,h.
It is defined for γ ∈ [1/2,∞) and, is determined by a sum of contributions from Ωi and
its relevant nearest neighbours,

δ†
i (xl) =

(a(i)ll )
γ

∑j∈Nxl
(a(j)ll )

γ , xl ∈ Γi,h , (3.9)

where a
(i)
ll denotes the l-th element of the diagonal of the local stiffness matrix A(i) and

Nxl
, xl ∈ Γh, is the set of indices j of the subregions such that xl ∈ Γj,h. We have chosen

γ = 1 for the numerical experiments of Section 3.3.4. Let Di be the diagonal matrix
with elements δ†

i (x) corresponding to the nodes in Γi,h. The coarse space is defined as

V0 = span{RT
i δ†

i },

where the span is taken over at least the floating subdomains. We denote by RT
0 the

prolongation from the coarse to the global space. In analogy with (3.8), the coarse
operator P0 is defined as

P0 = RT
0 S−1

0 R0SNN , (3.10)
where S0 = R0SNN RT

0 denotes the restriction of SNN to that coarse space. We refer
the reader to [243] for more details.

3.3.2. Condition number bound
We recall here the two results related to the condition number bounds in two and three
dimensions, respectively.
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Two-dimensional setting

In the case of purely diffusive problems corresponding to c = 0 in (3.1) for a similar
problem in two dimensions ([242]), a bound for the condition number of the precon-
ditioned operator PNN restricted to the subspace R(I − P0), to which the iterates are
confined, has been proved in [242] for the case of exact solvers for Neumann and Dirichlet
problems. We have

κ(PNN) ≤ C (1 − σ)−4 (1 + log ( k

1 − σ
))

2
, (3.11)

where the constant C is independent of the spectral polynomial degree k, the level of
refinement n, the mesh grading factor σ, the coefficients ε and ρ, and the diameters of
the substructures Hi.

Three-dimensional setting

Exact variant In the case of purely diffusive problems corresponding to c = 0 in (3.1),
a bound for the condition number of the preconditioned operator PNN restricted to the
subspace R(I −P0), to which the iterates are confined, has been proved in [243] for the
case of exact solvers for Neumann and Dirichlet problems. We have

κ(PNN) ≤ C (1 − σ)−6 (1 + log ( k

1 − σ
))

2
, (3.12)

where the constant C is independent of the spectral polynomial degree k, the level of
refinement n, the mesh grading factor σ, the coefficients ε and ρ, and the diameters
of the substructures Hi. In relations (3.11) and (3.12), we note that κ(PNN) does
not depend on the number of substructures or the aspect ratio of the mesh and only
depends polylogarithmically on the spectral polynomial degree k as in the p version on
shape-regular meshes [198].

Inexact variant In the case of large local problems that often arise in three dimensions,
exact solvers may be too expensive in terms of computational operations and/or mem-
ory requirements. Approximate local solvers for both Neumann and Dirichlet problems
must then be used. This new setting often leads to a variable domain decomposition
preconditioner. Hence, flexible Krylov subspace methods as an outer method are re-
quired as discussed later in Chapter 4. We note that the bound (3.12) is no longer
valid since approximate solvers are used. Hence, we will investigate numerically the
behaviour of the condition number of the preconditioned operator in such a situation
in Section 3.3.4. We refer the reader to [226, Section 4.4] and [246, Section 4.3] for
further references related to the analysis of inexact variants of domain decomposition
preconditioners.

3.3.3. Algorithm
According to (3.4) and (3.7), the preconditioned system can be written in the following
form
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3. Non-overlapping domain decomposition methods for hp finite element methods

PNN u = Ŝ−1gΓ. (3.13)

Since P0 is a projection, we have

P0(I − P0) = 0.

Thus a decomposition of the exact solution u of (3.13) as

u = P0u +w, P0u = RT
0 S−1

0 R0gΓ, (3.14)

with w ∈R(I − P0), leads to the following new formulation of (3.13)

(I − P0)(
M

∑
i=1

Pi)(I − P0)w = Ŝ−1gΓ − P0u, w ∈R(I − P0). (3.15)

One can easily check that SNN P0 = P T
0 SNN , and thus the matrix in (3.15) can also

be written as

(I − P0)(
M

∑
i=1

Pi)(I − P0) = [(I − P0)(
M

∑
i=1

RT
i DiS

†
i DiRi)(I − P T

0 )] SNN ,

which gives the expression of the preconditioner Ŝ−1. Consequently, the balancing
Neumann-Neumann method reduces to a projected preconditioned conjugate gradient
method in the space R(I − P0) applied to the system

[(I − P0)(
M

∑
i=1

RT
i DiS

†
i DiRi)(I − P T

0 )]SNN w = Ŝ−1gΓ − P0u (3.16)

if an initial guess u0 = P0u + w̃, with w̃ ∈R(I −P0), is chosen. The projected conjugate
gradient method is presented in Algorithm 3.1. In this algorithm, ⟨⋅, ⋅⟩ denotes the
Euclidean inner product. Thanks to (3.14) and to the choice of u0, the first projection
step, corresponding to the application of I − P T

0 , can be omitted in practice.
We remark that the matrices SNN and S†

i do not need to be calculated in practice.
The action of SNN on a vector requires the solution of a Dirichlet problem on each
substructure (application of the inverse of A

(i)
II ), while the action of S†

i can be calcu-
lated by applying a pseudo-inverse of A(i) to a suitable vector, corresponding to the
solution of a Neumann problem; see [226, Chap 4.]. Thus one step of the algorithm in
Algorithm 3.1 involves one application of P0, the solution of local Neumann problems
on each substructure (S†

i ) and the solution of local Dirichlet problems (SNN ). Since
the application of P0 also involves an application of SNN and the solution of a coarse
problem, the total amount of work per step is given by one Neumann and two Dirichlet
problems on each substructure and one coarse problem.
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Algorithm 3.1 Implementation of the balancing Neumann-Neumann method as a
projected preconditioned conjugate gradient method.
Input: Assume that the following is given:

• M ▷ number of subdomains
• SNN ▷ global Schur complement operator (3.6)
• Si for i ∈ {1, . . . , M} ▷ local Schur complement operator (3.5)
• Pi for i ∈ {1, . . . , M} ▷ local projection operator (3.8)
• Ri for i ∈ {1, . . . , M} ▷ local restriction operator
• P0 ▷ coarse level projection operator (3.10)
• R0 ▷ coarse restriction operator
• S0 = R0SNN RT

0 ▷ coarse level Schur complement operator
1: u0 = RT

0 S−1
0 R0gΓ + w̃, w̃ ∈R(I − P0)

2: q0 = gΓ − SNN u0
3: for j = 1, ` do
4: wj−1 = (I − P T

0 )qj−1 ▷ projection

5: zj−1 =
M

∑
i=1

RT
i DiS

†
i DiRi wj−1 ▷ preconditioning

6: yj−1 = (I − P0)zj−1 ▷ projection
7: βj = ⟨yj−1, wj−1⟩/⟨yj−2, wj−2⟩ [β1 = 0]
8: pj = yj−1 + βjpj−1 [p1 = y0]
9: αj = ⟨yj−1, wj−1⟩/⟨pj , SNN pj⟩

10: uj = uj−1 + αjpj

11: qj = qj−1 − αjSNN pj

12: end for

3.3.4. Numerical results

The purpose of this section is to provide a single numerical experiment, in order to
validate the theoretical analysis related to the condition number bound on selected
medium-size problems. This numerical experiment targets the efficiency of the balanc-
ing Neumann-Neumann preconditioner for a Laplace problem defined on a boundary
layer mesh (exhibiting a corner refinement). The conjugate gradient iteration is stopped
after a reduction of the Euclidean norm of the initial residual of 10−14 and homogeneous
boundary conditions have been used. An extensive numerical study is presented else-
where; see [241].

Laplace problem on a boundary layer mesh

We consider approximations on the unit cube Ω = (0, 1)3. We choose ρ ≡ 1 and the
right-hand side f ≡ 1. The macromesh Tm consists of N ×N ×N cubic substructures.
Geometric refinement is performed towards the three edges x = 0, y = 0, and z = 0, with
σ = 0.5; see Figure 3.1, left. Given a polynomial degree k, we choose n = k as is required
for robust exponential convergence; see, e.g., [12, 17].
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Figure 3.1.: Geometric refinement towards one corner (N = 3, σ = 0.5, and n = 6), left,
and estimated condition numbers (circles) from Table 3.1 (inexact variant)
and least-square second order logarithmic polynomial fit (solid line) versus
k, right. Figures 3 (left) and 1 (right) of [241].

We note that even for moderate values of k and N , large linear systems are obtained;
see Tables 3.1 and 3.2. Huge local blocks need to be inverted, both for the application
of S (solution of local Dirichlet problems) and the preconditioner (solution of local
Neumann problems). Thus we have employed approximate solvers for local Dirichlet
and Neumann problems. We refer to [226, Sect. 4.4] for details on the implementation.
In particular, we have used a conjugate gradient iteration with an incomplete Cholesky
factorization with drop tolerance 10−3 for all local problems. The iteration is stopped
after a reduction of the initial residual of a factor 10−3 or after 20 iteration steps. In the
sequel, we denote by NN (inexact) the resulting balancing Neumann-Neumann method
with this strategy for the approximate solvers. An exact variant denoted by NN (exact)
is derived, when solving all the local subproblems now up to machine precision with
the same iterative solver as in the inexact case. Our numerical results show that the
theoretical bounds for the case of exact solvers in Lemma 3.4 remain valid in this case;
see Tables 3.1 and 3.2.

For a fixed partition into substructures with N = 3, Table 3.1 shows the size of the
original problem (n), the iteration count (It), the estimated maximum and minimum
eigenvalues (λmax and λmin obtained by calculating the eigenvalues of the Hessenberg
tridiagonal matrix constructed during the conjugate gradient iteration), and the con-
dition number for different values of k for both inexact and exact variants. We note
that the minimum eigenvalue is close to one when using inexact solvers; see Lemma
3.4. In addition, a moderate growth of the maximum eigenvalue is observed with k;
such growth is consistent with the quadratic bound in Lemma 3.6; see Figure 3.1, right.
Using inexact solvers for the local subproblems causes a moderate increase in terms
of number of iterations. Nevertheless, quite satisfactory condition numbers are still
obtained, see Table 3.1.
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Fixed number of substructures (N ×N ×N = 3 × 3 × 3)

NN (inexact) NN (exact)
k n It λmax λmin κ(PNN) It λmax λmin κ(PNN)
2 1331 15 1.8379 1 1.8379 13 1.6255 1.00002 1.6255
3 6859 20 2.8165 0.99997 2.8166 18 2.8165 1.00001 2.8161
4 24389 25 3.9507 0.99947 3.9528 21 3.9506 1.00002 3.9498
5 68921 29 5.1507 0.99799 5.1611 25 5.1507 1.00002 5.1493
6 166375 34 6.3675 0.99801 6.3803 28 6.3675 1.00002 6.3658
7 357911 38 7.5082 0.99395 7.5540 32 7.5067 1.00002 7.5065
8 704969 40 8.5298 0.99574 8.5663 34 8.5064 1.00002 8.5062

Table 3.1.: Conjugate gradient method for the global system with Neumann-Neumann
preconditioner with inexact and exact solvers: iteration counts, maximum
and minimum eigenvalues, and condition numbers, versus the polynomial
degree, for the case of a fixed partition. The size of the original problem is
also reported. Table 2 of [243].

We next consider the same problem and fix the polynomial degree as k = 4. Table
3.2 shows the results for different values of N . In both variants, the iteration counts
and the smallest and largest eigenvalues appear to be bounded independently of the
number of subdomains. We note that, when the number of subdomains becomes large,
the number of iterations to reach the convergence criterion for both variants is nearly
identical, leading to a scalable method.

3.4. Preconditioners in the dual space: the one-level FETI
method

One-level FETI methods were first introduced in [103]. Since then, considerable research
has been done on FETI methods and many variants and improvements have been
proposed. We refer to [104] for a detailed introduction and to [158, 175] for the analysis
of one-level FETI methods.

3.4.1. Derivation

For the sake of brevity, we only present the one-level FETI method in the case of purely
diffusive problems as in Section 3.3. We refer to [240] for details in the case of reaction-
diffusion problems, i.e., when the local matrices A(i) are invertible. Instead of solving
the Schur complement system (3.4), a FETI method uses a space of discontinuous func-
tions across the interface Γ. The continuity of the solution is then enforced by using a
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Fixed spectral degree k = 4

NN (inexact) NN (exact)
N n It λmax λmin κ(PNN) It λmax λmin κ(PNN)
2 15625 18 2.6417 0.99929 2.6436 15 2.6412 1.0003 2.6406
3 24389 25 3.9507 0.99947 3.9528 21 3.9506 1.0002 3.9498
4 35937 28 4.1084 0.99934 4.1111 25 4.1082 1.0002 4.1074
5 50653 29 4.1378 0.99940 4.1402 26 4.1375 1.0002 4.1369
6 68921 30 4.1492 0.99945 4.1515 28 3.5746 1.0002 3.5741
7 91125 30 4.1555 0.99952 4.1575 28 3.6133 1.0001 3.6128
8 117649 30 4.1593 0.99955 4.1612 29 3.6289 1.0001 3.6284
9 148877 30 4.1618 0.99962 4.1634 29 3.6475 1.0001 3.6470
10 185193 30 4.1636 0.99970 4.1648 29 3.6582 1.0001 3.6577

Table 3.2.: Conjugate gradient method for the global system with Neumann-Neumann
preconditioner with inexact and exact solvers: iteration counts, maximum
and minimum eigenvalues, and condition numbers, versus the number of
substructures, using a fixed polynomial degree and partitions into N ×N ×N
substructures. The size of the original problem is also reported. Table 3 of
[243].

vector of Lagrange multipliers and this leads to the saddle point formulation

SF uF +BT λ = gF

BuF = 0 } , (3.17)

with

uF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(1)

u(2)

...

u(M)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, SF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1 O ⋯ O

O S2
. . .

...
...

. . .
. . . O

O ⋯ O SM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, gF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(1)

g(2)

...

g(M)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where each diagonal block of SF is a Schur complement matrix of the form (3.5) and
B a matrix consisting of (−1, 0, 1) that enforces the continuity of the solution at the
interfaces between the substructures. Here only non-redundant Lagrange multipliers
have been considered; thus the matrix B has full rank. We refer to [158] for the
analysis in the case of redundant Lagrange multipliers. In addition, we denote by R
the full column rank matrix built from all the non-void null space elements of SF , i.e.,
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3.4. Preconditioners in the dual space: the one-level FETI method

those Si corresponding to floating subdomains

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1 O ⋯ O

O r2
. . .

...
...

. . .
. . . O

O ⋯ O rMf

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Mf denotes the number of floating domains. In fact, for the purely diffusive
model problem (3.1) the columns of R span the kernel of SF denoted by N (SF ). We
also define G = BR. In the next step, we eliminate the primal variable uF in (3.17) and
derive an equation for the Lagrange multiplier λ only. This leads to

uF = SF
†(gF −BT λ) +Rα, (gF −BT λ) ⊥ N (SF ),

with S†
F denoting a pseudo-inverse of SF and

Fλ −Gα = d

GT λ = e
} , (3.18)

with F = BSF
†BT , d = BSF

†gF , and e = RT gF . After introducing a suitable orthogonal
projection operator P onto the orthogonal complement of R(G) and a preconditioner
M−1

F (both defined below), the one-level FETI method reduces to the preconditioned
conjugate gradient method applied in the space of Lagrange multipliers to the following
system

PM−1
F P T Fλ = PM−1

F P T d, (3.19)

with an initial approximation λ0 that satisfies the second equation of (3.18). We can
choose

λ0 = QG(GT QG)−1RT gF + w̃, w̃ ∈R(P ) , (3.20)

where Q is a symmetric invertible matrix to be chosen. Here P is an orthogonal pro-
jection operator defined as

P = I −QG(GT QG)−1GT . (3.21)

Many choices have been proposed for the preconditioner M−1
F and the matrix Q. The

choice
M−1

F = (BD−1BT )−1BD−1SF D−1BT (BD−1BT )−1, Q =M−1
F (3.22)

ensures a condition number that is independent of the jumps in the coefficients; see [158].
Here D is a block diagonal matrix: each block Di corresponds to one substructure Ωi

and is equal to the local scaling matrix introduced in Section 3.3.1.
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3. Non-overlapping domain decomposition methods for hp finite element methods

3.4.2. Condition number bound
For the sake of brevity, we prefer to give without proof the condition numbers related
to the one-level FETI preconditioner. We refer the reader to [242] for a complete proof
of the condition number bound in two dimensions. In three dimensions, the condition
number bound directly follows from the analysis of the balancing Neumann-Neumann
preconditioner [243] (partly given in Section 3.5) and the relations between the balancing
Neumann-Neumann and one-level FETI methods established in [158].

Two-dimensional setting

We denote by PF = PM−1
F P T F the preconditioned operator in system (3.19). A bound

for the condition number of PF restricted to the appropriate subspace R(P ) to which
the iterates are confined has been proved in [242] for the case (ρx, ρy) = (ρ, ρ), (εx, εy) =
(1, 1) and c = 0 in two dimensions

κ(PF ) ≤ C (1 − σ)−4 (1 + log ( k

1 − σ
))

2
. (3.23)

Three-dimensional setting

We denote by PF = PM−1
F P T F the preconditioned operator in system (3.19). A bound

for the condition number of PF restricted to the appropriate subspace R(P ) to which
the iterates are confined reads as for the case in the purely diffusive case (c = 0) in three
dimensions

κ(PF ) ≤ C (1 − σ)−6 (1 + log ( k

1 − σ
))

2
. (3.24)

In relations (3.23) and (3.24), we stress the fact that the constant in the estimate is
independent of k, n, σ, the coefficients ρ and the diameters Hi of the substructures.
Note that κ(PF ) does not depend on the number of substructures or the aspect ratio
of the mesh and only depends polylogarithmically on the spectral polynomial degree.

3.4.3. Algorithm
The one-level FETI method is a projected preconditioned conjugate gradient method
in the space of Lagrange multipliers R(P ) applied to the system (3.19) with an initial
approximation chosen as in (3.20). This algorithm is given in Algorithm 3.2. We note
that, as opposed to the balancing Neumann-Neumann algorithm, the first projection
step (application of P T ) cannot be omitted in practice.

We remark that F and M−1
F do not need to be calculated in practice. The action

of M−1
F on a vector basically requires the solution of a Dirichlet problem on each sub-

structure (application of SF , and thus the Si). Indeed, the matrix BD−1BT is block
diagonal: each block corresponds to a node on Γ and its dimension is equal to the
number of constraints imposed on that node by the second of (3.17): it can then be
easily inverted. The action of F can be calculated by solving Neumann problems on the
substructures (application of the pseudoinverses S†

i ). Finally, applications of P and P T
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3.4. Preconditioners in the dual space: the one-level FETI method

Algorithm 3.2 Implementation of the one-level FETI method as a projected precon-
ditioned conjugate gradient method.
Input: Assume that the following is given:

• M ▷ number of subdomains
• F ▷ BSF

†BT operator
• P ▷ orthogonal projection operator (3.21)
• M−1

F ▷ FETI preconditioner (3.22)
• Q ▷ symmetric operator (3.22)

1: λ0 = QG(GT QG)−1RT gF + w̃, w̃ ∈R(P )
2: q0 = d − F λ0
3: for j = 1, ` do
4: wj−1 = P T qj−1 ▷ projection
5: zj−1 =M−1

F wj−1 ▷ preconditioning
6: yj−1 = Pzj−1 ▷ projection
7: βj = ⟨yj−1, wj−1⟩/⟨yj−2, wj−2⟩ [β1 = 0]
8: pj = yj−1 + βjpj−1 [p1 = y0]
9: αj = ⟨yj−1, wj−1⟩/⟨pj , Fpj⟩

10: λj = λj−1 + αjpj

11: qj = qj−1 − αjFpj

12: end for

are required at each step and involve the solution of two coarse problems (application
of (GT QG)−1) and two additional applications of M−1

F . The total amount of work per
step requires the solution of one Neumann and three Dirichlet problems on each sub-
structure and two coarse problems. We note however that the choice Q =M−1

F appears
to be necessary only if the coefficients have large jumps; see [158].

3.4.4. Numerical results

The purpose of this section is to provide a single numerical experiment in order to
validate the theoretical analysis related to the condition number bound. The numer-
ical experiment targets the efficiency of the Neumann-Neumann and one-level FETI
preconditioners for a Laplace problem defined on a boundary layer mesh (exhibiting
a corner refinement) in two dimensions. The conjugate gradient iteration is stopped
after a reduction of the Euclidean norm of the initial residual of 10−14 (this rather
strict stopping criterion allows a possible comparison between the proposed balancing
Neumann-Neumann and one-level FETI preconditioner, since the primal solution in
the one-level FETI formulation is only continuous at convergence) and homogeneous
boundary conditions have been used. An extensive numerical study is presented in
[240].
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3. Non-overlapping domain decomposition methods for hp finite element methods

Laplace problem on a boundary layer mesh

As in Section 3.3.4, we fix a macromesh T DD = Nx × Ny = 3 × 3 and investigate the
dependence of the condition number on the spectral polynomial degree. The geomet-
rically refined grid T contains (3 + k) × (3 + k) elements; see Figure 3.2 for the case
k = 6.
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Figure 3.2.: Geometric refinement towards one corner (N = 3, σ = 0.5, and n = 6).
Figure 6 of [240].

Tables 3.3 and 3.4 collect the results for the balancing Neumann-Neumann and one-
level FETI preconditioners, respectively. Note the large condition numbers of unpre-
conditioned operators κ(SNN) and κ(F ) for large k. We expect κ(SNN) to grow as
k σ−(β k), for a fixed partition. As expected (see Figure 3.3), κ(PNN) and κ(PF ) only
grow as the square of the logarithm of the spectral degree. This is in agreement with
the bounds in (3.11) and (3.23). These results show that the condition numbers are
independent of the aspect ratio of the mesh for this problem. We stress the fact that
the original Schur complement has a condition number that grows exponentially with k,
while our preconditioners provide a condition number that only grows logarithmically
with k.

3.5. Basis of a theory

We provide in this section the basis of a theory required to derive the condition number
bound related to the balancing Neumann-Neumann preconditioner for hp finite element
approximations on anisotropic meshes in three dimensions. We refer the reader to [226,
Chapter 5], [246, Chapter 2] for a detailed introduction to the abstract theory of Schwarz
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3.5. Basis of a theory

Fixed number of substructures Nx ×Ny = 3 × 3

No preconditioning NN
k It λmax λmin κ(SNN) It λmax λmin κ(PNN)
2 18 13.09 0.47009 27.8466 8 1.2093 1 1.2093
3 39 23.584 0.27906 84.5135 10 1.5992 1 1.5991
4 71 43.421 0.19866 218.5623 12 2.7807 1 2.7806
5 118 82.489 0.15446 534.0585 13 3.5809 1.0001 3.5806
6 185 160.4 0.12649 1268.0820 14 4.321 1.0001 4.3204
7 272 315.84 0.10716 2947.3406 15 5.034 1.0002 5.0331
8 344 625.76 0.092981 6729.9791 17 5.6913 1.0001 5.6906
9 424 1243.8 0.082121 15145.9124 17 6.2769 1.0001 6.2759
10 512 2476.8 0.073532 33683.7624 17 6.7937 1.0002 6.7924
11 608 4937.9 0.066568 74178.6450 18 7.2527 1.0002 7.2510
12 712 9852.1 0.060824 161978.5169 19 7.6679 1.0002 7.6660

Table 3.3.: Conjugate gradient method for the global system with balancing Neumann-
Neumann preconditioner: iteration counts, maximum and minimum eigen-
values, and condition numbers, versus the polynomial degree, using a fixed
number of substructures and partition into 3 × 3 substructures. Table 10 of
[240].
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Figure 3.3.: Laplace problem on a boundary layer mesh. Fixed partition 3 × 3. Esti-
mated condition numbers (circles) and least-square second order logarith-
mic polynomial (solid line) versus the spectral degree for the balancing
Neumann-Neumann method (left) and the one-level FETI method (right).
Figure 7 of [240].
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Fixed number of substructures Nx ×Ny = 3 × 3

No preconditioning One-level FETI
k It λmax λmin κ(F ) It λmax λmin κ(PF )
2 40 11.092 0.3057 36.2830 13 2.5551 1.0002 2.5545
3 69 16.1727 0.1696 95.3514 14 3.3502 1.0003 3.3490
4 101 21.5275 0.09212 233.6839 16 4.15468 1.00025 4.1536
5 157 27.0024 0.04849 556.8545 17 4.8423 1.0005 4.8399
6 214 32.4910 0.0249 1302.8742 18 5.4769 1.0006 5.4732
7 280 37.9728 0.01268 2994.9336 18 6.0492 1.0013 6.4125
8 352 43.4460 0.00649 6688.1144 19 6.5801 1.0012 6.5721
9 432 48.9158 0.0048 10140.5428 20 7.0699 1.0014 7.0597
10 520 54.38492 0.002428 22398.1226 20 7.5287 1.0013 7.5183
11 616 59.8554 0.0012 48165.1532 21 7.9582 1.0016 7.9449
12 720 65.3276 0.00065 99925.7334 20 8.3638 1.0018 8.3484

Table 3.4.: Conjugate gradient method for the global system with one-level FETI pre-
conditioner: iteration counts, maximum and minimum eigenvalues, and con-
dition numbers, versus the polynomial degree, using a fixed number of sub-
structures and partition into 3 × 3 substructures. Table 11 of [240].

methods which relies on variational forms. The interested reader can find the complete
derivation in [243] (see also Appendix B.2).

3.5.1. Local meshes, local bilinear forms and local extension operators
First, we introduce local meshes and local bilinear forms to be used later.

Local meshes When restricted to the subdomain Ωi, the global triangulation T deter-
mines a local mesh Ti. In three dimensions this mesh can be of four types: face, edge,
corner, or consisting of just one element. We define the local spaces Xi = Xk(Ωi;Ti),
of local finite element functions that vanish on ∂Ω ∩ ∂Ωi. In the analysis, we will also
employ the GLL mesh Tk(Ωi) on Ωi, generated by the local GLL meshes Tk(K) for
K ∈ Ti. The corresponding space of piecewise trilinear functions on Tk(Ωi) that vanish
on ∂Ω ∩ ∂Ωi is denoted by Y h(Ωi). We set Y k(Ωi) =Xk(Ωi;Ti).

Local bilinear forms We next define the local bilinear forms

ai(u, v) = ∫Ωi

ρi∇u ⋅ ∇v dx, u, v ∈Xi.

We note that if Ωi is a floating subdomain (i.e., its boundary does not touch ∂Ω), ai(⋅, ⋅)
is only positive semi-definite and for u ∈Xi we have

ai(u, u) = 0 iff u constant in Ωi.
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3.5. Basis of a theory

The sets of nodal points on Γi, Γ, F ij , Eij , and W i are denoted by Γi,h, Γh, F ij
h , Eij

h ,
and W i

h, respectively. We will identify these sets with the corresponding sets of degrees
of freedom. As for the corresponding regions, we will also use notations with one or no
superscript.

Extension operators We introduce some spaces defined on the interfaces: Ui is the
space of restrictions to Γi of functions in Xk(Ωi;Ti) and U of restrictions to Γ of
functions in Xk(Ω;T ). We note that functions in Ui and U are uniquely determined
by the nodal values in Γi,h and Γh, respectively. For every substructure Ωi, there is a
natural interpolation operator

RT
i ∶ Ui Ð→ U, (3.25)

that extends a function on Γi to a global function on Γ with vanishing degrees of freedom
in Γh ∖ Γi,h. Its transpose with respect to the Euclidean scalar product Ri ∶ U → Ui

extracts the degrees of freedom in Γi,h.

3.5.2. Discrete Harmonic extensions
We introduce next the notion of discrete harmonic extensions and an important lemma
that will play a central role.

A function u(i) defined on Ωi is said to be discrete harmonic on Ωi if

A
(i)
II u

(i)
I +A

(i)
IΓ u

(i)
Γ = 0.

In this case, it is easy to see that Hi(u(i)Γ ) ∶= u(i) is completely defined by its value
on Γi. The space of piecewise discrete harmonic functions u consists of functions in X
that are discrete harmonic on each substructure. In this case, u =∶H(uΓ) is completely
defined by its value on Γ.

The balancing domain decomposition preconditioner is defined with respect to the
inner product

s(u, v) = uT Sv, u, v ∈ U. (3.26)
It follows immediately from the definition of S that s(⋅, ⋅) is symmetric and coercive.

The following lemma results from elementary variational arguments.
Lemma 3.3. Let u

(i)
Γ be the restriction of a finite element function to Γi. Then the

discrete harmonic extension u(i) =Hi(u(i)Γ ) of u
(i)
Γ into Ωi satisfies

ai(u(i), u(i)) = min
v(i)∣∂Ωi

=u
(i)
Γ

ai(v(i), v(i)) = u
(i)
Γ

T
S(i)u

(i)
Γ .

Analogously, if uΓ is the restriction of a finite element function to Γ, the piecewise
discrete harmonic extension u =H(uΓ) of uΓ into the interior of the subdomains satisfies

a(u, u) = min
v∣Γ=uΓ

a(v, v) = s(u, u) = uT
ΓSuΓ.
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3. Non-overlapping domain decomposition methods for hp finite element methods

3.5.3. Components of the balancing Neumann-Neumann preconditioners

We next define in a variational form the various components of the balancing Neumann-
Neumann preconditioner.

Pi projection-like operators

The local operators Pi are projection-like operators associated with a family of subspaces
Ui and determined by a set of local bilinear forms defined on them

s̃i(u, v), u, v ∈ Ui.

Given the interpolation operators RT
i ∶ Ui → U , we have

Pi = RT
i P̃i, P̃i ∶ U Ð→ Ui, (3.27)

with
s̃i(P̃iu, vi) = s(u, RT

i vi), vi ∈ Ui. (3.28)

For every substructure Ωi, the local bilinear form is

s̃i(u, v) ∶= ai(Hi(δiu),Hi(δiv)), u, v ∈ Ui. (3.29)

For a floating subdomain P̃i is defined only for those u ∈ U for which s(u, v) = 0
for all v = RT

i vi such that Hi(δivi) is constant on Ωi. This condition is satisfied if
a(u, RT

i δ†
i ) = 0; we note that RT

i δ†
i is a basis function for U0. For such subdomains, we

make the solution P̃iu of (3.28) unique by imposing the constraint

∫Ωi

Hi(δiP̃iu)dx = 0, (3.30)

which just means that we select the solution orthogonal to the null space of the Neumann
operator.

Coarse space U0

A coarse space U0 of minimum dimension is defined as

U0 = span{RT
i δ†

i } ⊂ U,

where the span is taken over the floating subdomains. We note that U0 consists of
piecewise discrete harmonic functions and RT

0 is the natural injection U0 ⊂ U . We
consider an exact solver on U0

s̃0(u, v) ∶= a(Hu,Hv) = a(u, v).
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Partition of unity

An important role in the description and analysis of the Neumann-Neumann algorithms
is played by a family of weighted counting functions δi, which are associated with and
defined on the individual Γi (cf. [81, 82, 172, 198, 219]) and are defined for γ ∈ [1/2,∞).
Given Ωi and x ∈ Γi,h, δi(x) is determined by a sum of contributions from Ωi and its
relevant nearest neighbours,

δi(x) = ∑
j∈Nx

ργ
j (x)/ρ

γ
i (x), x ∈ Γi,h. (3.31)

Here Nx, x ∈ Γh, is the set of indices j of the subregions such that x ∈ Γj,h. The function
δi is discrete harmonic and thus belongs to Ui. The pseudoinverses δ†

i ∈ Ui are defined,
for x ∈ Γi,h, by

δ†
i (x) = δ−1

i (x), x ∈ Γi,h. (3.32)

We note that these functions provide a partition of unity

M

∑
i=1

RT
i δi

†(x) ≡ 1. (3.33)

In particular, for u ∈ U we can use the formula

u =
M

∑
i=1

RT
i ui, with ui =Hi(δ†

i u). (3.34)

This decomposition result (3.34) is central in the analysis.

3.5.4. Condition number bounds

The main result in this section is a bound for the condition number of the precon-
ditioned operator PNN for hp finite element approximations on anisotropic meshes in
three dimensions. Such a bound can be found using the abstract Schwarz theory; see,
e.g., [226, Ch. 6] or [246, Chapters 2 and 6]. We first derive uniform bounds for the
smallest and the largest eigenvalues, successively.

A uniform bound for the smallest eigenvalue is stated next in Lemma 3.4.

Lemma 3.4. Given U the space of restrictions to Γ of functions in Xk(Ω;T ) and
the inner product s(u, v) defined in relation (3.26), the preconditioned operator PNN

satisfies the inequality
s(PNN u, u) ≥ s(u, u), u ∈ U.

Proof. The result is obtained by using the decomposition (3.34) and the fact that P0 is
an orthogonal projection.
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As stated in, e.g., [226], a stability property for the local bilinear forms is needed
in order to find a bound for the largest eigenvalue. This property is stated next in
Assumption 3.5.

Assumption 3.5. Given the local interpolation operators RT
i and projection operators

P̃i, the local bilinear forms s̃i satisfy the inequality

s(RT
i ui, RT

i ui) ≤ ω s̃i(ui, ui), ui ∈R(P̃i), i = 1,⋯, M,

with
ω = C (1 − σ)−6 (1 + log ( k

1 − σ
))

2

and C independent of k, n, σ, γ, the coefficients ρi, and the diameters Hi.

Proof. The fairly technical proof of this assumption is given in [243, Section 9]. These
developments extend the proof proposed by Pavarino [198, Section 8] in the context of
spectral elements to the case of hp finite elements on anisotropic meshes.

Combining Assumption 3.5 and a colouring argument1 [246, Section 2.5.1] finally
provides a bound for the largest eigenvalue.

Lemma 3.6. Let Assumption 3.5 be satisfied. Then

s(PNN u, u) ≤ Cωs(u, u), u ∈ U.

Consequently, the condition number of PNN satisfies

κ(PNN) ≤ Cω = C (1 − σ)−6 (1 + log ( k

1 − σ
))

2
.

Proof. See [243, Sections 7 and 9]. The bound for the condition number can be easily
deduced from Lemma 3.4.

A similar proof has been provided in [242] to derive a bound for the condition number
of PNN in two dimensions.

3.6. Additional comments and conclusions
Summary We have proposed two popular iterative substructuring methods (balancing
Neumann-Neumann and one-level FETI) for the solution of algebraic systems arising
from the hp finite element discretization of scalar equations on anisotropic meshes in
two and three dimensions. As a main result, we have proved that, if basis functions

1Given a decomposition of V , the subspaces {Vi, 1 ≤ i ≤ M} are coloured in such a way that if two
subspaces Vk and Vj have the same colour they are orthogonal, i.e., s(RT

k uk, RT
j uj) = 0, uk ∈ Vk, uj ∈

Vj .
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on Gauss-Lobatto-Legendre nodes and the subdomains are suitably chosen, the condi-
tion numbers of the preconditioned operator retain the logarithmic dependence in the
polynomial degree and they remain independent of arbitrarily large aspect ratios of the
mesh and of the number of substructures. Scalable preconditioners (in the sense of Def-
inition 1.2) have been thus provided. We have been able to obtain convergence bounds
that depend only logarithmically on the spectral polynomial degree k with a constant
independent of the possible jumps in the coefficients in the equation. Numerical results
in two and three dimensions have been provided supporting the theory.

Collaboration This research on domain decomposition has been made in collaboration
with Andrea Toselli with financial support from the Swiss National Science Foundation
(SNSF).

Software realization The hp finite element method and the domain decomposition
preconditioners proposed in this chapter were first implemented in Matlab for fast pro-
totyping in two and three dimensions, respectively. Then, a code was written in Python
and C for three-dimensional applications. This code makes extensive use of the Pysparse
library2 written by Roman Geus. Finally, the domain decomposition preconditioners re-
lated to vector problems [245] have been implemented in the C++ FEMSTER library [62]
for two-dimensional applications. As pointed out in Section 3.1.1, the main emphasis of
the research concerns the design and analysis of domain decomposition preconditioners.
Parallel implementations of these domain decomposition preconditioners have not been
provided but can be derived; see, e.g., discussions in [80, 226] and [241, Section 4].

Short-term prospectives A natural extension of the developments proposed in this
chapter would have been to consider dual-primal iterative substructuring methods
(BDDC and FETI-DP) methods for hp finite element approximations; see, e.g., [105,
159] and the references therein. Among many other advantages, dual-primal FETI algo-
rithms do not require projection steps involving P and P T , and thus no matrix Q needs
to be chosen; see [246, Chapter 6]. Their application to the case of hp finite element
approximations has been considered in [155]. We also refer the reader to Section 5.3.2
for further discussions on BDDC and FETI-DP methods.

2http://pysparse.sourceforge.net/
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4. Flexible Krylov subspace methods

4.1. Objectives and contributions
4.1.1. Objectives
In this chapter, we focus on certain Krylov subspace methods for the solution of linear
systems of equations

Ax = b, (4.1)
where A ∈ Cn×n is a nonsingular non-Hermitian matrix, b ∈ Cn, with n assumed to
be large. As outlined in Chapter 1, depending on the properties of the PDE that is
considered, we assume that a preconditioning method (possibly of multilevel type) is
already available. In this chapter, we aim at proposing Krylov subspace methods of
minimum residual norm type that combine at least two of the four different features
detailed next.

Variable preconditioning

In certain situations, the preconditioning method can be represented by a matrix that
changes between the iterations. As already pointed out, this is the case of the multi-
grid preconditioners that have been proposed in Sections 2.5 and 2.6 for the solution
of three-dimensional heterogeneous Helmholtz problems. This also occurs in, e.g., do-
main decomposition methods, when approximate solvers are considered for the interior
problems (see references in [226, Sect. 4.4] or in [246, Sect. 4.3]). This approach is
notably used when the size of the local subproblems is so large that obtaining an ap-
proximate solution using an iterative method is computationally more interesting than
using a direct method. If the domain decomposition preconditioner is based on the use
of approximate solvers, its application is not a linear operation in general, and Krylov
methods allowing variable preconditioning have to be employed (see Section 3.3.4 for
an illustration). This class of methods called flexible methods [224] will be the central
feature of this chapter.

Augmentation

Besides preconditioning, there exist two complementary alternatives to accelerate the
convergence of any Krylov subspace method, namely augmentation and deflation. In
augmentation techniques, the search space of the augmented Krylov subspace method
is decomposed as a direct sum of two subspaces. This search space S` (of dimension `)
can be written as

S` = Km(A, b)⊕W (4.2)
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where Km(A, b) is the m-th Krylov subspace generated by the matrix A from the vector
b

Km(A, b) = span(b, Ab,⋯, Am−1b)

andW (of dimension k) is called the augmentation subspace. A typical goal of augmen-
tation is to add information about the problem into the global search space S`, that is
only slowly revealed in the Krylov subspace itself.

Deflation

Alternatively, deflation is based on the use of a generic projection operator P. The
general idea is to select the projection operator P such that the solution of PAx = Pb,
referred to as the deflated linear system, is more easily amenable to a solution by a
Krylov subspace method than the original linear system Ax = b. Given the decompo-
sition x = Px + (In − P)x, the component (In − P)x can then be computed by solving
a linear system of small dimension. Usually orthogonal or oblique projection operators
with respect to a certain scalar product are employed, depending on the properties
of the preconditioned operator. Both choices will be discussed in detail later in this
chapter.

Block size reduction

This last feature only concerns the case of a linear system with multiple right-hand
sides given simultaneously and written as

AX = B, (4.3)

where A ∈ Cn×n is a nonsingular non-Hermitian matrix, X, B ∈ Cn×p with n assumed
to be large and p ≤ n. As emphasised in the literature [136, Section 8], a primary
concern when designing efficient block Krylov subspace methods is to remove unneeded
information for the convergence as soon as possible during the iterative procedure.
This suggests including strategies for detecting when a linear combination of the p sys-
tems has approximately converged. This explicit block size reduction is often called
deflation [136] and should not be confused with deflation introduced above. Hence, in
this manuscript, we will rather use the terminology block size reduction. The main
purpose is to derive a flexible minimal norm block Krylov subspace method that incor-
porates block size reduction at each restart or at each iteration suited to the solution
of large-scale linear systems (where expensive variable preconditioners are often used)
with possibly a large number of right-hand sides. This is especially useful when the
cost of the preconditioner is assumed to be larger than the cost of orthogonalization in
the block Arnoldi procedure.

4.1.2. Contributions

The main contributions of this chapter are
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• FGMRES-DR [124], a flexible Krylov subspace method based on augmentation
detailed in Section 4.3.3,

• FGCRO-DR [61], a flexible Krylov subspace method based on augmentation and
deflation detailed in Section 4.3.6 (see Appendix B.3),

• BFGMRES-D [59], a block flexible subspace method including block size reduction
at each restart detailed in Section 4.5,

• BFGMRES-S [57], a block flexible subspace method including block size reduction
at each iteration (see Appendix B.5).

4.1.3. Specific notation

Regarding the algorithmic part (Algorithms 4.1-4.9), we adopt Matlab like notation in
the presentation. For instance Q(i, j) denotes the qij entry of matrix Q and Q(1 ∶m, 1 ∶
j) refers to the submatrix made of the first m rows and first j columns of Q. Given
Zm = [z1,⋯, zm] ∈ Cn×m we denote its i-th column as zi ∈ Cn, (1 ≤ i ≤m).

4.1.4. Synopsis

We address the case of flexible Krylov subspace methods for the solution of (4.1) in
Section 4.3. Then we consider the case of linear systems with multiple right-hand sides
(4.3) with block flexible Krylov subspace methods in Section 4.5.

In both sections, we emphasise that we will first derive the mathematical formulation
of the numerical methods and then give the corresponding algorithms. Finally, for
ease of readability, we briefly recall in Sections 4.2 and 4.4 selected elementary notions
related to Krylov subspace methods and block Krylov subspace methods that appear as
useful for the developments proposed in this chapter. Conclusions are given in Section
4.6.

4.2. Brief background on Krylov subspace methods
We briefly describe a few basic properties of minimum residual Krylov subspace methods
for the solution of (4.1) that will be useful later in this chapter. Finally, throughout
Sections 4.2 and 4.3, for the sake of readability, the integer subscript ` denotes the
dimension of the search space.

4.2.1. Minimum residual Krylov subspace method

In Sections 4.2 and 4.3, we focus on minimum residual norm Krylov subspace methods
for the solution of linear systems with a non-Hermitian coefficient matrix. We refer the
reader to [217, 257] for a general introduction to Krylov subspace methods and to [224]
for a recent overview on Krylov subspace methods; see also [86, 87] for an advanced
analysis related to minimum residual norm Krylov subspace methods. Augmented and
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deflated minimum residual norm Krylov subspace methods are usually characterized by
a generalized Arnoldi relation introduced next.

Definition 4.1. Generalized Arnoldi relation. The minimum residual norm subspace
methods investigated in this chapter will satisfy the following relation

AZ` = V`+1H̄` (4.4)

where Z` ∈ Cn×`, V`+1 ∈ Cn×(`+1) such that V H
`+1V`+1 = I`+1 and H̄` ∈ C(`+1)×`. These

methods will compute an approximation of the solution of (4.1) in a `-dimensional
affine space x0 +Z` y`, where y` ∈ C`. In certain cases, H̄` will be an upper Hessenberg
matrix.

4.2.2. Flexible GMRES
Formulation

Next, we introduce a minimum residual norm subspace method proposed by Saad [215],
since it will be the basis for further developments related to augmented and deflated
Krylov subspace methods of minimum residual norm type. This method named Flex-
ible GMRES (FGMRES) was primarily introduced to allow variable preconditioning.
We denote by Mj the nonsingular matrix that represents the preconditioner at step
j of the method. Starting from an initial guess x0 ∈ Cn, it is based on a general-
ized Arnoldi relation (4.4), where Z` ∈ Cn×`, V`+1 ∈ Cn×(`+1) and the upper Hessen-
berg matrix H̄` ∈ C(`+1)×` are obtained from the Arnoldi procedure described in Algo-
rithm 4.1. An approximate solution x` ∈ Cn is then found by minimizing the residual
norm ∥b − A(x0 + Z`y)∥2 over the space x0 +R(Z`), the corresponding residual being
r` = b −Ax` ∈ Cn with r` ∈R(V`+1). The current approximation x` can be written as

x` = x0 +Z`y
⋆, (4.5)

whereas the residual r` = b −Ax` satisfies the Petrov-Galerkin orthogonality condition

r` ⊥ A R(Z`).

Hence, an optimality property similar to the one that defines GMRES is thus ob-
tained [217]. We note however that no general convergence results are available since
the subspace of approximants R(Z`) is no longer a standard Krylov subspace. We refer
the reader to [215, 217] for the analysis of breakdown in FGMRES. Furthermore, as
can be seen in equation (4.5), the update of the iterate x` requires storing the complete
set of vectors Z` causing a possibly large memory footprint for large `. In order to al-
leviate this memory requirement, a restarting strategy must be implemented as shown
in Algorithm 4.2. The construction of a complete set of Z` is often named a cycle of
the method: it corresponds to one iteration of the loop in Algorithm 4.2. When the
preconditioner is fixed, FGMRES(`) reduces to right-preconditioned GMRES(`), whose
convergence properties are discussed in, e.g., [217, Chapter 6].
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Algorithms

Arnoldi procedure Algorithm 4.1 introduces the Arnoldi procedure with modified
Gram-Schmidt. Algorithm 4.1 proceeds by orthonormalizing Azj against all the previ-
ous preconditioned Krylov directions.

Algorithm 4.1 Arnoldi procedure: computation of V`+1, Z` and H̄`

Input: Assume that the following is given:
• A ∈ Cn×n ▷ operator
• v1 ∈ Cn ▷ vector of unit Euclidean norm (∥v1∥2 = 1)
• M−1

j ∈ Cn×n for j ∈ {1, . . . , `} ▷ variable preconditioning operators
1: for j = 1, ` do
2: zj =M−1

j vj

3: s = Azj

4: for i = 1, j do
5: hi,j = vH

i s
6: s = s − hi,jvi

7: end for
8: hi+1,j = ∥s∥2
9: vj+1 = s/hi+1,j

10: end for
11: Define Z` = [z1,⋯, z`], V`+1 = [v1,⋯, v`+1], H̄` = {hi,j}1≤i≤`+1,1≤j≤`

FGMRES(`) Algorithm 4.2 depicts the FGMRES(`) method, where the dimension of
the approximation subspace is not allowed to be larger than a prescribed dimension
noted `.

4.3. Flexible augmented and deflated Krylov subspace
methods

4.3.1. Problem setting

In this section, we examine augmentation and deflation techniques in Krylov subspace
methods when the coefficient matrix A is non-Hermitian. We specifically focus on min-
imum residual norm subspace methods and assume that a generalized Arnoldi relation
(4.4) holds. We denote by x0, r0 = b − Ax0 the current approximation and residual
vector respectively, and by V`+1, H̄` and Z` the matrices involved in this relation. With
notation of Algorithm 4.2, r0 can be expressed as r0 = V`+1(c − H̄`y

⋆).

61



4. Flexible Krylov subspace methods

Algorithm 4.2 Flexible GMRES(`)
Input: Assume that the following is given:

• A ∈ Cn×n ▷ operator
• b, x0 ∈ Cn ▷ right-hand side and initial guess
• M−1

j ∈ Cn×n for j ∈ {1, . . . , `} ▷ variable preconditioning operators
• cyclemax ▷ maximal number of cycles allowed
• tol > 0 ▷ convergence threshold

1: Settings: Let r0 = b −Ax0, β = ∥r0∥2, c = [β, 01×`]T where c ∈ C`+1, v1 = r0/β.
2: for cycle = 1, cyclemax do
3: Computation of V`+1, Z` and H̄` (see Algorithm 4.1): Apply ` steps of the

Arnoldi method with variable preconditioning (zj = M−1
j vj , 1 ≤ j ≤ `) to obtain

V`+1 ∈ Cn×(`+1), Z` ∈ Cn×` and the upper Hessenberg matrix H̄` ∈ C(`+1)×` such that

AZ` = V`+1H̄` with V H
`+1V`+1 = I`+1.

4: Minimum norm solution: Compute the minimum norm solution x` ∈ Cn in the
affine space x0 +R(Z`); that is, x` = x0 +Z`y

⋆ where y⋆ = argminy∈C` ∥c − H̄`y∥2.
5: Check the convergence criterion: If ∥c − H̄`y

⋆∥2/∥b∥2 ≤ tol, exit
6: Settings: Set x0 = x`, r0 = b −Ax0, β = ∥r0∥2, c = [β, 01×`]T , v1 = r0/β.
7: end for

4.3.2. Augmented Krylov subspace methods

We next discuss two possibilities for selecting the augmentation subspaceW and analysing
the corresponding Krylov subspace methods.

Augmentation with an arbitrary subspace

Given an augmentation subspaceW (subspace of Cn of dimension k) with W = [w1,⋯, wk]
a matrix whose columns form a basis of W, a slight modification in the Arnoldi pro-
cedure (Algorithm 4.1) is used to obtain an orthogonal basis of S` defined in (4.2)
(see [63]). It consists of defining zj (line 2 of Algorithm 4.1) now as

zj =M−1
j vj (1 ≤ j ≤m), zj =M−1

j wj−m (m < j ≤m + k).

With this definition, we finally obtain the generalized Arnoldi relation

AZm+k = Vm+k+1H̄m+k

where

Zm+k = [M−1
1 v1, M−1

2 v2,⋯, M−1
m+1w1, M−1

m+2w2,⋯, M−1
m+kwk], (4.6)

Vm+k+1 = [v1, v2,⋯, vm+k+1], (4.7)
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and H̄m+k is a (m + k + 1) × (m + k) upper Hessenberg matrix. Thus, the residual
minimization properties are then obtained similarly to FGMRES [215]. Hence, the
approximate solution from the affine space x0 +R(Zm+k) can be written as

xm+k = x0 +Zm+ky⋆

with y⋆ ∈ C(m+k) the solution of the residual norm minimization problem

y⋆ = argminy∈C(m+k) ∥∣∣r0∣∣e1 − H̄m+ky∥2,

(with e1 designating here the first unit vector of R(m+k+1)). In the case of fixed right
preconditioning, the main important property is that if any vector wj , 1 ≤ k, is the
solution of AM−1wj = vi, 1 ≤ i ≤ m, then in general the exact solution of the original
system (4.1) can be extracted from S`; see, e.g., [216, Proposition 2.1]. We refer the
reader to [63] for a discussion of possible choices for the augmented subspaceW. Vectors
obtained with either different iterative methods or with different preconditioners can be
incorporated into Zm+k quite easily. A popular idea is to choose W as an approximate
invariant subspace associated with a specific part of the spectrum of A or AM−1 in the
case of fixed preconditioning. This is discussed next.

Augmentation with an approximate invariant subspace

A typical goal of augmentation is to add information about the problem into the search
space that is only slowly revealed in the Krylov subspace itself. In the symmetric
positive definite case, it is often known that eigenvalues of the (preconditioned) op-
erator close to zero tend to slow down the convergence rate of the Krylov subspace
methods [63]. Hence, augmentation based on approximate invariant subspaces made
of eigenvectors corresponding to eigenvalues small in modulus of the (preconditioned)
operator has been proposed; see, e.g., [183, 184, 185, 216] and references therein.

Harmonic Ritz information In [184], Morgan has suggested selecting W as an ap-
proximate invariant subspace and updating this subspace at the end of each cycle.
Approximate spectral information is then required to define the augmentation space.
This is usually obtained by computing harmonic Ritz pairs of A with respect to a cer-
tain subspace [63, 184]. We present here a definition of a harmonic Ritz pair as given
in [196, 225].

Definition 4.2. Harmonic Ritz pair. Consider a subspace U of Cn. Given B ∈ Cn×n,
θ ∈ C and y ∈ U , (θ, y) is a harmonic Ritz pair of B with respect to U if and only if

By − θ y ⊥ B U

or equivalently, for the canonical scalar product,

∀w ∈R(B U) wH (By − θ y) = 0.

We call y a harmonic Ritz vector associated with the harmonic Ritz value θ.
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Based on the generalized Arnoldi relation (4.4), the augmentation procedure proposed
in [124, Proposition 1] relies on the use of k harmonic Ritz vectors Yk = V`Pk of AZ`V

H
`

with respect to R(V`), where Yk ∈ Cn×k and Pk = [p1,⋯, pk] ∈ C`×k. According to
Definition 4.2, the harmonic Ritz vector yj = V`pj then satisfies

ZH
` AH (AZ` pj − θjV` pj) = 0. (4.8)

Using the generalized Arnoldi relation (4.4) we finally obtain the relation

H̄H
` H̄` yj = θH̄H

` V H
`+1V` yj . (4.9)

Since
H̄` = [

H`

h`+1,`e
T
`

] , H` ∈ C`×`

where H` ∈ C`×` is assumed to be nonsingular, the generalized eigenvalue problem is
then equivalent to

(H` + h2
`+1,`H

−H
` e`e

T
` )yj = θjyj . (4.10)

This corresponds to a standard eigenvalue problem of dimension ` only, where ` is
assumed to be much smaller than the problem dimension n. As a consequence, the
approximate spectral information based on Harmonic Ritz pair is quite inexpensive to
compute.

4.3.3. Flexible GMRES with deflated restarting: FGMRES-DR

We present next a flexible Krylov subspace method based on augmentation, which con-
sists of our first contribution of this chapter. We introduce the mathematical derivation
of the method in Section 4.3.3, and follow it by an algorithmic description given in
Section 4.3.3.

Motivations

Formulation

The augmentation space W based on approximate invariant information corresponding
to R(Yk) is used. The key point studied next is to understand how to incorporate
this information into a minimum residual norm subspace method such as flexible GM-
RES. This has been proposed in [124]. The i-th cycle of the resulting algorithm called
FGMRES-DR is now briefly described, and we denote by r

(i−1)
0 = b −Ax

(i−1)
0 , V`+1, H̄`

and Z` the residual and matrices obtained at the end of the (i − 1)-th cycle. Based on
the generalized Arnoldi relation (4.4), the augmentation procedure proposed in [124,
Proposition 1] relies on the use of k harmonic Ritz vectors Yk = V`Pk of AZ`V

H
` with

respect to R(V`), where Yk ∈ Cn×k and Pk ∈ C`×k. In Lemma 4.3 shown in [124, Lemma
3.1], we recall a useful relation satisfied by the harmonic Ritz vectors.
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Lemma 4.3. In flexible GMRES with deflated restarting, the harmonic Ritz vectors
are given by Yk = V`Pk with corresponding harmonic Ritz values λk. Pk ∈ C`×k satisfies
the relation

AZ`Pk = V`+1 [[
Pk

01×k
] , c − H̄`y

∗] [ diag(λ1, . . . , λk)
α1×k

] , (4.11)

AZ`Pk = [V`Pk, r
(i−1)
0 ] [ diag(λ1, . . . , λk)

α1×k
] , (4.12)

where r
(i−1)
0 = V`+1(c − H̄`y

∗) and α1×k = [α1, . . . , αk] ∈ C1×k.

Proof. See Lemma 3.1 of [124].

Next, the QR factorization of the (`+1)×(k+1) matrix appearing on the right-hand
side of relation (4.11) is performed as

[[ Pk

01×k
] , c − H̄`y

∗] = QR (4.13)

where Q ∈ C(`+1)×(k+1) has orthonormal columns and R ∈ C(k+1)×(k+1) is upper triangu-
lar, respectively. We write the matrix Q in equation (4.13) as

Q = [[Q`×k

01×k
] ,

ρ̄

∥ρ̄∥] , (4.14)

where Q`×k ∈ C`×k and ρ̄ ∈ C`+1 is defined as

ρ̄ = (I`+1 − [
Q`×k

01×k
] [Q`×k

01×k
]

H

)(c − H̄`y
∗). (4.15)

Proposition 4.4. In flexible GMRES with deflated restarting, the generalized Arnoldi
relation

A Zk = Vk+1H̄k, (4.16)
V H

k+1Vk+1 = Ik+1, (4.17)
R([Yk, r

(i−1)
0 ]) = R(Vk+1) (4.18)

holds at the i-th cycle with matrices Zk, Vk ∈ Cn×k and H̄k ∈ C(k+1)×k defined as

Zk = Z`Q`×k, (4.19)
Vk+1 = V`+1Q, (4.20)

H̄k = QHH̄`Q`×k, (4.21)

where V`+1, Z` and H̄` refer to matrices obtained at the end of the (i − 1)-th cycle.
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Proof. Relations (4.16), (4.17), (4.19), (4.20) and (4.21) have been shown in [124, Propo-
sition 2]. From relations (4.20) and (4.13) respectively, we deduce that

Vk+1R = V`+1 [[
Pk

01×k
] , c − H̄`y

∗]

Vk+1R = [V`Pk, r
(i−1)
0 ] (4.22)

which finally shows thatR([Yk, r
(i−1)
0 ]) =R(Vk+1) since R is assumed to be nonsingular.

FGMRES-DR then carries out m Arnoldi steps with variable preconditioning and
starting vector vk+1, while maintaining orthogonality to Vk leading to

A [zk+1,⋯, zm+k] = [vk+1,⋯, vm+k+1] H̄m and V H
m+k+1 Vm+k+1 = Im+k+1.

We note that H̄m ∈ C(m+1)×(m) is upper Hessenberg. At the end of the i-th cycle this
gives the generalized Arnoldi relation

A Zm+k = [Vm+1+k] [[
H̄k

0m×k
] [Bk×m

H̄m
]]

where Vm+k+1 ∈ Cn×(m+k+1), H̄m+k ∈ C(m+k+1)×(m+k) and Bk×m ∈ Ck×m results from the
orthogonalization of [vk+2,⋯, vm+k+1] against Vk+1. We note that H̄m+k is no longer
upper Hessenberg due to the leading dense (k + 1)× k submatrix H̄k. At the end of the
i-th cycle, an approximate solution x

(i)
0 ∈ Cn is then found by minimizing the residual

norm ∥b − A(x(i−1)
0 + Z`y)∥2 over the space x

(i−1)
0 +R(Z`), the corresponding residual

being r
(i)
0 = b −Ax

(i)
0 , with r

(i)
0 ∈R(V`+1).

Algorithms

FGMRES-DR is depicted in Algorithms 4.3 and 4.4, respectively. We refer the reader
to [124, Section 3.2] for a complete description of the implementation and details on
related computational aspects.

Remarks When the preconditioner is fixed, the previous algorithm is known as GM-
RES with deflated restarting (GMRES-DR), initially proposed by Morgan [184]. Al-
though the term “deflated" is used, we note that this algorithm does correspond to a
GMRES method with an adaptive augmented basis without any explicit deflated matrix.
The success of GMRES-DR has been demonstrated on many academic examples [183]
and concrete applications, such as in lattice QCD [72, 110], reservoir modelling [6, 160]
or electromagnetics [124]. We refer the reader to [184, 210] for further comments on
the algorithm and computational details.

Finally, we refer the reader to [124] for various numerical experiments showing the
efficiency of FGMRES-DR on both academic and industrial applications.
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Algorithm 4.3 Flexible GMRES with deflated restarting: FGMRES-DR(m, k).
Input: Assume that the following is given:

• A ∈ Cn×n ▷ operator
• b ∈ Cn, x0 ∈ Cn ▷ right-hand side and initial guess
• M−1

j ∈ Cn×n for j ∈ {1, . . . , `} ▷ variable preconditioning operators
• cyclemax ▷ maximal number of cycles allowed
• tol > 0 ▷ convergence threshold

1: Settings: Let r0 = b −Ax0, β = ∥r0∥2, c = [β, 01×m]T ∈ Cm+1, v1 = r0/β.
2: Computation of Vm+1, Zm, and H̄m: Apply m steps of the Arnoldi procedure with

flexible preconditioning to obtain Vm+1 ∈ Cn×(m+1), Zm ∈ Cn×m, and the upper
Hessenberg matrix H̄m ∈ C(m+1)×m such that

AZm = Vm+1H̄m with V H
m+1Vm+1 = Im+1.

3: for cycle = 1, cyclemax do
4: Minimum norm solution: Compute the minimum norm solution xm ∈ Cn in the

affine space x0+R(Zm); that is, xm = x0+Zmy∗, where y∗ = argminy∈Cm ∥c−H̄my∥2.
Set x0 = xm and r0 = b −Ax0.

5: Check the convergence criterion: If ∥c − H̄my∗∥2/∥b∥2 ≤ tol, exit.
6: Computation of V new

k+1 , Znew
k , and H̄new

k : see Algorithm 4.4. At the end of this
step the following relations hold:

AZnew
k = V new

k+1 H̄new
k with V new

k+1
HV new

k+1 = Ik+1 and r0 ∈R(V new
k+1 ). (4.23)

7: Arnoldi procedure: Set Vk+1 = V new
k+1 , Zk = Znew

k , and H̄k = H̄new
k and apply

(m − k) steps of the Arnoldi procedure with flexible preconditioning and starting
vector vk+1 to build Vm+1 ∈ Cn×(m+1), Zm ∈ Cn×m, and H̄m ∈ C(m+1)×m such that

AZm = Vm+1H̄m with V H
m+1Vm+1 = Im+1.

8: Setting: Set c = V H
m+1r0.

9: end for

4.3.4. Deflated Krylov subspace methods

We next briefly describe minimal residual Krylov subspace methods based on defla-
tion. We refer the reader to [121, 122, 138] for a recent excellent overview of deflated
Krylov subspace methods in the Hermitian and non-Hermitian case, where extensive
bibliographical references and historical comments can be found. The general idea of
deflation is to decompose the approximation space into two complementary subspaces
such that the projected linear system, referred to as the deflated linear system, will
be easier to solve iteratively than the original linear system (4.1). The fact that these
subspaces can be chosen in different ways explains the existence of a huge literature on
deflated Krylov subspace methods. The Krylov subspace method is then confined to
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Algorithm 4.4 FGMRES-DR(m, k): computation of V new
k+1 , Znew

k , and H̄new
k .

Input: Assume that the following is given:
• A ∈ Cn×n ▷ operator
• Zm, Vm+1 such that AZm = Vm+1H̄m ▷ generalized Arnoldi relation
• c − H̄my∗ ▷ r0 = Vm+1(c − H̄my∗)

1: Settings: Define hm+1,m = H̄m(m + 1, m), Hm ∈ Cm×m as Hm = H̄m(1 ∶m, 1 ∶m).
2: Compute k harmonic Ritz vectors. Compute k independent eigenvectors gi of the

matrix Hm + ∣hm+1,m∣2H−H
m emeT

m. Set Gk = [g1, . . . , gk] ∈ Cm×k.
3: Augmentation of Gk: Define Gk+1 ∈ C(m+1)×(k+1) as

Gk+1 = [[
Gk

01×k
] , c − H̄my∗] . (4.24)

4: Orthonormalization of the columns of Gk+1: Perform a QR factorization of Gk+1 as
Gk+1 = Pk+1Γk+1. Define Pk ∈ Cm×k as Pk = Pk+1(1 ∶m, 1 ∶ k).

5: Settings and final relation: Set V new
k+1 = Vm+1Pk+1, Znew

k = ZmPk, and H̄new
k =

P H
k+1H̄mPk, so that the following relations are satisfied:

AZmPk = Vm+1Pk+1P H
k+1H̄mPk; i.e., AZnew

k = V new
k+1 H̄new

k , (4.25)

where H̄new
k is generally a dense matrix.

one of these subspaces, by projecting the initial residual into this space and by replacing
A by its restriction to this subspace. If the projection operator is chosen properly the
deflated linear system will be easier to solve iteratively than the original linear system
(4.1). We first present a possible strategy based on orthogonal projection and then
briefly discuss an extension based on oblique projection proposed in [138].

Deflation based on orthogonal projection

We still denote by W a subspace of Cn of dimension k, where k is assumed to be much
smaller than the problem dimension n. We later denote by W ∈ Cn×k, a matrix whose
columns form a basis of W so that W HAHAW is Hermitian positive definite (hence
invertible). To simplify further developments, we introduce the operators PMR

(AW)⊥ , PMR
W⊥ ∈

Cn×n defined respectively as

PMR
(AW)⊥ = In −AW (W HAHAW )−1W HAH , (4.26)

PMR
W⊥ = In −W (W HAHAW )−1W HAHA. (4.27)

We can easily show that PMR
(AW)⊥ and PMR

W⊥ are orthogonal projectors such that PMR
(AW)⊥

projects onto (AW)⊥, whereas PMR
W⊥ projects onto W⊥, both with respect to the inner

product ⟨⋅, ⋅⟩AHA. Furthermore, we note that PMR
(AW)⊥ is Hermitian and that APMR

W⊥ =
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PMR
(AW)⊥A. The decomposition based on orthogonal projection reads as

Cn =W ⊕W⊥. (4.28)

Hence, the solution x of the original system (4.1) can be written as

x = (In − PMR
W⊥ )x + PMR

W⊥x =W (W HAHAW )−1W HAHb + PMR
W⊥x.

Combining this decomposition with APMR
W⊥ = PMR

(AW)⊥A, the original system (4.1) then
simply becomes

PMR
(AW)⊥Ax = PMR

(AW)⊥b. (4.29)

Since PMR
(AW)⊥AW = 0n×k, PMR

(AW)⊥A is singular. Although this deflated matrix PMR
(AW)⊥A

is singular, the deflated linear system (4.29) is consistent and thus can be solved by an
appropriate Krylov subspace method. Here, we focus on the application of a minimum
residual Krylov subspace method based on GMRES to solve the deflated linear system
(4.29). Hence, given an initial guess x0 and initial residual r0 = b−Ax0, the search space
of the Krylov subspace method applied to (4.29) can be written as

Ŝm = Km(PMR
(AW)⊥A, PMR

(AW)⊥r0),

while the current approximation x̂m and the current residual r̂m = PMR
(AW)⊥(b −Ax̂m) at

the end of the cycle satisfy the relations

x̂m ∈ x̂0 + Ŝm,

PMR
(AW)⊥(b −Ax̂m) ⊥ PMR

(AW)⊥A Km(PMR
(AW)⊥A, PMR

(AW)⊥r0).

Hence, it is of paramount importance to analyse the possibilities of a breakdown when
solving the deflated linear system (4.29). In our context, when GMRES is used to solve
the deflated linear system, this feature has been notably analysed in [138, Section 3]
based on theoretical results obtained by Brown and Walker [46]. We refer the reader
to [138, Corollary 3] for conditions that characterize the possibility of breakdowns. It
is worthwhile to note that a breakdown cannot occur if the condition

N (PMR
(AW)⊥A) ∩R(P

MR
(AW)⊥A) = {0}

holds; see [122, Theorem 4.1]. This condition is notably satisfied if W is chosen as
an exact A-invariant subspace, i.e., when AW = WD since N (PMR

(AW)⊥A) = W and
R(PMR

(AW)⊥A) = W
⊥, due to the nonsingularity of A. Once the solution of the deflated

linear system (4.29) is obtained, we deduce the approximation xm of the original system
as

xm =W (W HAHAW )−1W HAHb + PMR
W⊥ x̂m,

and by construction we note that

b −Axm = PMR
(AW)⊥(b −Ax̂m),
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i.e.,
rm = r̂m.

We refer to [97] for applications of deflated Krylov subspace methods with orthog-
onal projection to linear systems with non-Hermitian matrices. As an illustration, a
typical choice of subspaces is to choose the columns of W as right eigenvectors of A
corresponding to eigenvalues of small modulus.

Deflation based on oblique projection

We briefly mention a strategy based on the use of an oblique projection that is con-
sidered as more appropriate for the solution of non-Hermitian linear systems, since the
eigenspaces of A are in general not mutually orthogonal [138]. As in (4.28), the search
space S` will be decomposed into a direct sum of two subspaces. More precisely, the
following decompositions into nonorthogonal complements are used

Cn = AW ⊕ W̃⊥ = AW̃ ⊕W⊥,

whereW and W̃ represent two subspaces of Cn of dimension k, respectively. As before,
we denote by W ∈ Cn×k (W̃ ∈ Cn×k) a matrix whose columns form a basis of W (W̃,
respectively). We assume that both matrices are chosen such that W̃ HAW is nonsin-
gular. The key idea is then to introduce the matrices PAW,W̃⊥ ∈ Cn×n, P

W̃⊥,AW ∈ Cn×n

defined as

PAW,W̃⊥ = AW (W̃ HAW )−1W̃ H , (4.30)
P
W̃⊥,AW = In −AW (W̃ HAW )−1W̃ H . (4.31)

It is easy to show that PAW,W̃⊥ and P
W̃⊥,AW = In − PAW,W̃⊥ are projection operators;

PAW,W̃⊥ is the oblique projection onto (AW) along W̃⊥, while P
W̃⊥,AW is the oblique

projection onto W̃⊥ along AW with respect to the (possibly semidefinite) inner product
⟨⋅, ⋅⟩A. Given these oblique projection operators, the deflated linear system is now
defined as

P
W̃⊥,AWAP

W̃⊥,AWx = P
W̃⊥,AWb

with r̂0 = P
W̃⊥,AWr0. The use of a Krylov subspace method is now restricted to W̃⊥.

Hence, it can be shown that the deflated Krylov subspace method based on GMRES
yields iterates xm at the end of the cycle of the form

xm ∈ x0 +Km(PW̃⊥,AWAP
W̃⊥,AW , P

W̃⊥,AWr0) +W.

This also implies the following relation for the residual [138]

b −Axm ∈ r0 +AKm(PW̃⊥,AWAP
W̃⊥,AW , P

W̃⊥,AWr0) +AW.

We refer the reader to [138, Sections 5 and 6] for the mathematical aspects of deflated
Krylov subspace methods based on oblique projections and to [138, Section 11] for
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an overview of partly related methods that only differ in the choice of the projection
operators. A typical choice is to choose the columns of W as right eigenvectors of A and
the columns of W̃ as the corresponding left eigenvectors; see [97] for an application of
deflated Krylov subspace methods with oblique projection in the general non-Hermitian
case.

4.3.5. Augmented and deflated Krylov subspace methods
In the previous sections, we have described how either augmentation or deflation can be
incorporated into Krylov subspace methods of minimum residual norm type. We note
that it is possible to combine simultaneously deflation and augmentation into a single
Krylov subspace method. In such a setting, the search space of the Krylov subspace
method is now decomposed as

S` =W +Km(Â, r̂0),

whereW is the augmentation space of dimension k, Â refers to the deflated operator and
r̂0 to the deflated residual. As an illustration, we briefly review the GCRO (Generalized
Conjugate Residual with Orthogonalization) method due to de Sturler [235].

Methods based on augmentation and deflation

Methods based on both augmentation and deflation have been introduced recently; see,
e.g., [23, 235, 236, 258]. We focus here on the Generalized Conjugate Residual with
inner Orthogonalization (GCRO) [235], which combines augmentation and deflation
judiciously, since it will be useful for later developments.

GCRO belongs to the family of inner-outer methods [15, Ch. 12] where the outer iter-
ation is based on the Generalized Conjugate Residual method (GCR), a minimum resid-
ual norm Krylov subspace method proposed by Eisenstat, Elman and Schultz [89] while
the inner part is based on GMRES. Following the theoretical framework introduced in
[87], GCR maintains a correction subspace spanned by R(Zk) and an approximation
subspace spanned by R(Vk), where Zk, Vk ∈ Cn×k satisfy the relations

A Zk = Vk,

V H
k Vk = Ik.

The optimal solution of the minimization problem min ∥b − Ax∥2 over the subspace
x0 +R(Zk) is then found as xk = x0 +Zk V H

k r0. Consequently rk = b −Axk satisfies

rk = r0 − Vk V H
k r0 = (In − Vk V H

k )r0, rk ⊥R(Vk).

In [235] de Sturler suggested that the inner iteration takes place in a subspace orthogonal
to the outer Krylov subspace. In this inner iteration the following projected linear
system is considered

(In − Vk V H
k )Az = (In − Vk V H

k )rk = rk.
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The inner iteration is then based on a deflated linear system with (In − Vk V H
k ) as

orthogonal projection. If a minimum residual norm subspace method is used in the inner
iteration to solve this projected linear system approximately, the residuals over both the
inner and outer subspaces are minimized. Hence, augmentation is applied in the outer
iteration and deflation in the inner part of the method. Numerical experiments (see, e.g.,
[235] and [107, Chapter 1]) indicate that the resulting method may in some cases perform
better than other inner-outer methods (without orthogonalization). We mention that
the augmentation subspace can be based on spectral approximate invariant subspace
information. This leads to the GCRO with deflated restarting method (GCRO-DR)
[197] that uses Harmonic Ritz information to define the augmentation subspace as in
Section 4.3.2. In [236] de Sturler proposed defining an augmentation subspace based
on information other than approximate spectral invariant subspace. At the end of each
cycle, the strategy (named GCRO with optimal truncation (GCROT)) decides which
part of the current global search subspace to keep to define the new augmentation
subspace such that the smallest inner residual norm is obtained. This truncation is
done by examining angles between subspaces and requires specification of six different
parameters that affect the truncation. We refer to [236] for a complete derivation of
the method and numerical experiments (see also [87, Section 4.5]).

4.3.6. Flexible GCRO with deflated restarting: FGCRO-DR

We present next a flexible Krylov subspace method based on augmentation and defla-
tion, which consists of our second contribution of this chapter. We introduce both the
mathematical derivation of the method and then give an algorithmic description.

Motivations

Formulation

We assume that a generalized Arnoldi relation of type (4.4) holds. As in Section 4.3.3,
an important point is to specify what harmonic Ritz information is selected. Given a
certain matrix W` ∈ Cn×` to be specified later on, such as R(W`) =R(V`), the deflation
procedure relies on the use of k harmonic Ritz vectors Yk = W`Pk of AZ`W

†
` with re-

spect to R(W`), where Yk ∈ Cn×k and Pk ∈ C`×k. We point out that the calculation of
W †

` is not needed in the practical implementation of the algorithm. In Lemma 4.5, we
describe a useful relation satisfied by the harmonic Ritz vectors.

Lemma 4.5. In flexible GCRO with deflated restarting, the harmonic Ritz vectors are
given by Yk = W`Pk with corresponding harmonic Ritz values θk. The matrix Pk =
[p1,⋯, pk] ∈ C`×k satisfies the following relation

AZ`Pk = [W`Pk, r
(i−1)
0 ] [ diag(θ1, . . . , θk)

β1×k
] , (4.32)

where r
(i−1)
0 = V`+1(c − H̄`y

∗) and β1×k = [β1, . . . , βk] ∈ C1×k.
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Proof. See Lemma 2.3 of [61]. According to Definition 4.2, the harmonic residual vectors
AZ`W

†
` W`pj − θj W`pj and the residual vector r

(i−1)
0 = V`+1(c − H̄`y

∗) all belong to a
subspace of dimension `+1 (spanned by the columns of V`+1) and are orthogonal to the
same subspace of dimension ` (spanned by the columns of AZ` subspace of R(V`+1)),
so they must be collinear. Consequently there exist k coefficients noted βj ∈ C with
1 ≤ j ≤ k such that

∀j ∈ {1, . . . , k} AZ`pj − θjW`pj = βjr
(i−1)
0 . (4.33)

Setting β1×k = [β1, . . . , βk] ∈ C1×k, the collinearity expression (4.33) can be written in
matrix form as

AZ`Pk = [W`Pk, r
(i−1)
0 ] [ diag(θ1, . . . , θk)

β1×k
] .

Due to the generalized Arnoldi relation (4.4), relation (4.32) can be also expressed as

V`+1H̄`Pk = [W`Pk, r
(i−1)
0 ] [ diag(θ1, . . . , θk)

β1×k
] . (4.34)

If required, β1×k can be deduced from (4.34) by

(c−H̄`y
∗)H(H̄`Pk−V H

`+1W`Pkdiag(θ1, . . . , θk)) = (c−H̄`y
∗)H(c−H̄`y

∗)β1×k. (4.35)

Next, the QR factorization of the (` + 1) × k matrix H̄`Pk appearing in relation (4.34)
is performed as H̄`Pk = QR with Q ∈ C(`+1)×k and R ∈ Ck×k.

Proposition 4.6. In flexible GCRO with deflated restarting, the relation AZk = Vk

with V H
k Vk = Ik holds at the i-th cycle with matrices Zk, Vk ∈ Cn×k defined as

Zk = Z`PkR−1,

Vk = V`+1Q,

where V`+1 and Z` refer to matrices obtained at the end of the (i − 1)-th cycle. In
addition V H

k r
(i−1)
0 = 0 holds during the i-th cycle.

Proof. See Proposition 2 of [61]. By using information related to the QR factorization
of H̄`Pk and the generalized Arnoldi relation (4.4) exclusively, we obtain

A Zk = AZ`PkR−1,

= V`+1H̄`PkR−1,

= V`+1Q,

= Vk.
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Since both V`+1 and Q have orthonormal columns, Vk satisfies V H
k Vk = Ik. Finally, since

r
(i−1)
0 is the optimum residual at the i − 1-th cycle, i.e. (AZ`)Hr

(i−1)
0 = 0 we obtain

P H
k (AZ`)Hr

(i−1)
0 = 0,

(V`+1H̄`Pk)Hr
(i−1)
0 = 0,

RHV H
k r
(i−1)
0 = 0.

This finally shows that V H
k r
(i−1)
0 = 0 since R is assumed to be nonsingular.

To complement the subspaces, the inner iteration is based on the approximate solution
of

(In − Vk V H
k )Az = (In − Vk V H

k )r
(i−1)
0 = r

(i−1)
0 ,

where the last equality is due to Proposition 4.6. For that purpose, FGCRO-DR then
carries out m steps of the Arnoldi method with variable preconditioning leading to

(In − VkV H
k ) A [zk+1,⋯, zm+k] = [vk+1,⋯, vm+k+1] H̄m

(In − VkV H
k ) A Zm = Vm+1 H̄m

with vk+1 = r
(i−1)
0 /∣∣r(i−1)

0 ∥2. At the end of the cycle this gives the generalized Arnoldi
relation

A Zk+m = Vk+m+1 [
Ik V H

k A Zm

0m+1×k H̄m
]

A Zm+k = Vm+k+1 H̄m+k,

where Zm+k ∈ Cn×(m+k), Vm+k+1 ∈ Cn×(m+k+1) and H̄m+k ∈ C(m+k+1)×m. At the end of the
i-th cycle, an approximate solution x

(i)
0 ∈ Cn is then found by minimizing the residual

norm ∥b−A(x(i−1)
0 +Zm+ky)∥2 over the space x

(i−1)
0 +R(Z`), the corresponding residual

being r
(i)
0 = b −Ax

(i)
0 , with r

(i)
0 ∈R(V`+1).

Algorithm

Flexible GCRO(m, k) is depicted in Algorithm 4.5. We also refer the reader to [61] for
additional comments on the computational cost of FGCRO-DR and a detailed compari-
son with the flexible variant of GMRES-DR. Numerical results are also provided showing
the efficiency of FGRO-DR. When a fixed right preconditioner is used, GMRES-DR and
GCRO-DR are equivalent. When variable preconditioning is considered, it is however
worthwhile to note that FGMRES-DR and FGCRO-DR are only equivalent if a certain
collinearity condition given in [61, Theorem 3.6] is satisfied. Finally, we note that the
extension of GCROT to the case of variable preconditioning has been proposed in [146]
with application to aerodynamics.
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Algorithm 4.5 Flexible GCRO(m, k)
Input: Assume that the following is given:

• A ∈ Cn×n ▷ operator
• b ∈ Cn, x0 ∈ Cn ▷ right-hand side and initial guess
• M−1

j ∈ Cn×n for j ∈ {1, . . . , `} ▷ variable preconditioning operators
• cyclemax ▷ maximal number of cycles allowed
• tol > 0 ▷ convergence threshold

1: Settings: Let r0 = b −Ax0, β = ∥r0∥2, c = [β, 01×`]T where c ∈ C`+1, v1 = r0/β, i← 0.
2: Apply FGMRES(`) to obtain H̄`, Z`, V`+1 such that AZ` = V`+1H̄`, y∗ = arg min

y∈C`
∥c−

H̄`y∥2
3: x

(0)
0 = x0 +Z`y

∗

4: r
(0)
0 = b −Ax

(0)
0 = V`+1(c − H̄`)y∗), W` = V`

5: Define Y = ZmR−1 and W = Vm+1Q and select k columns of Y and W into Yk and
Wk with W H

k Wk = Ik and W H
k r
(0)
0 = 0

6: for cycle = 1, cyclemax do
7: Set β = ∥r(i)0 ∥2 and vk+1 = r

(i)
0 /β

8: for j = 1, . . . , m do
9: Completion of Vj+1, Zj and Hj: Apply Modified Gram-Schmidt to obtain

Vj+1 ∈ Cn×(j+1) Zj ∈ Cn×j and the matrix H̄j ∈ C(j+1)×j such that:

(In −WkW H
k )AZj = Vj+1 H̄j with V H

j+1Vj+1 = Ij+1.

10: Define Zk+j = [Yk, Zj], Vk+j+1 = [Wk, Vj+1] and H̄k+j = [
Ik W H

k AZj

0(j+1)×k H̄j
]

11: Define c ∈ Cj+k+1 such that c = V H
k+j+1r

(i)
0 and H̄k+j = QR with Q ∈

C(k+j+1)×(k+j) and R ∈ C(k+j)×(k+j)

12: Solve the minimization problem y⋆ = argminy∈Cj+k ∣∣c − H̄k+jy∣∣2;
13: if ∣∣c − H̄k+jy⋆∣∣2 ≤ tol then
14: Compute x

(i+1)
0 = x

(i)
0 +Zj+ky∗ ; stop;

15: end if
16: end for
17: x

(i+1)
0 = x

(i)
0 +Zm+ky∗

18: r
(i+1)
0 = b −Ax

(i+1)
0

19: Define Y = Zm+kR−1 and W = Vm+k+1Q and select k columns of Y and W into
Yk and Wk such that AYk =Wk with W H

k Wk = Ik and W H
k r
(i+1)
0 = 0

20: i← i + 1
21: end for
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4.4. Brief background on block Krylov subspace methods
We briefly describe a few basic properties of block Krylov subspace methods for the
solution of (4.3). These notions will be useful for later developments. We refer the
reader to the monograph [217] and the survey paper [136] for further details on block
Krylov subspace methods.

4.4.1. Problem setting
We consider block Krylov space methods for the solution of linear systems of equations
with p right-hand sides provided at the same time, thus:

AX = B (4.36)

where A ∈ Cn×n is assumed to be a nonsingular matrix of large dimension, B ∈ Cn×p is full
rank and X ∈ Cn×p. Sparse direct methods based on Gaussian elimination are usually
the method of choice when addressing the solution of (4.36) [73, 83]. However, both the
complexity of state-of-the-art sparse direct methods in the numerical factorization phase
and the related large memory requirements are still considered as the main hurdles for
successfully handling linear systems of millions of unknowns. In the sequel, we describe
purely iterative methods based on block Krylov space methods that are especially useful
when the preconditioning operation is known to be expensive and the dimension of
the problem n is large. Finally, although the number of right-hand sides p might be
relatively large, we assume here that n is always much larger.

4.4.2. Basic properties of block Krylov subspace methods
In the case of no preconditioning, as stated in [136, 139], a block Krylov subspace
method for solving the p systems is an iterative method that generates approximations
Xm ∈ Cn×p with m ∈ N, (m > 0) such that

Xm −X0 ∈ K◻m(A, R0)

where the block Krylov subspace K◻m(A, R0) is defined as

K◻m(A, R0) = {
m−1
∑
k=0

AkR0γk, ∀ γk ∈ Cp×p, with k ∣ 0 ≤ k ≤m − 1} ⊂ Cn×p.

When the right-hand sides are available simultaneously, block Krylov methods are
appealing for at least two reasons. Firstly, they enable the systematic use of operations
on a block of vectors instead of on a single vector. Depending on the structure of
A, this may considerably reduce the number of memory accesses ([22], [164, Section
3.7.2.3]). Secondly, by construction, the block Krylov space K◻m(A, R0) contains all
Krylov subspaces generated by each initial residual Km(A, R0(∶, i)) for i such that 1 ≤ i ≤
p and all possible linear combinations of the vectors contained in these subspaces. Thus,
contrary to the single right-hand side case (p = 1), the solution of each linear system is
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sought in a potentially richer space, leading hopefully to a reduction in iteration count.
We refer the reader to [136] for a recent overview on block Krylov subspace methods
and note that most of the standard Krylov subspace methods have a block counterpart
(see, e.g., block GMRES [256], block BiCGStab [135] and block QMR [108]).

4.4.3. Block flexible GMRES method

Since variable preconditioning is used, flexible variants of block Krylov subspace meth-
ods have to be considered in our setting. As for the single-right hand side case, we
have decided to focus only on block flexible Krylov subspace methods based on a norm
minimization property. Hence, we briefly describe some basic properties of the flexible
variant of block restarted GMRES [91] since it will be the basis for later developments.

Formulation

We introduce a flexible variant relying on a block version of the Arnoldi method. The
orthogonalization scheme chosen is block modified Gram-Schmidt, although it is clear
that one can change it at will with similar convergence effects as for the GMRES algo-
rithm in floating-point arithmetic. The block orthogonalization procedure used in the
flexible setting, where M−1

j denotes the preconditioning operator at step j (1 ≤ j ≤ m)
is based on the following important relation.

Definition 4.7. Generalized block Arnoldi relation. The flexible block Arnoldi method
given in Algorithm 4.6 (Section 4.4.3) leads to the following relation (later called gen-
eralized block Arnoldi relation), for 1 ≤ j ≤m,

A [Z1, . . . , Zj] = [V1, V2, . . . , Vj+1]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1,1 H1,2 . . . H1,j

H2,1 H2,2 . . . H2,j

0p×p H3,2 . . .
...

...
. . .

. . .
...

0p×p 0p×p 0p×p Hj+1,j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Equivalently with the notation introduced in Algorithm 4.6 line 10, the orthogonal-
ization procedure produces matrices Zj ∈ Cn×jp, Vj+1 ∈ Cn×(j+1)p and H̄j ∈ C(j+1)p×jp

which satisfy

AZj = Vj+1 H̄j . (4.37)

It should be noticed that H̄j is no longer a Hessenberg matrix but a block Hessenberg
matrix. More precisely, its block sub-diagonal consists of upper triangular blocks of
size p × p. BFGMRES(m) (given in Algorithm 4.7) uses the flexible block version of
the Arnoldi method with modified block Gram-Schmidt presented in Algorithm 4.6.
In Algorithm 4.7, we denote by Bj ∈ C(j+1)p×p the representation of the block residual
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R0 = B − AX0 in the Vj+1 basis (R0 = Vj+1Bj) and by Yj ∈ Cjp×p the solution of the
following minimization problem in the Frobenius norm

Pr ∶ Yj = argminY ∈Cjp×p ∣∣Bj − H̄jY ∣∣F . (4.38)

Finally, we recall a convergence property of block GMRES shown in [256] extended to
the case of block flexible GMRES. Proposition 4.8 shows that the block flexible GMRES
method minimizes the Euclidean norm of the residual of each linear system.

Proposition 4.8. In block flexible GMRES (BFGMRES(m), Algorithm 4.7) solving the
reduced minimization problem Pr (4.38) amounts to minimizing the Frobenius norm of
the block true residual ∣∣B−AX ∣∣F over the space X0+R(ZjY ) at iteration j (1 ≤ j ≤m)
of a given cycle, i.e.

argminY ∈Cjp×p ∣∣Bj − H̄jY ∣∣F = argminY ∈Cjp×p ∣∣B −A(X0 +ZjY )∣∣F ,

min
Y ∈Cjp×p

∣∣Bj − H̄jY ∣∣F = min
Y ∈Cjp×p

∣∣B −A(X0 +ZjY )∣∣F . (4.39)

Furthermore, solving the reduced minimization problem Pr (4.38) is also equivalent to
minimizing the Euclidean norm of each linear system over the space X0(∶, l) +R(Zj)
(1 ≤ l ≤ p) at iteration j (1 ≤ j ≤m).

Proof. See Proposition 1 of [59].

Algorithms

Block Arnoldi Algorithm 4.6 introduces the block Arnoldi procedure with block mod-
ified Gram-Schmidt. Algorithm 4.6 proceeds by orthonormalizing AZj against all the
previous preconditioned Krylov directions. The block modified Gram-Schmidt version
is presented in Algorithm 4.6, but a version of block Arnoldi due to Ruhe [213] or block
Householder orthonormalization [21, 217, 237] could be used as well.
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Algorithm 4.6 Flexible block Arnoldi with block Modified Gram-Schmidt: computa-
tion of Vj+1, Zj and H̄j for 1 ≤ j ≤m with V1 ∈ Cn×p such that V H

1 V1 = Ip

Input: Assume that the following is given:
• A ∈ Cn×n ▷ operator
• V1 ∈ Cn×p ▷ block of vectors such that V H

1 V1 = Ip

• M−1
j ∈ Cn×n for j ∈ {1, . . . , m} ▷ variable preconditioning operators

1: for j = 1, . . . , m do
2: Zj =M−1

j Vj

3: S = AZj

4: for i = 1, . . . , j do
5: Hi,j = V H

i S
6: S = S − ViHi,j

7: end for
8: Compute the QR decomposition of S as S = QR with Q ∈ Cn×p and R ∈ Cp×p

9: Set Vj+1 = Q, Hj+1,j = R and Hi,j = 0p×p for i > j + 1
10: Define Zj = [Z1, . . . , Zj], Vj+1 = [V1, . . . , Vj+1], H̄j = (Hk,l)1≤k≤j+1,1≤l≤j
11: end for

BFGMRES(m) Algorithm 4.7 introduces the block flexible GMRES method. This al-
gorithm is named BFGMRES(m), where m denotes the maximum number of iterations
performed in a given cycle.

Computational cost of a cycle

We summarize in Table 4.1 the costs incurred during a given cycle of BFGMRES(m)
(considering Algorithms 4.6 and 4.7), excluding the cost of the m matrix-vector products
and m preconditioning operations which are problem dependent. We have included
the costs proportional to both the size of the original problem n and the number of
right-hand sides p, assuming a QR factorization based on modified Gram-Schmidt and
a Golub-Reinsch SVD1; see, e.g, [127, Section 5.4.5] and [147, Appendix C] for further
details on operation counts. The total cost of a given cycle is then found to grow as
C1np2 +C2np as shown in Table 4.1.

4.5. Block flexible Krylov subspace methods including block
size reduction at restart

Motivations Although potentially appealing as discussed in Section 4.4.2, block (flex-
ible) GMRES based algorithms are known to be computationally expensive due to the
cost of orthogonalization which behaves as 2np2m2[136]. Thus a primary concern when
deriving those variants is to remove useless information for the convergence as soon

1The Golub-Reinsch SVD decomposition R = UΣV H with R ∈ Cm×n requires 4mn2 + 8n3 operations
when only Σ and V have to be computed.
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Algorithm 4.7 Block Flexible GMRES (BFGMRES(m))
Input: Assume that the following is given:

• A ∈ Cn×n ▷ operator
• B, X0 ∈ Cn×p ▷ right-hand sides and initial guess
• M−1

j ∈ Cn×n for j ∈ {1, . . . , m} ▷ variable preconditioning operators
• cyclemax ▷ maximal number of cycles allowed
• tol > 0 ▷ convergence threshold

1: Compute the initial block residual R0 ∈ Cn×p as R0 = B −AX0
2: for cycle = 1, . . . , cyclemax do
3: Compute the QR decomposition of R0 as R0 = QT with Q ∈ Cn×p and T ∈ Cp×p

4: Set V1 = Q and Bk = [
T

0kp×p
], 1 ≤ k ≤m.

5: for j = 1, . . . , m do
6: Completion of Vj+1, Zj and H̄j: Apply Algorithm 4.6 from line 2 to 10

with variable preconditioning (Zj = M−1
j Vj , 1 ≤ j ≤ m) to obtain Vj+1 ∈ Cn×(j+1)p,

Zj ∈ Cn×jp and the matrix H̄j ∈ C(j+1)p×jp such that

AZj = Vj+1H̄j with VH
j+1Vj+1 = I(j+1)p.

7: Solve the minimization problem Yj = argminY ∈Cjp×p ∣∣Bj − H̄jY ∣∣F
8: if ∣∣Bj(∶, l) − H̄jYj(∶, l)∣∣2/∣∣B(∶, l)∣∣2 ≤ tol, ∀ l ∣ 1 ≤ l ≤ p then
9: Compute Xj =X0 +ZjYj ; stop

10: end if
11: end for
12: Compute Xm =X0 +ZmYm and Rm = B −AXm

13: Set R0 = Rm and X0 =Xm

14: end for

Step Computational cost of a cycle
Computation of R0 np
QR factorization of R0 2np2 + 5np

Block Arnoldi procedure 2nm(m + 2)p2 + (5mn + m(m+1)
2 n)p

Computation of Xm np + nmp2

Total np2[2m2 + 5m + 2]+
np[5m + 7 + (m + 1)m

2 ]

Table 4.1.: Computational cost of a cycle of BFGMRES(m). This excludes the cost of
matrix-vector operations and preconditioning operations. Table 3.1 of [59].

as possible during the iterative procedure. This assumes the inclusion of strategies for
detecting when a linear combination of the p systems has approximately converged.
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4.5. Block flexible Krylov subspace methods including block size reduction at restart

The first obvious strategy for removing unneeded information from a block Krylov sub-
space is called initial deflation in [136]. It consists in detecting linear dependency in
the block right-hand side B or in the initial block residual R0 ([136, Section 12] and
[164, Section 3.7.2]). This requires us to compute numerical ranks using rank-revealing
QR-factorizations [52] or singular value decompositions (SVD) [127] according to a cer-
tain deflation tolerance [148]. In Section 4.5, we examine in detail a strategy related to
block size reduction. It aims at removing unneeded information at each restart of the
block flexible GMRES method.

4.5.1. Formulation
The block flexible restarted GMRES with block size reduction later named
BFGMRES-D(m) is presented in Algorithm 4.8 given in Section 4.5.2. Hereafter, we
outline how approximate block size reduction has been introduced and thus describe a
given cycle of the method (lines 4 to 19 in Algorithm 4.8). The block size reduction
procedure detects approximate linear dependency in the block true residual. For that
purpose, given a QR-factorization of the scaled block true residual R0 D−1 = QT where
D ∈ Cp×p is defined as D = diag(d1, . . . , dp) with dl = ∣∣B(∶, l)∣∣2 (1 ≤ l ≤ p), a singular
value decomposition of the upper triangular matrix T ∈ Cp×p is performed which leads
to the following relation

T = UΣW H (4.40)

where U ∈ Cp×p, W ∈ Cp×p are unitary and Σ ∈ Cp×p is diagonal. The use of diagonal
scaling with matrix D enables the convergence detection of the true block residual
scaled by the norm of the right-hand sides. Block size reduction consists in selecting
relevant information from the decomposition (4.40). Indeed, we determine a subset of
the singular values of T according to the following condition

σl(T ) > εd tol ∀ l such that 1 ≤ l ≤ pd (4.41)

where εd is a real positive parameter less than or equal to one. This leads to the
following decomposition of the diagonal matrix Σ

Σ = [ Σ+ 0pd×(p−pd)

0(p−pd)×pd
Σ−

]

with Σ+ ∈ Cpd×pd defined as Σ+ = Σ(1 ∶ pd, 1 ∶ pd) and Σ− ∈ C(p−pd)×(p−pd) as Σ− =
Σ(pd + 1 ∶ p, pd + 1 ∶ p). Due to the approximate block size reduction condition (4.41),
we note that

∣∣Σ+∣∣2 > εd tol and ∣∣Σ−∣∣2 ≤ εd tol.

Furthermore the scaled block true residual R0 D−1 can be written as

R0 D−1 = Q [U+ U−] [
Σ+ 0pd×(p−pd)

0(p−pd)×pd
Σ−

] [W+ W−]H ,

R0 D−1 = Q U+Σ+W H
+ +Q U−Σ−W H

− (4.42)
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where we set U+ ∈ Cp×pd as U+ = U(∶, 1 ∶ pd) and W+ ∈ Cp×pd as W+ = W (∶, 1 ∶ pd).
Similarly, we define U− ∈ Cp×(p−pd) as U− = U(∶, pd + 1 ∶ p) and W− ∈ Cp×(p−pd) as
W− = W (∶, pd + 1 ∶ p). U+, W+ and Σ+ denote the quantities effectively considered in
a given cycle of Algorithm 4.8, while U−, W− and Σ− are put aside due to block size
reduction. Indeed since W = [W+, W−] is unitary, it is straightforward to see from (4.42)
that

∣∣R0 D−1W−∣∣2 ≤ εd tol.

If block size reduction is active in this cycle (pd < p), only pd linear systems will be con-
sidered which may yield a significant reduction in terms of operations. Given V1 = QU+
the generalized block Arnoldi method with block Modified Gram-Schmidt (Algorithm
4.6) is applied to obtain Zj ∈ Cn×jpd , Vj+1 ∈ Cn×(j+1)pd and H̄j ∈ C(j+1)pd×jpd which
satisfy

AZj = Vj+1 H̄j . (4.43)
We denote by Bj ∈ C(j+1)pd×pd the representation of the scaled block residual in the
Vj+1 basis (Vj+1Bj = QU+) and by Yj ∈ Cjpd×pd the solution of the reduced minimization
problem

Pd
r ∶ Yj = argminY ∈Cjpd×pd ∣∣Bj − H̄jY ∣∣F . (4.44)

Proposition 4.9. In block flexible GMRES with block size reduction (BFGMRES-D(m),
Algorithm 4.8) solving the reduced minimization problem Pd

r (4.44) amounts to mini-
mizing the Frobenius norm of the block true residual ∣∣B − AX ∣∣F over the space X0 +
R(ZjY Σ+W H

+ D) at iteration j (1 ≤ j ≤m) of a given cycle, i.e.,

argminY ∈Cjpd×pd ∣∣Bj − H̄jY ∣∣F = argminY ∈Cjpd×pd ∣∣B −A(X0 +ZjY Σ+W H
+ D)∣∣F ,

= argminY ∈Cjpd×pd ∣∣R0D−1 −AZjY Σ+W H
+ ∣∣F . (4.45)

Proof. See Proposition 2 of [59].

Due to Proposition 4.9, the approximate solution that is based on a generalized mini-
mum Frobenius norm approach is obtained as

Xj =X0 +ZjYjΣ+W H
+ D

at the end of the cycle (j =m) or before if the stopping criterion is satisfied at iteration
j. Proposition 4.9 also implies the nonincreasing behaviour of the Frobenius norm of
the block residual in BFGMRES-D(m).

4.5.2. Algorithms
BFGMRES-D(m) Algorithm 4.8 introduces the block flexible GMRES method with
deflation at restart. This algorithm is later named BFGMRES-D(m) where m denotes
the maximum number of iterations performed in a given cycle. The suffix "D" is used
to emphasise that the method is based on deflation (i.e. block size reduction) at each
restart, as described above.
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Algorithm 4.8 Block Flexible GMRES with SVD based deflation (BFGMRES-D(m))
Input: Assume that the following is given:

• A ∈ Cn×n ▷ operator
• B, X0 ∈ Cn×p ▷ right-hand side and initial guess
• M−1

j ∈ Cn×n for j ∈ {1, . . . , m} ▷ variable preconditioning operators
• cyclemax ▷ maximal number of cycles allowed
• tol > 0 ▷ convergence threshold
• εd > 0 ▷ deflation threshold
• εq ▷ quality of convergence threshold

1: Define the diagonal matrix D ∈ Cp×p as D = diag(d1, . . . , dp) with dl = ∣∣B(∶, l)∣∣2 for
l such that 1 ≤ l ≤ p

2: Compute the initial block residual R0 = B −AX0
3: for cycle = 1, . . . , cyclemax do
4: Compute the QR decomposition of R0D−1 as R0D−1 = QT with Q ∈ Cn×p and

T ∈ Cp×p

5: Compute the SVD of T as T = U Σ W H

6: Select pd singular values of T such that σl(T ) > εd tol for all l such that 1 ≤ l ≤ pd

7: Define V1 ∈ Cn×pd as V1 = QU(∶, 1 ∶ pd)

8: Let Bk = [
Ipd

0kpd×pd

], 1 ≤ k ≤m

9: for j = 1, . . . , m do
10: Completion of Vj+1, Zj and H̄j (see Algorithm 4.6): Apply Algorithm 4.6

from line 2 to 10 with variable preconditioning (Zj = M−1
j Vj , 1 ≤ j ≤ m) to obtain

Vj+1 ∈ Cn×(j+1)pd , Zj ∈ Cn×jpd and the matrix H̄j ∈ C(j+1)pd×jpd such that:

AZj = Vj+1H̄j with VH
j+1Vj+1 = I(j+1)pd

.

11: Solve the minimization problem Yj = argminY ∈Cjpd×pd ∣∣Bj − H̄jY ∣∣F ;
12: Compute Rj = (Bj − H̄jYj)Σ(1 ∶ pd, 1 ∶ pd)W (1 ∶ p, 1 ∶ pd)H
13: if ∣∣Rj(∶, l)∣∣2 ≤ εq tol, ∀ l ∣ 1 ≤ l ≤ p then
14: Compute Xj =X0 +ZjYjΣ(1 ∶ pd, 1 ∶ pd)W (1 ∶ p, 1 ∶ pd)HD; stop;
15: end if
16: end for
17: Xm =X0 +ZmYmΣ(1 ∶ pd, 1 ∶ pd)W (1 ∶ p, 1 ∶ pd)H D
18: Rm = B −AXm

19: Set R0 = Rm and X0 =Xm

20: end for

4.5.3. Computational cost of a cycle

We summarize in Table 4.2 the main computational costs occurring during a given cycle
of BFGMRES-D(m) (Algorithm 4.8). We have only included the costs proportional to
the size of the original problem n which is assumed to be much greater than m and
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p in practical applications. This also excludes the costs related to both matrix-vector
products and preconditioning operations. The total cost is cubic in pd (the maximum
column size of the block vectors in a given cycle) and linear in n (the dimension of the
problem).

Step Computational cost of a cycle
Computation of R0D−1 np
QR factorization of R0D−1 2np2

b + 5npb

Computation of V1 2nppb

Computation of T 14p3
b

Block Arnoldi procedure1 2nm(m + 2)p2
b + (5mn + m(m+1)

2 n)pb

Computation of Xm np + nmppb

Total np2
b[2(m + 1)2]+

npb[p(m + 2) + (m + 1) (10+m)
2 ]+

n(p + 1)

Table 4.2.: Maximum computational cost of a cycle of BFGMRES-D(m) with pb =
min(p, pd). This excludes the cost of matrix-vector operations and precon-
ditioning operations. Table 3.1 of [59].

In terms of maximum memory requirements (proportional to n), BFGMRES-D(m)
requires the storage of Rm, X0, Xm, Vm+1 and Zm respectively, i.e, n(2m + 1)p + 3np.
This is similar to the maximum storage of BFGMRES(m).

4.5.4. Numerical illustration
We investigate the numerical behaviour of block flexible Krylov subspace methods in-
cluding deflation at each restart or at each iteration (see [57] and Appendix B.5) on a
challenging application in geophysics where the multiple right-hand side situation fre-
quently occurs (full waveform inversion). The source terms correspond to Dirac sources
in this example. Thus the block right-hand side B ∈ Cn×p is extremely sparse (only
one nonzero entry per column) and the initial block residual corresponds to a full rank
matrix. We compare BFGMRES(m), BFGMRES-D(m) and BFGMRES-S(m) (see Al-
gorithm 3 of [57]) with a zero initial guess (X0) and a moderate value of the restart
parameter m. The iterative procedures are stopped when the condition

∣∣B(∶, l) −AX(∶, l)∣∣2
∣∣B(∶, l)∣∣2

≤ tol, ∀ l = 1, . . . , p,

is satisfied. As a preconditioner, we consider the basic two-grid method described in
Section 2.5. Due to the approximate solution on the coarse grid, a given cycle is thus
expensive. The assumption related to the preconditioner is thus satisfied. In the sequel,
we use exactly the same parameters as in Section 2.8 related to the single right-hand
side situation; they were described in Section 2.8.1.
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Table 4.3 includes, in addition to iterations (It)2 and preconditioner applications on
a single vector (Prec)3, the computational times in seconds (T ). Among the different
strategies BFGMRES-S(5) always delivers the minimal number of preconditioner ap-
plications and computational times (see italic and bold values, respectively, in Table
4.3). This clearly highlights the interest of performing deflation at each iteration both
in terms of preconditioner applications and computational operations for this given ap-
plication. The improvement over BFGMRES(5) ranges from 27% for p = 4 to 57% for
p = 128 which is a very satisfactory behaviour. BFGMRES-S(5) is also found to be
competitive with respect to methods incorporating deflation at restart only (a gain of
up to 15% in terms of computational time is obtained for instance for p = 8). This is a
satisfactory improvement since methods including deflation at restart only are already
quite efficient in this application as shown in [59].

Acoustic full waveform inversion - Grid ∶ 433 × 433 × 126
p = 4 p = 8 p = 16

Method It Prec T It Prec T It Prec T
BFGMRES(5) 14 56 622 14 112 631 14 224 668
BFGMRES-D(5) 14 43 489 15 70 401 15 120 371
BFGMRES-S(5) 16 39 452 16 57 339 18 102 328

p = 32 p = 64 p = 128
Method It Prec T It Prec T It Prec T
BFGMRES(5) 14 448 713 18 1152 962 19 2432 1187
BFGMRES-D(5) 15 225 371 20 490 422 25 1015 509
BFGMRES-S(5) 19 181 316 25 413 375 28 915 497

Table 4.3.: Acoustic full waveform inversion (SEG/EAGE Overthrust model) at f =
3.64 Hz, with p = 4 to p = 128 right-hand sides given at once. It denotes the
number of iterations, Prec the number of preconditioner applications on a
single vector and T denotes the total computational time in seconds. The
number of cores is set to 8p. Table 5.1 of [57].

Figure 4.1 shows the evolution of kj (number of Krylov directions at iteration j) with
convergence for the various block subspace methods in the case of p = 32. Regarding
BFGMRES-D(5), deflation is performed only at the beginning of each cycle, thus kj is
found to be constant in a given cycle. Variations at each iteration can only happen in
BFGMRES-S(5). As expected, kj monotonically decreases as algorithm converges (see
Proposition 3.3 in [57]).

2A complete cycle of BFGMRES(m), BFGMRES-R(m) or BFGMRES-S(m) always corresponds to m
iterations.

3A complete cycle of BFGMRES(m) corresponds to mp preconditioner applications, whereas a com-
plete cycle of either BFGMRES-R(m) or BFGMRES-S(m) corresponds to ∑m

j=1 kj,c preconditioner
applications.
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Figure 4.1.: Acoustic full waveform inversion (SEG/EAGE Overthrust model) with
p = 32. Evolution of kj (number of Krylov directions at iteration j) versus
iterations for p = 32 in BFGMRES(5), BFGMRES-D(5) (left part) and
BFGMRES-S(5) (right part). Figure 5.1 of [57].

4.6. Additional comments and conclusions
Summary In this chapter, we have focused on certain minimum residual norm Krylov
subspace methods for the solution of large linear systems of equations with variable
preconditioners. Krylov subspace methods based on augmentation and/or on deflation
have been proposed to possibly improve their convergence rate when variable precon-
ditioning is used. We have also considered the case of linear systems with multiple
right-hand sides given at the same time and have described in detail advanced block
Krylov subspace methods for such a purpose. A realistic application has been provided
to illustrate both the performance and benefits of the new numerical methods. We refer
the reader to [57, 59, 60, 61, 124] for further comments on numerical experiments.

Collaboration These research projects have been developed with Henri Calandra (TO-
TAL), Serge Gratton, Xavier Pinel and Rafael Lago. This research has also benefited
from interactions or collaborations with Luiz Mariano Carvalho, Luc Giraud, Martin
Gutknecht and Julien Langou.

Software realization The Krylov subspace methods that have been proposed in this
chapter are generic methods. Implementations in Matlab, and Fortran 90 with BLAS and
LAPACK libraries have been realised and integrated into different application codes.

Short-term prospectives As short-term prospectives, we anticipate that a combina-
tion of spectral deflation and/or of augmentation with block flexible Krylov subspace
methods including block size reduction (at each iteration or at each restart) could be
derived as well. As an illustration, we give in Algorithm 4.9 the extension of the flexible
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GCRO Krylov subspace method presented in Section 4.3.6 to the multiple right-hand
side setting.

The analysis of deflation based on oblique projections could be foreseen in this frame-
work, especially when non-Hermitian matrices are considered. Finally, the solution of
linear systems with right-hand sides given in sequence is also a relevant topic that must
be considered. Krylov subspace methods based on recycling [119, 197] have been pro-
posed in such a setting; the case of variable preconditioning in the sequence must be
studied; see Section 5.4.1 for further details.
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Algorithm 4.9 Block Flexible GCRO (BFGCRO(m))
Input: Assume that the following is given:

• A ∈ Cn×n ▷ operator
• B, X0 ∈ Cn×p ▷ right-hand side and initial guess
• M−1

j ∈ Cn×n for j ∈ {1, . . . , m} ▷ variable preconditioning operators
• cyclemax ▷ maximal number of cycles allowed
• tol > 0 ▷ convergence threshold

1: Define the diagonal matrix D ∈ Cp×p as D = diag(d1, . . . , dp) with dl = ∣∣B(∶, l)∣∣2 for
l such that 1 ≤ l ≤ p

2: Compute the initial block residual R0 = B −AX0
3: Set Yk = [], Wk = []
4: for cycle = 1, . . . , cyclemax do
5: Compute the QR decomposition of R0D−1 as R0D−1 = QT with Q ∈ Cn×p and

T ∈ Cp×p

6: Define V1 ∈ Cn×p as V1 = Q
7: for j = 1, . . . , m do
8: Completion of Vj+1, Zj and H̄j (see Algorithm 4.6): Apply Algorithm 4.6

from line 2 to 10 with variable preconditioning (Zj = M−1
j Vj , 1 ≤ j ≤ m) to obtain

Vj+1 ∈ Cn×(j+1)p, Zj ∈ Cn×jp and the matrix H̄j ∈ C(j+1)p×jp such that:

(In −WkWH
k )AZj = Vj+1H̄j with VH

j+1Vj+1 = I(j+1)p.

9: Define Zk+j = [Yk,Zj], Vk+j+1 = [Wk,Vj+1] and H̄k+j =

[ Ikp WH
k AZj

0(j+1)p×kp H̄j
]

10: Define Bk+j ∈ C(j+k+1)p×p such that Bk+j =
⎡⎢⎢⎢⎢⎢⎣

0kp×p

T
0jp×p

⎤⎥⎥⎥⎥⎥⎦
11: Solve the minimization problem Yk+j = argminY ∈C(j+k)p×p ∣∣Bk+j − H̄k+jY ∣∣F ;
12: Compute Rk+j = Bk+j − H̄k+jYk+j

13: if ∣∣Rk+j(∶, l)∣∣2 ≤ tol, ∀ l ∣ 1 ≤ l ≤ p then
14: Compute Xj =X0 +Zk+jYk+jD ; stop;
15: end if
16: end for
17: Xm =X0 +Zk+mYk+mD
18: Rm = B −AXm

19: Recycling: select Yk ∈ Cn×kp,Wk ∈ Cn×kp such that AYk =Wk withWH
k Wk = Ikp

and WH
k Rm = 0kp×p

20: Set R0 = Rm and X0 =Xm

21: end for
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5.1. Objective

In this chapter, we present current and future short-term prospectives concerning our
main goals defined in the Introduction (see Chapter 1). The forthcoming parallel com-
puters will offer new opportunities to tackle mathematical problems related to the
simulation, optimization, control or uncertainty quantification of physical phenomena
based on deterministic or stochastic partial differential equations. Numerically sta-
ble algorithms must be then adapted, improved or completely redesigned to exploit as
much as possible, e.g., the extreme core count of future computing resources. The main
objective in this chapter is to briefly present selected research activities in this direction.

5.2. Synopsis

We first address the solution of algebraic linear systems of equations in Section 5.3,
where advanced scalable solvers based on multilevel methods are presented. Then,
in Section 5.4, we describe relevant strategies for the numerical solution of nonlinear,
time-dependent partial differential equations that can either further improve the rate
of convergence of multilevel methods or increase the degree of parallelism. We give
motivations, describe the problem setting, and specify the currently available results
for each topic. Conclusions are briefly drawn in Section 5.5.

5.3. Towards extremely scalable linear solvers

The next two research prospectives that we present are related to the solution of alge-
braic linear systems of equations. A specific focus on multilevel methods and Krylov
subspace methods is proposed. When available, numerical results are presented.

5.3.1. Algebraic multigrid method

Motivations

We consider the class of algebraic multigrid methods (AMG) for the solution of elliptic
partial differential equations with possibly variable coefficients. AMG methods were
first proposed in [42], [212]; see [247, Appendix A] for a comprehensive survey. They
have been shown to deliver scalable, sometimes optimal, solution methods in such a
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setting; see, e.g., [191, 192]. In AMG (Algorithm 5.1), the multigrid hierarchy is con-
structed explicitly during the setup phase (Algorithm 5.2). Most of the current methods
can be classified in terms of coarsening schemes as classical and aggregation AMG. The
classical AMG [42, 212, 247] can be considered as an algebraic counterpart of the tra-
ditional geometric multigrid (used in Chapter 2). A certain subset of the fine-level
variables is identified with the variables on the coarse level and a linear interpolation
operator is deduced from the matrix entries to approximate the values on the fine points
from the values on the neighbouring coarse points.

Algorithm 5.1 Recursive multigrid V-cycle MG`(f`, v`)
Input: Assume that the following is given

• A` ∈ Rn`×n` ▷ Operators discretized on Ωl (` = 1,⋯, L)
• f` ∈ Rn` ▷ Right-hand side given on Ωl

• v` ∈ Rn` ▷ Initial guess given on Ωl

if ` = L then
solve A`v` = f`

else
v` ← S`,pre(f`, v`) ▷ Pre-smoothing
r`+1 ← R`(f` −A`v`) ▷ Residual restriction
c`+1 ← 0 and do MG`+1(r`+1, c`+1) ▷ Coarse-grid correction
v` ← v` + P`c`+1 ▷ Solution update
v` ← S`,post(f`, v`) ▷ Post-smoothing

end if

In the aggregation methods [36, 38, 51, 191], the coarse-level variables are associated
with contiguous disjoint groups of fine-level variables called aggregates. The interpola-
tion is defined simply by an injection of the values from the coarse-level to the fine-level
variables in each aggregate.

Algorithm 5.2 AMG setup
Input: Assume that the following is given

• A` ∈ Rn`×n` ▷ Operators discretized on Ωl (` = 1,⋯, L)
• f` ∈ Rn` ▷ Right-hand side given on Ωl

• v` ∈ Rn` ▷ Initial guess given on Ωl

1: set Ω1 ← Ω, A1 ← A, ` = 1
2: while Ω` is not small enough and ` < Lmax do
3: Construct the coarse-level variables Ω`+1
4: Compute the interpolation operator P`

5: Set R` = P T
`

6: Compute the coarse-level operator A`+1 = R`A`P`

7: `← ` + 1
8: end while
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The AMG methods based on the classical approach usually exhibit very good perfor-
mance in terms of the convergence rates of preconditioned iterative methods (that is,
the iteration counts to achieve a certain stopping criterion). The price to pay is however
sometimes characterized by quite high computational costs and memory requirements
associated with the setup and solution phases of the preconditioner. The aggregation
AMG methods, on the other hand, are often relatively cheaper with low operator com-
plexities. Nevertheless, they are rarely used in the multigrid setting because of the
fact that the convergence rate of an aggregation multigrid method often depends on
the problem size [38, 247, 264], that is, on the number of levels. The scalability of the
aggregation methods can be improved, for example, by “enriching” the interpolation
operators [44, 268] or by using the over-correction [38] or a certain polynomial acceler-
ation [16, 191, 193] of the coarse-level correction step. We note that the convergence
of aggregation methods can be made independent of the problem size for the two-level
method or, more generally, when the number of levels is limited; see, for example, [36,
187]. Nevertheless this requires solving possibly large coarse systems to a high level of
accuracy, for example, by using a direct solver, which can be impractical in practice.

Here, we consider combining the aggregation and classical AMG approaches within
one hierarchy or, equivalently, replacing the “exact” coarse-level solver in the aggrega-
tion part of the hierarchy by a classical AMG solver. Thus we aim at obtaining reduced
costs for the setup and solve phases of the resulting preconditioner, while retaining the
optimal convergence of the “exact” aggregation method without the need to solve the
coarse level problems to a high level of accuracy.

Collaboration

This research project was initially developed with Serge Gratton, Pascal Hénon (TO-
TAL) and Pavel Jiránek with financial support from TOTAL.

Problem setting

The classical AMG method with a short-distance interpolation as a preconditioner (or
stationary solver) often leads to very good V-cycle convergence rates for a wide range
of problem sizes. However, the operator complexities characterizing approximately the
memory requirements and computational costs of the V-cycle (when ignoring the costs
associated with the inter-level operators), defined by

Cop =
1

nz(A1)
L

∑
`=1

nz(A`), (5.1)

where nz(A`) denotes the number of nonzero entries in the operator A` on the level `,
can be relatively high. On the other hand, the plain aggregation AMG is relatively fast
and cheap but if the number of levels is not kept fixed independently of the problem
size, the convergence rate of the V-cycle (even of the W-cycle) may deteriorate quickly
for increasingly large problems.
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It is possible to reduce the complexity of the AMG method by first performing the ag-
gressive coarsening with a long-range interpolation [247] on a prescribed number of fine
levels and then applying a less aggressive coarsening with a more accurate short-distance
interpolation to create the remainder of the multigrid hierarchy. Such an approach is
also implemented in the BoomerAMG package of the Hypre library [145]. Although
the convergence of preconditioned iterative methods often deteriorates, the substantial
decrease of the operator complexity may compensate for this and, consequently, the
combination of these two approaches in one AMG hierarchy can provide a significant
performance improvement.

Motivated by this idea, we consider replacing the classical aggressive coarsening ap-
proach by aggregation. The resulting AMG method combines a fixed number of (plain)
aggregation levels with the rest of the hierarchy generated by a classical AMG scheme
with a short-range interpolation. Alternatively, this can be considered as using an ag-
gregation AMG method (with a limited number of levels) with the coarse-level solver
replaced by the classical AMG. We refer the reader to [132] for further details on the
algorithmic part.

Application and future tasks

We briefly investigate the weak scalability properties of the new multigrid variants and
then describe future lines of research.

Application This research is motivated by the particular application of AMG in the
context of solving linear algebraic systems arising from multiphase flow models in reser-
voir simulations. Discretization and linearization of such models lead to a large se-
quence of systems, which couple together the pressure and saturation or concentration
unknowns in the computational cells of the underlying domain discretization and which
must be solved efficiently. A possible approach for preconditioning such systems is
based on decoupling the dependency of the pressure on the remaining unknowns. An
efficient solution method is thus required for the linear systems related to the pressure
variables. This is investigated next.

We denote by AGGnRr the variant based on n levels of plain agglomeration followed
by the classical AMG coarsening procedure, r being a parameter controlling the initial
coarsening ratio. We compare these variants with aggressive AMG on the first level
(AGGRES1) or on the first two levels (AGGRES2) followed by classical AMG coarsening
in the hierarchy.

We evaluate the weak scalability properties of the multigrid variants on an anisotropic
Poisson problem defined on the three-dimensional unit cube with homogeneous Dirich-
let boundary conditions. The fine level operator is discretized by the 7-point finite
difference stencil on a uniform regular grid with 643 = 262144 grid points per MPI pro-
cess. The AMG methods are used as fixed preconditioners for the conjugate gradient
method and the iterations are stopped when the relative residual norm decreases below
the tolerance 10−6. Table 5.1 collects numerical results related to these weak scalability
experiments. Whatever the number of MPI processes, we observe that the minimal
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Method #MPI Setup Solve Total Cop L It
1 3.773e-01 5.141e-01 8.914e-01 2.193 7 12

27 1.345e+00 8.994e-01 2.244e+00 2.196 9 14
AGG1R1 125 1.842e+00 1.120e+00 2.962e+00 2.244 9 16

343 2.024e+00 1.268e+00 3.292e+00 2.258 10 16
729 2.625e+00 1.421e+00 4.046e+00 2.264 10 17

1 4.760e-01 5.452e-01 1.021e+00 2.444 6 10
27 1.728e+00 1.166e+00 2.894e+00 2.322 8 15

AGGRES1 125 2.113e+00 1.610e+00 3.723e+00 2.436 10 15
343 2.452e+00 1.523e+00 3.975e+00 2.490 10 16
729 3.403e+00 1.580e+00 4.983e+00 2.522 10 16

1 3.133e-01 5.903e-01 9.036e-01 1.784 7 17
27 8.780e-01 1.179e+00 2.057e+00 1.836 8 23

AGG2R1 125 1.154e+00 1.389e+00 2.543e+00 1.863 9 25
343 2.214e+00 1.551e+00 3.765e+00 1.873 9 26
729 1.922e+00 1.763e+00 3.685e+00 1.879 10 27

1 3.525e-01 6.646e-01 1.017e+00 1.833 5 14
27 1.113e+00 1.333e+00 2.446e+00 1.748 7 20

AGGRES2 125 1.448e+00 1.555e+00 3.003e+00 1.796 8 21
343 2.028e+00 1.899e+00 3.927e+00 1.854 8 22
729 2.973e+00 2.105e+00 5.078e+00 1.887 9 22

Table 5.1.: Weak scalability experiments for the anisotropic Poisson problem (executed
on up to 729 MPI processes, each process using 8 tasks). Setup and Solve
correspond to the computational time spent in the setup and solution phases,
respectively. Cop denotes the operator complexity (relation (5.1)), L the
total number of levels in the hierarchy, It the number of conjugate gradient
iterations required to decrease the residual norm by 6 orders of magnitude.
Table III of [132].

computational times (including both setup and solution phases) are related to either
AGG1R1 or AGG2R1, i.e., the new variants that have been proposed (see italic entries
in Table 5.1). Most of the performance gain with respect to existing efficient schemes
in the literature (AGGRES1 and AGGRES2) is indeed due to the simplicity of the
aggregation operators: both their construction and their application require no com-
munication at all. Consequently, applying a cycle related to the AGG1R1 or AGG2R2
variants will be cheap both in terms of computations and communications. This fact
has been also confirmed on realistic three-dimensional problems related to reservoir
modelling (SPE10 and VISFIN3D problems [132, Section 4]), where the efficiency of
these variants has been demonstrated as well. We also refer the reader to [132, Section
4] for additional comments related to strong scalability experiments. Finally, the full
hierarchy information related to the AGG2R1 variant is given in Table 5.2 in the case
of 729 MPI processes.
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Method Level #Rows #Nz smin smax savg

1 191102976 1335730176 4 7 7.0
2 65691648 458721792 4 7 7.0
3 23887872 166385664 4 7 7.0
4 11612160 170627328 6 15 14.7

AGG2R1 5 5579438 275592862 16 101 49.4
6 961931 93306855 26 153 97.0
7 92607 9160225 24 159 98.9
8 12964 916080 17 142 70.7
9 949 10781 1 28 11.4

Table 5.2.: Hierarchy information for the AGG2R1 variant applied to the anisotropic
Poisson problem (executed on 729 MPI processes, each process using 8
tasks). #Rows denotes the number of rows in the matrix, #Nz the total
number of nonzero entries. smin and smax denote the minimum and maxi-
mum numbers of nonzero entries per row, respectively. savg corresponds to
the total number of nonzero entries divided by the total number of rows.
Information extracted from Table V of [132].

Future tasks

• Reuse of information in AMG for sequence of linear systems.
As previously discussed in Chapter 4, we are often faced with the solution of lin-
ear systems coming from the discretization of elliptic partial differential equations
with variable coefficients. In such a setting, we aim at deriving a scalable solution
method not only for a single linear system but for the whole sequence. The key
idea is thus to reduce the computational times further by reusing information ob-
tained during the previous setup and/or solution phases of the algebraic multigrid
method. Two possible situations can be described in more detail.

Sequences with a fixed left-hand side matrix and with multiple changing left-hand
sides. We consider here the case of a fixed matrix and right-hand sides that may
be given either in sequence or simultaneously. Consequently, the setup phase has
to be performed only once and the complete multilevel hierarchy (including trans-
fer operators and coarse level operators) can be reused over the whole sequence.
Moreover, when the right-hand sides are given simultaneously, we note that a
block version of the algebraic multigrid method has to be favoured to take advan-
tage of efficient BLAS-3 kernels (matrix-matrix operations) as much as possible.
The solution phase can be even further improved by using recycling subspace tech-
niques or by updating the preconditioners to further accelerate the convergence
of the multigrid variant; both strategies are discussed later in Section 5.4.1.
Sequences with changing matrices. This situation is quite relevant, since it is usu-
ally the most frequent one. We note that considering partial differential equations
with different sets of coefficients (as in uncertainty quantification) or solving non-
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linear problems with Picard or Newton methods correspond to such a setting. This
latter situation has been investigated in [151] and in [131] with the new variant of
AMG in the context of reservoir simulations, assuming that the fine level matrices
in the sequence share the same sparsity pattern (i.e. connectivity graph). Given
this assumption, the transfer operators related to the agglomeration procedure are
then identical over the whole sequence. Consequently, the sparsity patterns of the
corresponding coarse level operators are identical. Hence, it is thus only necessary
to compute the nonzero entries of such operators (matrix-matrix-matrix opera-
tions). Reduced computational times for the set-up phase have been obtained in
such a setting. Improvements related to the solution phase can be obtained as
well by using the same techniques as described above. This needs to be further
investigated.

• Software.
A public domain implementation of the proposed algebraic multigrid method is
targeted on a long-term basis. Its core will be the PMG code developed by Pavel
Jiránek, when he was at CERFACS. Additional kernels will be proposed to take
into account the case of sequences of linear systems or more generally, a family of
linear systems. Based on this software, weak and strong scalability performance
studies for sequences of linear systems will be performed on both academic and
realistic applications. First, this package will address the solution of linear systems
with symmetric positive definite matrices. In addition, we aim to provide an
implementation that authorizes the solution of linear systems with saddle point
structure. In such a setting, we assume that the (1, 1) block of the global saddle
point matrix is symmetric positive definite. Block triangular preconditioners [154]
or Schur complement preconditioners [90] will be then employed, where a cycle of
the multigrid preconditioner will be used as an approximate inverse of the (1, 1)
block. Applications to fluid mechanics, geophysics and structural mechanics are
anticipated.

5.3.2. Combination of multilevel domain decomposition and algebraic
multigrid methods

Motivations

Two-level domain decomposition methods provide scalable preconditioners with respect
to the number of subdomains for self-adjoint elliptic partial differential equations [246].
Non-overlapping iterative substructuring methods such as FETI and BNN are typical
examples, as detailed in Chapter 3 in the context of hp finite element approximations.
Two-level overlapping preconditioners have been also proposed in the literature; see,
e.g., [246] and the recent monograph [80]. To address the question of scalability for
the solution of large-scale linear systems on forthcoming computers, it is thus necessary
to also rely on efficient and scalable solvers for the local problems defined on each
subdomain and for the global coarse problem, respectively. This key issue is addressed
next in this section.
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Collaboration

This project has emerged while preparing the SOLEX research proposal coordinated
by Santiago Badia (Universitat Politècnica de Catalunya and CIMNE, Spain). We are
currently looking for financial support to start part of this activity.

Problem setting

We propose to combine non-overlapping domain decomposition and algebraic multigrid
methods to address this question. This combination is however not new; see [246,
Section 4.3] for early references, where a cycle of multigrid is used as a local solver. We
first focus on the choice of the non-overlapping domain decomposition preconditioner.
Interesting candidates are quite recent methods known as BDDC (Balancing Domain
Decomposition by Constraints) [79] and FETI-DP (Dual Primal Finite Element Tearing
and Interconnecting) [102]. Indeed, FETI-DP and BDDC methods [173] share the
following salient properties

• Coarse and local components can be computed in a parallel additive way; this has
been exploited in [18, 19, 20].

• Both methods allow for an extremely aggressive coarsening. Indeed, the coarse
matrix has a similar sparsity pattern to the original fine level matrix. This feature
is really essential in terms of operator complexity. This appears as a major dif-
ference compared with the class of algebraic multigrid methods, where the coarse
matrices constructed with the Galerkin method exhibit larger stencils versus the
number of levels in the hierarchy (see Table 5.2 for an illustration on an academic
problem).

• Both methods allow the use of inexact methods as local solvers or global coarse
solver, without impacting on the convergence rate of the preconditioned method
[20, 157, 173, 206].

• Multilevel extensions of FETI-DP and BDDC methods have been proposed in the
literature [174].

Future tasks and applications

We propose to use the algebraic multigrid method presented in Section 5.3.1 as a local
solver on the subdomains within the BDDC or FETI-DP algorithms to address the
solution of self-adjoint elliptic partial differential equations. In this context, we note that
the local subdomain matrices are symmetric positive definite; the algebraic multigrid
method proposed in Section 5.3.1 can then be applied straightforwardly. We anticipate
that this combination will offer these promising features

• both the weak and strong scalabilities of such domain decomposition methods will
be improved, since an efficient iterative method will replace sparse direct methods
that usually exhibit larger operator complexities,
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• the global memory requirements of the domain decomposition methods will be
drastically reduced, since local iterative solvers are now employed.

Both features are especially important when tackling large-scale applications on mas-
sively parallel computers. Finally, we would like to mention that overlapping two-level
domain decomposition methods may benefit from this algebraic multigrid solver as well.
Interesting recent candidates are based on Restricted Additive Schwarz methods [56]
with local Dirichlet-to-Neumann operators [67, 68, 188] or the GenEO method (Gener-
alized Eigenvalue problems on the Overlap) to compute an adaptive coarse space [150,
230].

Software Open-source domain decomposition software that could be considered in this
setting are, e.g., BDDCML1, FEMPAR2 or HPDDM3.

Applications Targeted applications are related to the solution of self-adjoint elliptic
partial differential equations with variable coefficients that arise, e.g., in geoengineering
sciences (subsurface flow simulations in porous media, oil and gas reservoirs, pollutant
transport, nuclear waste deposits) or in structural mechanics.

5.4. Scalable algorithms beyond linear solvers
We next present two research prospectives related to specific settings of interest, when
simulating physical phenomena based on partial differential equations. When available,
numerical results are presented.

5.4.1. Sequences of systems

Motivations

Sequences of systems often occur when considering the solution of optimization prob-
lems, nonlinear deterministic or stochastic partial differential equations or eigenvalue
problems, to name a few. Efficient numerical methods must then be designed for such a
purpose. When the right-hand sides are available simultaneously, preconditioned block
Krylov subspace solvers have proved efficient and useful (see Chapter 4), when the di-
mension of the problem is large and/or when the preconditioner application is known to
be expensive. When the right-hand sides are given in sequence, recycling Krylov sub-
space methods have been proposed in the literature; see, e.g., [119, 120, 197]. The main
idea is to reuse subspace information to improve the convergence rate of the Krylov
subspace method when solving the subsequent linear systems. FGCRO-DR [61], also
presented in Section 4.3.6, belongs to such a family. Here, we propose to follow a
different and complementary path by improving the preconditioner using techniques

1http://users.math.cas.cz/∼sistek/software/bddcml.html
2https://web.cimne.upc.edu/groups/comfus/fempar.html
3https://github.com/hpddm/hpddm
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coming from numerical optimization. The main goal is to improve an already existing
preconditioner (referred to as a first level preconditioner) by exploiting any available
information (that can be cheaply obtained) to approximate the matrix inverse with
respect to a certain subspace. This strategy, known as Limited Memory Preconditioner
(LMP) in the numerical optimization literature [182, 190], has been analysed in the
symmetric positive definite case [128]. Our first objective is to extend this idea to the
case of a sequence of linear systems with symmetric indefinite matrices.

Collaboration

This research project was initially developed with Serge Gratton, Sylvain Mercier and
Nicolas Tardieu (EDF) with financial support from ANRT (Association Nationale de la
Recherche et de la Technologie). Part of the current prospectives is developed within
the PAMSIM project funded by Bpifrance (Banque Publique d’Investissement).

Problem setting

We address the solution of a sequence of linear systems of the form

A xi = bi, i = 1, . . . , I,

with A ∈ RN×N being a large symmetric indefinite matrix, xi ∈ RN and bi ∈ RN . We
assume that a first level preconditioner is already available so that the matrix A corre-
sponds to a preconditioned operator in our setting. Our main interest will be to analyse
the class of limited memory preconditioners defined next.

Definition 5.1. Let A be a symmetric indefinite matrix of order N . Assume that
S ∈ RN×k, with k ≤ N , is such that ST AS is nonsingular. The symmetric matrix H
defined as

H = (IN − S(ST AS)−1ST A)(IN −AS(ST AS)−1ST ) + S(ST AS)−1ST (5.2)

is called the limited memory preconditioner in the indefinite case.

Properties of this preconditioner have been analysed in [130]. A formula to char-
acterize the spectrum of the preconditioned operator has been derived (see Theorem
3.2 of [130]). We have shown that the eigenvalues of the preconditioned operator are
real-valued (with at least k eigenvalues equal to 1). Furthermore, we have shown that
the eigenvalues of the preconditioned matrix enjoy interlacing properties with respect
to the eigenvalues of the original matrix provided that the k linearly independent vec-
tors have been previously projected onto the invariant subspaces associated with the
eigenvalues of the original matrix in the open right and left half-plane, respectively.
This main result is stated hereafter. These projection operators involving the matrix
sign function of A are defined next [147].
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Definition 5.2. Let A ∈ RN×N be a symmetric indefinite matrix of order N and let
X ∈ RN×N denote the matrix sign function4 of A defined as X = (A2)− 1

2 A. Let I+(A)
and I−(A) denote the invariant subspaces associated with the eigenvalues in the right
and left half-plane, respectively. We define P+(A) = (IN +X)/2 as the projection op-
erator onto I+(A) and P−(A) = (IN − X)/2 as the projection operator onto I−(A),
respectively.

We denote by Q+ ∈ RN×N+ (Q− ∈ RN×N−) an orthonormal basis of I+(A) (I−(A),
respectively) and by Q ∈ RN×N the orthonormal matrix defined as Q = [Q+, Q−] with
N = N++N−. Given S̃ ∈ RN×k, S = [S+, S−] (S+ ∈ RN×k+ , S− ∈ RN×k− with k = k++k−, k ≤
N) consists of k projected vectors obtained as

S+ = Q+Q
T
+ [s̃i1 , ..., s̃ik+

], (5.3)
S− = Q−Q

T
− [s̃j1 , ..., s̃jk−

], (5.4)

where [s̃i1 , ..., s̃ik+
] ([s̃j1 , ..., s̃jk−

]) corresponds to k+ (k−, respectively) distinct columns
of S̃. Equivalently, we can write

S+ = Q+ S̃+, S̃+ ∈ RN+×k+ , S̃+ = QT
+ [s̃i1 , ..., s̃ik+

] (5.5)
S− = Q− S̃−, S̃− ∈ RN−×k− , S̃− = QT

− [s̃j1 , ..., s̃jk−
]. (5.6)

The main goal is to show that a property of nonexpansion of the spectrum of HA
can be obtained by solving two tractable subproblems related to either I+(A) or I−(A).
I+(A) and I−(A) are H-invariant, see Lemmas 3.6 and 3.7 in [130]. We define A+ =
QT
+AQ+ ∈ RN+×N+ (A− = QT

−AQ− ∈ RN−×N−) as the orthogonally projected restriction
of A with respect to the basis Q+ (Q−, respectively) and H+ = QT

+HQ+ ∈ RN+×N+

(H− = QT
−HQ− ∈ RN−×N−) the orthogonally projected restriction of H with respect to

the basis Q+ (Q−, respectively). The main theorem is stated next.

Theorem 5.3. Let A be a symmetric indefinite matrix of order N , H be given by (5.2)
in Definition 5.1 based on S = [S+, S−] consisting of k+ (k−) vectors projected onto the
positive (negative, respectively) invariant subspace of A, I+(A) (I−(A), respectively).
Then, the following properties hold
(a) Let the positive real numbers σ+1 ,⋯, σ+N+ denote the eigenvalues of A+ sorted in
nondecreasing order. Then the set of eigenvalues µ+1 ,⋯, µ+N+ of H+A+ can be split in
two subsets

σ+j ≤ µ+j ≤ σ+j+k+
for j ∈ {1,⋯, N+ − k+},

µ+j = 1 for j ∈ {N+ − k+ + 1,⋯, N+}.
(5.7)

(b) Let the negative real numbers σ−1 ,⋯, σ−n− denote the eigenvalues of A− sorted in
nondecreasing order. Then the set of eigenvalues µ−1 ,⋯, µ−N− of H−A− can be split in
two subsets

σ−j ≤ µ−j ≤ σ−j+k−
for j ∈ {1,⋯, N− − k−},

µ−j = 1 for j ∈ {N− − k− + 1,⋯, N−}.
(5.8)

4A (being symmetric indefinite) has no eigenvalues on the imaginary axis, so that the matrix sign
function of A is defined.
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(c) In addition, the condition number of HA, κ(HA), can be bounded as follows

κ(HA) ≤
max{1, σ+N+ , ∣σ

−
1 ∣}

min{1, σ+1 , ∣σ−N− ∣}
. (5.9)

Proof. See Theorem 3.10 of [130].

As stated in Theorem 5.3, the use of projected vectors in the Limited Memory Pre-
conditioner ensures a nonexpansion property of the spectrum of the preconditioned
operator, which is an attractive feature. Nevertheless, using the exact sign function of
A or matrix functions that approximate sign(A)S̃ can be computationally too expen-
sive for large-scale problems. Consequently, approximate spectral information based
on Ritz vectors (information that is cheaply available) is usually chosen to select the k
columns of S̃. This leads to the Ritz Limited Memory Preconditioner (Ritz-LMP). We
refer the reader to Section 3.5 of [130] for a theoretical analysis of Ritz Limited Memory
Preconditioner. There, a discussion on practical aspects related to computational cost
and memory requirements in such a setting is also provided.

Applications and future tasks

An application to solid and structural mechanics is briefly considered next, where effi-
cient preconditioners for linear systems with saddle point structure must be proposed.
Here we investigate the efficiency of a Ritz Limited Memory Preconditioner and refer
the reader to [130, 179] for further details on the context.

Application to structural mechanics: containment building of a nuclear reactor In
such an application, we consider a sequence of linear systems of saddle point type

Ki yi = ci ⇐⇒ (
Gi BT

B 0m,m
)(ui

vi
) = (fi

gi
) , i = 1,⋯, I, (5.10)

where Gi ∈ Rn×n, B ∈ Rm×n, fi ∈ Rn, gi ∈ Rm and m < n (hence N = m + n). ui denote
the physical unknowns and vi the Lagrange multipliers. The stiffness matrices Gi (i =
1,⋯, I) are symmetric positive semidefinite since they are related to the discretization
of an unconstrained mechanical problem (i.e. with no essential boundary conditions).
The deficiency of Gi can be large. Indeed it is known that an upper bound of the
dimension of N (Gi) corresponds to the number of rigid body motions of subbodies of
materials contained within the finite element mesh. Here these motions correspond to
three translations and three rotations for each subbody [189]. We further assume that
B is of full row rank (rank(B) =m) and that N (Gi)∩N (B) = {0}, ∀i ∈ {1,⋯, I}. These
assumptions ensure the existence and uniqueness of the solution of each linear system
in the sequence [28]. We also note that B is a very sparse matrix in our setting. Indeed,
B is usually related to the dualization of the boundary conditions. These relations are
local in the sense that they involve adjacent nodes of the mesh. Unless stated, B admits
only one nonzero coefficient per row due to Dirichlet boundary conditions. In this case,
BT B is a diagonal matrix.
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An approximate factorization of a block diagonal symmetric positive definite precon-
ditioner [205] is considered as a first level preconditioner [130] and we later analyse the
effect of the Ritz-LMP preconditioner for the solution of the sequence of linear systems.
The LMP preconditioner is based on Ritz information obtained at the end of the so-
lution phase of the first linear system. The same preconditioner is used through the
sequence. We consider an industrial geometry proposed by EDF known as a contain-
ment building of a nuclear reactor (see Figure 5.1), for which numerical simulations are
performed to produce a safety analysis. We refer the reader to [130] for a complete
description of the physical context and comment here only on aspects related to the
proposed preconditioner.

Figure 5.1.: Containment building: three-dimensional mesh. Figure 4.4 of [130].

Figure 5.2 shows the evolution of the Euclidean norm of the relative residual for the
last three linear systems in the sequence (I = 2, 3, 4). In this experiment, we consider
limited memory preconditioners with a varying number of Ritz vectors (k = 5, 20, 30,
respectively). Whatever the linear system considered in the sequence, the smallest
number of iterations is obtained when selecting a large value of Ritz vectors (k = 30). In
addition, we show in Table 5.3 the cumulative iteration count over the last three linear
systems, the total number of floating-point operations (one floating-point operation
corresponding to one real number operation of multiply/divide/add/subtract type) and
the memory requirements, respectively. We note that selecting S based on k = 30 Ritz
vectors leads to a decrease of 47% in terms of cumulative iteration count and to a
decrease of 43% in terms of computational operations. This satisfactory result comes
at a price of a very moderate increase in memory requirements (3%), since the limited
memory preconditioner only needs the storage of (k + 2) vectors of size N .
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Figure 5.2.: Containment building: convergence history of preconditioned GMRES(30)
for the last three linear systems in the sequence. Case of limited memory
preconditioners with k = 5, 20 or 30 Ritz vectors associated to the smallest
in modulus Ritz values. Figure 4.5 of [130].

No LMP± LMP±, k = 5 LMP±, k = 20 LMP±, k = 30
Total iteration count 509 389 343 272
Iteration count decrease (%) × 24 33 47
CPU time (sec) 315 254 224 186
CPU time decrease (%) × 19 29 41
Memory (Mo) 6686 6722 6823 6891
Memory increase (%) × 0.5 2 3

Table 5.3.: Containment building: cumulative iteration count for the last three linear
systems in the sequence, CPU time and memory requirements for different
limited memory preconditioners. Case of k = 5, 20 or 30 Ritz vectors. Table
4.1 of [130].
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5.4. Scalable algorithms beyond linear solvers

Future tasks

• Extension to the nonsymmetric case
We aim at proposing and analysing preconditioner update formulae to be used in
a more general setting, when either the matrix A or the first-level preconditioner
is nonsymmetric. Possible candidates are

H± = (IN − S(ST AT S)−1ST AT )(IN −AS(ST AS)−1ST ) + S(ST AS)−1ST , (5.11)

where S ∈ RN×k is such that ST AS is nonsingular, or

Hns = (IN −AS(ST AT AS)−1ST AT ) + S(ST AT AS)−1ST AT , (5.12)

where S ∈ RN×k is of full rank k. Hns has been notably used in [179] and suc-
cessfully applied to problems in structural mechanics. Hns has been derived from
variants proposed by Broyden [47, 48] and Eirola and Nevanlinna [88], respec-
tively (see Chapter 3 of [179] for more details). The analysis of the mathematical
properties of H± and Hns remains to be performed in this setting. We note that
simpler expressions of H± and Hns can be obtained, when S is based on Ritz and
harmonic Ritz information, respectively. This leads to attractive update formulae,
since they are particularly cheap to apply to a given vector.

• Selection of deflation vectors S

As described in Section 5.4.1, deflation vectors have been selected according to
the k smallest in magnitude Ritz values with k equal to 5, 20 or 30. Heuristics
are usually employed to select the deflation vectors, as frequently described in
the literature. Automatic selection of deflation vectors subject to certain con-
straints (e.g. the global cost of the preconditioner application and their impact
on the convergence rate of the Krylov subspace method) would be nice to perform.
Promising attempts have been proposed in both the symmetric positive definite
and symmetric indefinite cases in [119, 120], respectively. Extensions to the non-
normal case are required to tackle current situations of interest. Nevertheless, we
know that general statements about the optimal choice of deflation vectors seem
unrealistic, unless the convergence behaviour of the Krylov subspace method is
better understood. Moreover, in our context, we need to consider Krylov subspace
methods that allow variable preconditioners, for which considerably less theory
has been proposed. Additional theory is thus required to fully understand how to
choose the deflation vectors properly and to understand the links with deflated
Krylov subspace solvers.

The above future tasks have exclusively concerned the analysis of the limited memory
preconditioner to address the solution of linear systems given in sequence. We close
this section with open questions related to the mathematical analysis of methods for
sequences of linear and nonlinear systems. We would like to address these following
points more specifically
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• Mathematical analysis of recycling methods

How does the known behaviour of a Krylov subspace method applied to Ax = b
relate to the behaviour of the same Krylov subspace method applied to (A+E)y =
b + e, where both E and e are matrix- and vector-perturbations, respectively ?
This question has been already addressed in the literature [119, Section 3.4] but to
the best of our knowledge, remains to be investigated for flexible Krylov subspace
methods with general A.

• Choice of the deflation subspace

The second question is related to deflation applied to a sequence of linear systems.
For the sake of clarity and brevity, we consider a sequence made of only two linear
systems that are supposed to share some common properties (i.e. may be from
the discretization of the same nonlinear problem). Let us assume that the first
linear system Ax = b has been solved with a deflated Krylov subspace method with
deflation subspace U . As quoted in [121, 137], this is equivalent to the solution of
the deflated linear system PAx = Pb where P is a projection operator based on U .
The main question to be answered is how to find an effective deflation subspace
V ⊂ K(PA, Pb) to be applied to the next linear system By = c (with an oblique or
orthogonal projection based on the new deflation subspace V) ?

• Differentiating Krylov subspace methods

For ease of exposition, we consider only two linear systems in a given sequence,
say Ax = b and Ay = ĉ as the first and second linear systems, respectively. Let
denote xk the kth iterate of a Krylov subspace method when solving Ax = b. For
fixed A, initial guess x0 and k, the iterate xk = xk(b) is a nonlinear function of b.
It can be verified that xk is also a differentiable function of b and expressions for
the Jacobian of xk with respect to the right-hand side vector b, i.e.,

Jk =
∂xk

∂b
(5.13)

can be obtained (see [129] in the case of the method of conjugate gradients). If
` is the number of iterations required to solve the first linear system to a given
accuracy, xl(b) the corresponding approximation solution of the first linear system,
the information about the Jacobian can be used to easily derive an initial guess
for the next linear system in the sequence using the first-order expansion

x0(c) = x`(b) + J`(c − b). (5.14)

We refer the reader to [129, Section 5.5] where encouraging results have been
obtained in the symmetric positive definite case. Extension to general linear
systems with GCR [89] as a Krylov subspace method is currently investigated.

• Nonlinear acceleration techniques
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5.4. Scalable algorithms beyond linear solvers

Physical phenomena are often governed by nonlinear partial differential equations.
Newton-Krylov methods [75] are usually employed as nonlinear solvers in applica-
tion codes in industry, since they may be easily built from existing linear solvers
and preconditioners (including multilevel preconditioners such as geometric multi-
grid or domain decomposition methods). However, a possible lack of robustness
occurs when the initial guess is far from the solution. Thus there is probably a
large design space related to nonlinear solvers to improve or even replace the New-
ton method. Nonlinear multigrid methods such as FAS [39] or nonlinear additive
Schwarz method [55] represent two such alternatives. It is also of primary interest
to design efficient nonlinear solvers and/or nonlinear acceleration techniques that
exhibit sufficient arithmetic intensity. Indeed the Newton method is based on a
repeated construction and solution of the linearization which can lead to both
memory bandwidth and communication bottlenecks.

In [252], the FAS nonlinear multigrid method has been successfully applied to
the simulation of incompressible flows requiring the solution of the Navier-Stokes
equations. The combination of FAS and nonlinear GMRES [261] has been also
proposed for the simulation of recirculating flows. The FAS iteration is accelerated
by constructing a combination of several previous FAS iterates. In [252], this
combination has been successfully applied to the simulation of transient flows. In
the future, we want to reinvestigate this question of nonlinear solvers and related
convergence acceleration techniques. Limited-memory variants of quasi-Newton
methods [54, 182, 190] in combination with multilevel preconditioners will be
studied. Applications concern the solution of nonlinear equations in structural
mechanics within the PAMSIM project.

5.4.2. Parallelism in time

Motivations

In this section, we consider the numerical solution of evolution problems based on
time-dependent partial differential equations. The usual approach for the solution of
such transient problems is to use time-stepping methods, consisting in solving a given
spatial problem at every time step. However, key problems in Computational Science
and Engineering (e.g., in multiphysics simulations) usually involve thousands of time
steps, and a scalable parallel solver in space (of either explicit or implicit type) leads
unfortunately to unacceptable computational times. Forthcoming extreme scale super-
computers motivate us to reconsider this classical approach. In addition to parallelism
in space, the time variable indeed offers a further direction to introduce parallelism.
Algorithms that exploit this property fall into the class of time-parallel methods. This
class is especially of interest on extreme scale computers for which a large amount of
cores will be definitively available. Hence, the design of efficient parallel methods in
time is of major concern to tackle the simulation of time-dependent phenomena gov-
erned by partial differential equations.
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In this section, we consider the case of time-parallel solvers in Computational Fluid
Dynamics (CFD) with a specific emphasis on the simulation of compressible flows.
As a testbed, we employ Hybrid, a structured-mesh, finite difference code used for
direct numerical simulation (DNS) and large eddy simulation (LES) of shock/turbulence
interactions developed at the Center for Turbulence Research at Stanford, USA. We
want to study the design of efficient time-parallel methods in such a setting. Extensive
numerical experiments have been performed to analyse the parallel efficiency of this code
on massively parallel platforms; see [32, 33]. We note that the design of time-parallel
methods for hyperbolic nonlinear PDEs is still an open question in the community.

Collaboration

This research project is currently being developed with Julien Bodart (ISAE-Supaéro),
Serge Gratton and Thibaut Lunet with financial support from Région Midi-Pyrénées,
ISAE-Supaéro and CERFACS.

Problem setting

In the class of time-parallel methods, we concentrate on iterative methods to address the
solution of time-dependent nonlinear partial differential equations. We refer the reader
to the recent comprehensive review paper by Martin Gander [115]. We note that the
efficiency of time-parallel methods is usually investigated on simple transient academic
problems. Time-parallel methods have recently proved efficient on a few realistic ap-
plications (molecular dynamics [53], neutron transport [186] to name a few). However,
we are not aware of any analysis or any benchmark results related to the time-parallel
simulation of turbulent compressible flows at high Reynolds numbers. Hence, we would
like to simultaneously analyse time-parallel methods and propose efficient algorithms in
this setting. As discussed during the "Parallel in time methods" workshop in Toulouse
(January 11-12 2016), we also aim at proposing a related CFD benchmark problem to
be shared within the community to make performance comparisons easier.

Tasks and applications

We briefly present two research directions that we would like to follow. These research
directions are generic but applications to CFD are anticipated.

Parareal Multiple shooting methods [115] represent an important class of parallel in
time methods. The key idea is to rely on an approximation to the numerical solution
on the whole time interval and to update the solution by solving an easier-to-solve
approximate system in time. The Parareal method [167] is a popular example related
to this class of methods. It aims at computing the numerical solution of general systems
of ordinary differential equations written in the form

∂u

∂t
= f(u), t ∈ [0, T ], u(0) = u0 (5.15)

106



5.4. Scalable algorithms beyond linear solvers

with u, f ∶ [0, T ] → Rn, u0 ∈ Rn. The key idea of Parareal is to decompose the
time-integration interval [0, T ] into N subintervals (not necessarily of equal length)
determined by the time-points 0 = t0 < t1 < ⋯ < tN−1 < tN = T , to solve an initial
value problem on each subinterval concurrently, and to force continuity of the solution
branches on successive intervals by means of a Newton procedure. This corresponds to
the framework of multiple shooting methods first described in [26]. Given the shoot-
ing terms (U0,⋯, UN) which approximate the solution at time (t0,⋯, tN), the N initial
value problems can be first solved concurrently

∂u0
∂t

= f(u0), u0(t0) = U0,

∂u1
∂t

= f(u1), u1(t1) = U1,

...
∂uN−1

∂t
= f(uN−1), uN−1(tN−1) = UN−1.

Let denote ui(t, Ui) the solution at time t on the time interval [ti+1, ti] with initial con-
dition Ui. To recover the solution of (5.15) we need to impose the matching conditions
that lead to a nonlinear system of equations with respect to the shooting variables, i.e.,

H(U) = 0, U = (U0,⋯, UN)T , (5.16)

with

U0 − u0 = 0,

U1 − u0(t1, U0) = 0,

...

UN − uN−1(tN , UN−1) = 0.

Denoting Uk = (Uk
0 ,⋯, Uk

N)T the shooting vector at iteration k, solving the nonlinear
system with Newton’s method then leads to the following iteration

JH(Uk)(Uk+1 −Uk) = −H(Uk), (5.17)

where JH(Uk) denotes the Jacobian of H with respect to Uk. It turns out that JH(Uk)
can be easily expressed due to the special structure of H. This finally leads to the form

Uk+1
0 = u0

Uk+1
n+1 = un(tn+1, Uk

n) +
∂un(tn+1, Uk

n)
∂Un

(Uk+1
n −Uk

n), n ∈ {0, 1,⋯, N − 1}. (5.18)

The Parareal method is then recovered if the following two approximations in relation
(5.18) are used

un(tn+1, Uk
n) = F (tn+1, tn, Uk

n) (5.19)
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∂un

∂Un
(tn+1, Uk

n)(Uk+1
n −Uk

n) = G(tn+1, tn, Uk+1
n ) −G(tn+1, tn, Uk

n), (5.20)

where F and G denote the fine and coarse propagators, respectively (F (tb, ta, U) cor-
responds to a time integration on [ta, tb] with U as initial condition at time ta whereas
G(tb, ta, U) corresponds to a time integration on [ta, tb] with U as initial condition at
time ta with a cheap time-stepping method). This algorithm has received a lot of at-
tention over the past few years. Extensive numerical experiments can be found, e.g.,
in [186] for neutron transport, in [70, 106, 231] for the Navier-Stokes equations, and in
[118] for reservoir simulation. We note that this algorithm can be easily implemented,
since it requires only evaluations through the fine and coarse propagators, respectively,
leading to a possible black box implementation.

The parallel efficiency of Parareal has been considered theoretically and experimen-
tally. It should be noticed that the parallel efficiency of Parareal on advection dominated
academic model problems is found to decrease considerably with an increasing number
of processors [231]. Thus improvements of Parareal are required to tackle situations of
interest in our setting. The proposed idea is to consider the formalism of the multiple
shooting methods (5.16) as a starting point. Instead of using Newton’s method, we
want to consider methods for unconstrained optimization which are globally convergent
(i.e. limited memory variants of Quasi-Newton methods with line search [182] which
apply the approximate inverse Jacobian by a sequence of low-rank updates). First at-
tempts to derive a globally convergent algorithm have been proposed in [64]. We want
to investigate further in this direction to improve the nonlinear convergence of Parareal
and analyse its stability properties.

ParaExp ParaExp [116] belongs to the class of direct time-parallel methods [115] and
is only suited to the parallel integration of linear initial-value problems. The key idea of
the algorithm relies on the fact that linear initial value problems can be decomposed into
homogeneous and nonhomogeneous subproblems. The homogeneous subproblems can
be then solved by an exponential integrator, while the nonhomogeneous subproblems
can be handled by a classical time-stepping method such as a Runge-Kutta method.
We first describe the main ideas of ParaExp and conclude by proposing prospectives.
We consider the linear initial value problem

∂u

∂t
= A u(t) + g(t), t ∈ [0, T ], u(0) = u0, (5.21)

where A ∈ Rn×n is possibly a large-scale matrix, u, g ∶ [0, T ] → Rn, u0 ∈ Rn and g(t)
may be difficult to integrate numerically. Given a time decomposition of [0, T ] into N
subintervals [t0, tN ] first the non-overlapping inhomogeneous problems must be solved

∂vj

∂t
= A vj(t) + g(t), vj(Tj−1) = 0, t ∈ [tj−1, tj]. (5.22)
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We note that these independent subproblems can be solved in parallel. Then the solu-
tion of overlapping homogeneous problems (with v0(0) = u0)

∂wj

∂t
= A wj(t), wj(Tj−1) = vj−1(Tj−1), t ∈ [tj−1, tN ] (5.23)

are required. The final solution u is then obtained by summation

u(t) = vk(t) +
k

∑
j=1

wj(t), such that t ∈ [tk−1, tk]. (5.24)

The reason why a substantial parallel speedup is possible in ParaExp is that near-
optimal approximations of the matrix exponential are known [147]. Hence, the ho-
mogeneous problems become very cheap. It is interesting to note that good parallel
efficiencies have been reported on both parabolic and hyperbolic problems in [116].
This has been later confirmed in [165], where ParaExp has been extended to address
the solution of

∂u

∂t
= A u(t) + g(t), t ∈ [0, T ], u(0) = u0, (5.25)

where A ∈ Rn×n is possibly a large-scale matrix, u, g ∶ [0, T ]→ Rn×p, u0 ∈ Rn×p. This sit-
uation arises in practice, when considering linear initial-value problems with p multiple
initial conditions. The parallel efficiency on hyperbolic problems is especially attractive
in our setting, since we know that very few time-parallel methods perform well on such
problems.

As a prospective, we aim at extending ParaExp to address the solution of the non-
linear initial value problem

∂u

∂t
= A u(t) +B(u(t)) + g(t), t ∈ [0, T ], u(0) = u0, (5.26)

where A ∈ Rn×n, B, u, g ∶ [0, T ] → Rn, u0 ∈ Rn. First attempts have been proposed
very recently (see [161] and the talk given by Martin Gander at the Parallel in Time
workshop in Toulouse in January 2016), while early related comments have been made
in [85, 109].

5.5. Conclusions and outlook
Summary We have presented a few short-term research directions to address, when
designing efficient numerical algorithms based on multilevel methods for the solution
of partial differential equations on forthcoming architectures. These research lines es-
sentially concerned the improvement of multilevel preconditioners and Krylov subspace
solvers separately. However, to propose a broader and richer view, we are certainly
aware that the numerical solution of partial differential equations requires a tight and
close consideration of all the elements of the simulation chain (e.g. modelling, discretiza-
tion, numerical linear algebra, error analysis and architecture aspects of the computers).
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Exploiting these interconnections allows us to explore numerical methods that may be
simply impossible to consider by using only staggered approaches. Solver-aware numer-
ical methods and nonlinear preconditioning are two key examples in such a setting. In
particular, as emphasized in [171, Chapter 13], it is convenient to consider discretiza-
tion and preconditioning closely linked together to design efficient numerical methods.
We stress that the main advantage of using iterative methods is to stop the iteration
process whenever the appropriate accuracy has been reached. We refer the reader to
[13, 14, 171] for further enlightening discussions.

High Performance Computing To fully exploit the power of extreme scale machines,
we are certainly aware of the current limitations of the proposed research directions in
terms of High Performance Computing. Concepts that have been recently introduced to
analyse the parallel efficiency of algorithms (roofline performance model [266], execution
cache memory model [142]) should be used more systematically; see, e.g., [125, 126]. As
pointed out during the DOE ASCR Exascale Mathematics Working Group meeting in
20135, new algorithms are also needed. This will require a new mathematical analysis
as pointed out in [211]. These algorithms should indeed include asynchronous strategies
[112] or stochastic processes, while simultaneously targeting reduced communications.
In addition, data locality must be reinforced. We note that recent developments have
(re)considered these ideas, e.g., in multigrid methods [4, 5] based on early contributions
[39, 40, 69, 144]. Multilevel resiliency [5, 71, 149] is also a forthcoming emerging topic
that might be addressed as well.

Stochastic Partial Differential Equations (SPDEs) In this manuscript, we have only
considered applications related to deterministic partial differential equations. Partial
differential equations with random forcing terms or random coefficients are more and
more considered. This can occur in various settings, i.e., when considering either for-
ward problems (e.g. sampling the solution) or inverse problems (e.g. fitting a model to
a set of given observations). Elliptic partial differential equations with coefficients given
by correlated random fields or reaction-diffusion partial differential equations with ran-
dom forcing terms are two such examples that are frequently encountered in the field
of geosciences. In addition to the mathematical convergence analysis, a key open prob-
lem is to propose efficient iterative methods for the solution of such stochastic partial
differential equations on massively parallel platforms. Building blocks (Krylov sub-
space methods, multilevel preconditioning, reuse of subspace information) have been
examined in this manuscript but a clever combination of all these elements needs to be
developed to address this exciting challenge in the near future.

5Report available at http://science.energy.gov/∼/media/ascr/pdf/research/am/docs/EMWGre-
port.pdf
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Probabilistic methods Probabilistic representations of solutions of certain partial dif-
ferential equations are increasingly popular, since they provide powerful analytical tools
to establish existence and uniqueness of solutions. By using the Feynman-Kac theorem,
the solution of linear parabolic partial differential equations can be obtained by simulat-
ing random paths of a stochastic process. This central idea is used in the Probabilistic
Domain Decomposition method [3] that has been later extended to handle nonlinear
elliptic and nonlinear parabolic problems [1, 2, 209]. Given a partitioning of the compu-
tational domain, this method combines a probabilistic approach for evaluating values
at the interfaces of the partition and a classical deterministic domain decomposition
method; see also the recent contribution [34] for additional algorithmic improvements.
Since the simulation of wave propagation phenomena has been covered in the manuscript,
we mention the research by Budaev and Bogy [49, 50] on the probabilistic represen-
tation of the Helmholtz equation. In addition, recent theory has been developed to
handle linear, semi-linear as well as nonlinear partial differential equations by the con-
cept of forward-backward stochastic differential equations, Fourier cosine expansions
and wavelets; see [74, 214] and references therein (a backward stochastic partial dif-
ferential equation is a stochastic differential equation for which a terminal condition,
instead of an initial condition, has been specified and its solution consists of a pair of
processes). Probabilistic methods indeed offer an important computational advantage,
since the algorithms are especially suited for parallel computing. The solution is indeed
computed through an expected value over a given finite sample whose elements are inde-
pendent from each other. This leads to algorithms with extremely low communication
overhead, and usually good properties in terms of scalability and fault tolerance. The
class of probabilistic methods certainly deserves a specific attention in the near future.
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● Scientifique du contingent (Marine), Direction des Constructions Navales, Paris,
novembre 1994 - septembre 1995
Simulations numériques d’écoulements turbulents autour de sous-marins
Encadrant: Dr. Bernard Cardot

A.1. Activités de recherche

A.1.1. Synthèse

Ces dernières années, j’ai pu travailler essentiellement sur les techniques de précondition-
nement à base de méthode multigrille et de méthode de décomposition de domaine pour
la résolution de systèmes linéaires ou non-linéaires résultant de la discrétisation d’équa-
tions aux dérivées partielles. Le but revenait à construire des préconditionnements
efficaces et robustes pour des systèmes mal conditionnés issus d’applications réalistes.

Méthodes multigrille

Lors des travaux de doctorat (1995-1998), j’ai pu développer des méthodes multigrille
géométriques destinées à la résolution de systèmes linéaires ou non-linéaires issus de
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la discrétisation des équations de Navier-Stokes. Les conclusions de ce travail étaient
doubles:

• Les méthodes multigrille se sont avérées des préconditionnements robustes pour les
méthodes de Krylov lors de la résolution de grands systèmes linéaires [A20,A21]1.
Lors de la résolution de problèmes difficiles (problèmes de convection-diffusion
à convection dominante ou problèmes de diffusion pure comportant de fortes
anisotropies dans les coefficients), le spectre de la matrice d’itération de la méth-
ode multigrille présentait des valeurs propres isolées élevées qui pénalisent la con-
vergence. Une accélération par méthode de Krylov permettait de capturer en
quelques itérations ces valeurs propres et seule cette combinaison conduisait à
une vitesse de convergence indépendante du nombre d’inconnues.

• Suivant les résultats obtenus dans le cas linéaire, une combinaison méthode multi-
grille et méthode à sous-espace a également été proposée lors de la résolution
de problèmes non-linéaires (équations de Navier-Stokes). Comme "précondition-
nement" de la méthode à sous-espace, un schéma multigrille non-linéaire (Full
Approximation Scheme) a été adopté. L’efficacité de cette stratégie a été démon-
trée sur des cas modèles en mécanique des fluides numérique. Une procédure de
résolution couplée des équations de Navier-Stokes a également été proposée [A19].

Une méthode multigrille géométrique utilisée comme préconditionnement pour l’équa-
tion aux dérivées partielles dite d’Helmholtz a été également étudiée avec des applica-
tions à des problèmes tridimensionnels en sismique [A6,A13]. L’efficacité de cette méth-
ode en termes de passage à l’échelle a notamment été validée dans un environnement
massivement parallèle. Enfin, une méthode multigrille algébrique [A1] a été étudiée
plus récemment pour la résolution d’une équation aux dérivées partielles elliptique in-
tervenant dans les problèmes de modélisation de réservoirs.

Méthodes de décomposition de domaine

Au cours des années 2002-2005, j’ai pu aborder la thématique des méthodes de dé-
composition de domaine avec Andrea Toselli, expert de ce sujet. Le but du projet
était d’analyser et d’implémenter de nouveaux algorithmes de décomposition de do-
maine pour la résolution de systèmes provenant de la discrétisation d’équations aux
dérivées partielles par des méthodes aux éléments finis de type hp sur des maillages
étirés. Ces maillages raffinés anisotropiquement sont requis en pratique pour assurer la
convergence exponentielle de l’approximation même en présence de singularités et/ou
de couches limites.

Les méthodes de décomposition de domaine sont généralement très sensibles aux rap-
ports d’aspect du maillage et leur vitesse de convergence se détériore sévèrement lors
d’emploi d’éléments fins par exemple. Un accent particulier a donc été porté sur la

1La numérotation fait référence à la liste de publications proposée en Section A.1.2.
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robustesse vis à vis des rapports d’aspect du maillage.

Les résultats suivants ont été obtenus:

• Les méthodes de balancing Neumann-Neumann et FETI dans le cadre d’approxi-
mations de type hp de problèmes scalaires ont été généralisées en dimensions deux
et trois [A14,A17,A18]. Des validations détaillées ont démontré leur efficacité et
robustesse.

• Une généralisation des méthodes FETI dans le cadre d’approximations de type hp
de problèmes électromagnétiques bidimensionnels [A16] a été réalisée. Une vali-
dation numérique détaillée a démontré l’efficacité et la robustesse de ces méthodes
[A15].

Méthodes de Krylov

Mes travaux de recherche plus récents ont trait à l’analyse et au développement de
méthodes de Krylov autorisant l’emploi de préconditionnements variables [A10,A12].
Le cas de systèmes linéaires à multiples seconds membres donnés simultanément a
également été étudié [A4,A7,A9]. A chaque fois, l’intérêt des nouvelles méthodes a
été illustré sur des problèmes concrets en géophysique ou en mécanique des structures,
par exemple [A2,A4,A7,A9,S1].

A.1.2. Articles publiés dans des revues internationales à comité de lecture

[A1] S. Gratton, P. Hénon, P. Jiránek, X. Vasseur, ”Reducing complexity of
algebraic multigrid by aggregation”, Numer. Linear Algebra Appl.. 23, (2016), pp.
501–518.

[A2] Y. Diouane, S. Gratton, X. Vasseur, L. N. Vicente, H. Calandra, ”A
parallel evolution strategy for an Earth imaging problem in geophysics”, Optimization
and Engineering. 17-1, (2016), pp. 3–26.

[A3]G. Ramillien, F. Frappart, S. Gratton, X. Vasseur, ”Sequential estimation
of surface water mass changes from daily satellite gravimetry data”, Journal of Geodesy,
89-3 , (2015), pp. 259–282.

[A4] H. Calandra, S. Gratton, R. Lago, X. Vasseur, L. M. Carvalho, ”A
deflated minimal residual block method for the solution of non-Hermitian linear systems
with multiple right-hand sides”, SIAM J. Sci. Comput., 35-5, (2013), pp. S345–S367.
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[A5] S. Gratton, P. Jiránek, X. Vasseur, ”Energy backward error: interpretation
in numerical solution of elliptic partial differential equations and convergence of the
conjugate gradient method”, Electron. Trans. Numer. Anal., 40, (2013), pp 338–355.

[A6] H. Calandra, S. Gratton, X. Pinel, X. Vasseur, ”An improved two-grid
preconditioner for the solution of three-dimensional Helmholtz problems in heteroge-
neous media”, Numer. Linear Algebra Appl., 20, (2013), pp. 663–688.

[A7] H. Calandra, S. Gratton, J. Langou, X. Pinel, X. Vasseur, ”Flexible
variants of block restarted GMRES methods with application to geophysics”, SIAM J.
Sci. Comput., 34-2 , (2012), pp. A714–A736.

[A8] G. Ramillien, L. Seoane, F. Frappart, R. Biancale, S. Gratton, X.
Vasseur, S. Bourgogne, ”Constrained regional recovery of continental water mass
time-variations from GRACE-based geopotential anomalies over South America”, Sur-
veys in Geophysics, 33-5, (2012), pp. 887–905.

[A9] H. Calandra, S. Gratton, R. Lago, X. Pinel, X. Vasseur, ”Two-level pre-
conditioned Krylov subspace methods for the solution of three-dimensional heteroge-
neous Helmholtz problems in seismics”, Numerical Analysis and Applications, 5, (2012),
pp. 175–181.

[A10] L. M. Carvalho, S. Gratton, R. Lago, X. Vasseur, ”A flexible General-
ized Conjugate Residual method with inner orthogonalization and deflated restarting”,
SIAM J. Matrix Anal. Appl., 32-4, (2011), pp. 1212–1235.

[A11] G. Ramillien, R. Biancale, S. Gratton, X. Vasseur, S. Bourgogne,
”GRACE-derived surface water mass anomalies by energy integral approach. Applica-
tion to continental hydrology”, Journal of Geodesy, 85-6, (2011), pp. 313–328.

[A12] L. Giraud, S. Gratton, X. Pinel, X. Vasseur, ”Flexible GMRES with
deflated restarting”, SIAM J. Sci. Comput., 32-4, (2010), pp. 1858–1878.

[A13] I. S. Duff, S. Gratton, X. Pinel, X. Vasseur, ”Multigrid based pre-
conditioners for the numerical solution of two-dimensional heterogeneous problems
in geophysics”, International Journal of Computer Mathematics, 84-88, (2007), pp.
1167–1181.
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[A14] A. Toselli, X. Vasseur, ”A numerical study on Neumann-Neumann meth-
ods for hp approximations on geometrically refined boundary layer meshes II: three-
dimensional problems”, Mathematical Modelling and Numerical Analysis, M2AN, 40,
1, (2006), pp. 99-122.

[A15] A. Toselli, X. Vasseur, ”Robust and efficient FETI domain decomposition al-
gorithms for edge element approximations”, Computation and Mathematics in Electrical
Engineering (COMPEL), 24, 2, (2005), pp. 396-407.

[A16] A. Toselli, X. Vasseur, ”Dual-primal FETI algorithms for edge element ap-
proximations: two-dimensional h and p finite elements on shape-regular meshes”, SIAM
J. Numer. Anal., 42, 6, (2005), pp. 2590-2611.

[A17] A. Toselli, X. Vasseur, ”Domain decomposition preconditioners of Neumann-
Neumann type for hp approximations on boundary layer meshes in three dimensions”,
IMA J. Numer. Anal., 24, 1, (2004), pp. 123-156.

[A18] A. Toselli, X. Vasseur, ”A numerical study on Neumann-Neumann and FETI
methods for hp approximations on geometrically refined boundary layer meshes in two
dimensions”, Comput. Methods Appl. Mech. Engrg., 192, 41-42, (2003), pp. 4551-4579.

[A19] G.B. Deng, J. Piquet, X. Vasseur, M. Visonneau ”A new fully coupled
method for computing turbulent flows”, Comput. Fluids, 30-4, (2001), pp. 445-472.

[A20] J. Piquet, X. Vasseur ”A non-standard multigrid method with flexible mul-
tiple semi-coarsening for the numerical solution of the pressure equation in a Navier-
Stokes solver”, Numer. Algorithms, 24,4, (2000), pp. 333-355.

[A21] J. Piquet, X. Vasseur ”Multigrid preconditioned Krylov subspace methods for
three-dimensional numerical solutions of the incompressible Navier-Stokes equations”,
Numer. Algorithms, 17 (1998) 1-2, pp. 1-32.

A.1.3. Article soumis

[S1] S. Gratton, S. Mercier, N. Tardieu, X. Vasseur, ”Limited memory precon-
ditioners for the solution of symmetric indefinite problems with application to structural
mechanics”, CERFACS Technical Report TR/PA/15/48, soumis à Numer. Linear Al-
gebra Appl. en juillet 2015, en révision.
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A.1.4. Thèse de doctorat

[T ] X. Vasseur, ”Etude numérique de techniques d’accélération de convergence lors
de la résolution des équations de Navier-Stokes en formulation découplée ou fortement
couplée”, Université de Nantes, Ecole Centrale de Nantes, novembre 1998.

A.1.5. Diplôme d’études approfondies

[D] X. Vasseur, ”Résolution d’une équation d’advection-diffusion par une méthode
multigrille (conditions de Dirichlet ou von Neumann sur les frontières) avec estimation
de l’erreur de troncature et optimisation mémoire”, DEA, Université de Nantes, Ecole
Centrale de Nantes, septembre 1994.

A.1.6. Actes de conférences internationales avec comité de lecture

● O. Coulaud, L. Giraud, P. Ramet, X. Vasseur ”Deflation and augmentation
techniques in Krylov subspace methods for the solution of linear systems”, in B.H.V.
Topping and P. Ivanyi, (Editor), "Developments in Parallel, Distributed, Grid and Cloud
Computing for Engineering", Saxe-Coburg Publications, Stirlingshire, UK, Chapter 11,
pp 249-275, 2013.

● A. Mucherino, M. Fuchs, X. Vasseur, S. Gratton, ”Variable Neighborhood
Search for Robust Optimization and Applications to Aerodynamics”, Lecture Notes
in Computer Science, Volume 7116, 2012, 8th International Conference, LSSC 2011,
Sozopol, Bulgaria, June 6-10, 2011.

● L. Giraud, S. Gratton, X. Pinel, X. Vasseur, ”Numerical experiments
on a flexible variant of GMRES-DR”, PAMM, 7-1 (2007), pp. 1020501-1020502, Sixth
International Congress on Industrial Applied Mathematics (ICIAM07).

● A. Toselli, X. Vasseur, “Robust and efficient domain decomposition algorithms
for edge element approximations”, 11th International IGTE Symposium on Numeri-
cal Field Calculation in Electrical Engineering, Seggauberg, Austria, September 13-15
2004, Department for Fundamentals and Theory in Electrical Engineering, TU Graz,
CD-ROM.

● X. Vasseur, “Analysis of a Non-standard Multigrid Preconditioner by Spectral
Portrait Computation”, Multigrid Methods, VI, Sixth European Multigrid Conference,
Gent, 27-30 September 1999 , "Lecture Notes in Computational Science and Engineer-
ing", volume 14, pp. 249-255, E. Dick, K. Riemslagh, J. Vierendeels (eds.), Springer.

● G.B. Deng, J. Piquet, X. Vasseur, M. Visonneau, “A Fully Coupled Procedure
with Defect Correction Technique for the Computation of Turbulent Incompressible
Viscous Flow past an Airfoil”, Sixth Conference on Numerical Methods for Fluid Dy-
namics, Oxford, 31 March- 3 Apr. 1998, pp. 285-291.
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● G.B. Deng, J. Piquet, X. Vasseur, M. Visonneau, “Fully Coupled Resolution
of the Three-dimensional Navier-Stokes Equations on Cell-centered Colocated Grids
by a Nonlinear Multigrid Approach”, Fifth Annual Conference of the CFD Society of
Canada, Victoria, British Columbia, May 1997, pp. 3-55–3-60.

● X. Vasseur, “A FMG-FAS Procedure for the Fully Coupled Resolution of the Navier-
Stokes Equations on Cell-centered Colocated Grids”, Eighth Copper Mountain Confer-
ence on Multigrid Methods, Copper Mountain, Colorado, 6-11 April 1997.

● J. Piquet, X. Vasseur, “Three-dimensional Multigrid Based Pressure Solver for
the Computation of the Flow around the HSVA Tanker“, Thirteenth GAMM-Seminar
"Numerical Treatment of Multi-Scale Problems", Kiel, 24-26 January 1997. Notes in
Numerical Fluid Mechanics, volume 70, pp. 146-155, W. Hackbusch, G. Wittum (eds.),
Vieweg.

● J. Piquet, X. Vasseur, “Comparisons between Preconditioned BICGSTAB and
a Multigrid Method for the Resolution of the Pressure Equation in a Navier-Stokes
Solver”, Multigrid Methods, V, Fifth European Multigrid Conference, Stuttgart, 1-4
October 1996. "Lecture Notes in Computational Science and Engineering", volume 3,
pp. 225-243, W. Hackbusch, G. Wittum (eds.), Springer.

A.1.7. Actes de conférences nationales avec comité de lecture

● J. Piquet, X. Vasseur , “Résolution de l’équation de pression dans un solveur
Navier-Stokes par méthode multigrille utilisée comme solveur ou préconditionneur”,
Treizième Congrès Français de Mécanique, Poitiers, 1-5 septembre 1997, Tome 3, pp.
119-122.

A.1.8. Rapports techniques

● S. Gratton, S. Mercier, N. Tardieu, X. Vasseur, ”Limited memory precondi-
tioners for the solution of symmetric indefinite problems with application to structural
mechanics”, CERFACS Technical Report TR/PA/15/48, 2015.

● Y. Diouane, S. Gratton, X. Vasseur, L. N. Vicente, H. Calandra, ”A
Parallel Evolution Strategy for an Earth Imaging Problem in Geophysics”, CERFACS
Technical Report TR/PA/15/8, 2015.

● S. Gratton, P. Hénon, P. Jiránek, X. Vasseur ”Reducing complexity of alge-
braic multigrid by aggregation”, CERFACS Technical Report TR/PA/14/18, 2014.
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● O. Coulaud, L. Giraud, P. Ramet, X. Vasseur ”Deflation and augmentation
techniques in Krylov linear solvers”, INRIA Research Report RR-8265, 2013.

● H. Calandra, S. Gratton, R. Lago, X. Vasseur, L. M. Carvalho ”A mod-
ified block flexible GMRES method with deflation at each iteration for the solution
of non-Hermitian linear systems with multiple right-hand sides”, CERFACS Technical
Report TR/PA/13/15, 2013.

● S. Gratton, P. Jiránek, X. Vasseur ”Energy backward error: interpretation in
numerical solution of elliptic partial differential equations and behaviour in the conju-
gate gradient method”, CERFACS Technical Report TR/PA/13/16, 2013.

● H. Calandra, S. Gratton, R. Lago, X. Vasseur, and L. M. Carvalho ”A
deflated minimal block residual method for the solution of non-hermitian linear systems
with multiple right-hand sides”, CERFACS Technical Report TR/PA/12/45, 2012.

● S. Gratton, P. Jiránek, and X. Vasseur ”Energy backward error: interpretation
in numerical solution of elliptic partial differential equations and convergence of the
conjugate gradient method”, CERFACS Technical Report TR/PA/12/3, 2012.

● H. Calandra, S. Gratton, X. Pinel, and X. Vasseur ”An improved two-grid
preconditioner for the solution of three-dimensional Helmholtz problems in heteroge-
neous media ”, CERFACS Technical Report TR/PA/12/2, 2012.

● H. Calandra, S. Gratton, R. Lago, X. Pinel, and X. Vasseur ”Two-level
preconditioned Krylov subspace methods for the solution of three-dimensional hetero-
geneous Helmholtz problems in seismics”, CERFACS Technical Report TR/PA/11/80,
2011.

● L. M. Carvalho, S. Gratton, R. Lago, and X. Vasseur ”A flexible General-
ized Conjugate Residual method with inner orthogonalization and deflated restarting”,
CERFACS Technical Report TR/PA/11/26, 2011.

● A. Mucherino, M. Fuchs, X. Vasseur, and S. Gratton ”Variable neighborhood
search for robust optimization and applications to aerodynamics”, CERFACS Technical
Report TR/PA/11/25, 2011.

● H. Calandra, S. Gratton, J. Langou, X. Pinel, and X. Vasseur ”Flexible
variants of block restarted GMRES methods with application to geophysics”, CERFACS
Technical Report TR/PA/11/14, 2011.

● S. Gratton, P. Jiránek, and X. Vasseur ”Minimizing the backward error in the
energy norm with conjugate gradients”, CERFACS Technical Report TR/PA/10/45,
2010.
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● L. M. Carvalho, S. Gratton, R. Lago, and X. Vasseur ”A flexible General-
ized Conjugate Residual method with inner orthogonalization and deflated restarting”,
CERFACS Technical Report TR/PA/10/10, 2010.

● L. Giraud, S. Gratton, X. Pinel, and X. Vasseur ”Flexible GMRES with
deflated restarting”, CERFACS Technical Report TR/PA/09/111, 2009.

● L. Giraud, S. Gratton, X. Pinel, and X. Vasseur ”Flexible GMRES with
deflated restarting”, CERFACS Technical Report TR/PA/08/128, 2008.

● O. Boiteau, F. Hülsemann, and X. Vasseur ”Comparison of the linear algebraic
solvers MUMPS and the multifrontal solver of Code ASTER”, CERFACS Contract
Report TR/PA/06/11, 2006.

● S. Deparis, J.-F. Gerbeau, and X. Vasseur ”A Dynamic Preconditioner for
Newton-Krylov Algorithms: Application to Fluid-Structure Interaction”, INRIA Re-
search Report, RR-5352, 2004.

● A. Toselli and X. Vasseur ”Dual-Primal FETI algorithms for edge element
approximations: Two-dimensional h and p finite elements on shape-regular meshes”,
ETHZ, Seminar for Applied Mathematics, Research report 2004-01, 2004.

● A. Toselli and X. Vasseur ”A numerical study on Neumann-Neumann meth-
ods for hp approximations on geometrically refined boundary layer meshes II: Three-
dimensional problems”, ETHZ, Seminar for Applied Mathematics, Research report
2003-13, 2003.

● A. Toselli and X. Vasseur ”Domain decomposition preconditioners of Neumann
Neumann type for hp-approximations on boundary layer meshes in three dimensions”,
ETHZ, Seminar for Applied Mathematics, Research report 2003-01, 2003.

● A. Toselli and X. Vasseur ”A numerical study on Neumann-Neumann and FETI
methods for hp-approximations on geometrically refined boundary layer meshes in two
dimensions”, ETHZ, Seminar for Applied Mathematics, Research report 2002-20, 2002.

● A. Toselli and X. Vasseur ”Neumann-Neumann and FETI preconditioners for
hp-approximations on geometrically refined boundary layer meshes in two dimensions”,
ETHZ, Seminar for Applied Mathematics, Research report 2002-15, 2002.
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A.2. Activités d’enseignement et d’encadrement doctoral

A.2.1. Enseignement

Le tableau synoptique A.1 résume les activités d’enseignement (C: cours, TD: travaux
dirigés et TP: travaux pratiques sous Matlab, Scilab, C ou Fortran 90) pendant les
années académiques entre 2006-2007 et 2014-2015. Le volume horaire global par année
est également donné.

Année académique 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15
ENSEEIHT/EDP 16 16 16 16 16 16
ENSEEIHT/PSN 4/4 4/4 4/4
INSA/ANA 13
ISAE/AMO 25 25 25 25 25 25 12.5 12.5 12.5
ENM/ALG 8 8 8 8 8 8 8
ENM/ANA 18 18 18
ENM/MMC 21/10 21/10
ENM/MPI 5/6 5/6 5/6 5/6 5/6 5/6
Total C 25 25 30 30 30 30 17.5 37.5 33.5
Total TD 10 10
Total TP 43 30 30 30 52 52 30
Total 25 25 73 60 60 60 69.5 99.5 73.5

Table A.1.: Tableau synoptique des enseignements donnés entre les années universi-
taires 2006-2007 et 2014-2015 à l’ENSEEIHT (Ecole Nationale Supérieure
d’Electrotechnique, d’Electronique, d’Informatique, d’Hydraulique et des
Télécommunications), l’INSA (Institut National des Sciences Appliquées de
Toulouse), l’ISAE (Institut Supérieur de l’Aéronautique et de l’Espace, EN-
SICA) et l’ENM (Ecole Nationale de la Météorologie). EDP: équations aux
dérivées partielles (TP, deuxième année, option Mathématiques et Informa-
tique, chargé de cours: Serge Gratton), PSN: projet simulation numérique
(C/TP, deuxième année, option Mathématiques et Informatique, chargé de
cours: Xavier Vasseur), ANA: Analyse numérique (TP, première année,
chargé de cours: Alain Huard), AMO: analyse matricielle et optimisa-
tion (C/TD, première année, chargés de cours: Serge Gratton et Michel
Salaun), ALG: algorithmie (TP, deuxième année, chargé de cours: Serge
Gratton), MMC: mécanique des milieux continus (C/TD, première année,
chargé de cours: Xavier Vasseur), MPI: programmation parallèle sur ma-
chine à mémoire distribuée (C/TP, deuxième année, option Informatique,
chargé de cours: Xavier Vasseur). Les chiffres font référence à des heures
d’enseignement.
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A.2.2. Enseignement à l’étranger
Le tableau synoptique A.2 résume les activités d’enseignement en Suisse (TD: travaux
dirigés et TP: travaux pratiques sous Matlab) pendant les années académiques entre
2001-2002 et 2004-2005. Le volume horaire global par année académique est également
donné.

Année académique 01-02 02-03 03-04 04-05
EPFL/ANA 48
EPFL/A I 28
EPFL/A III 28
ETHZ/NM I 20
ETHZ/KA 10 14 14
ETHZ/NM 14 14
ETHZ/LA 28 24
ETHZ/NM 12 26
Total TD 56 30 68 78
Total TP 48
Total 104 30 68 78

Table A.2.: Tableau synoptique des enseignements donnés entre les années universi-
taires 2001-2002 et 2004-2005 à l’Ecole Polytechnique Fédérale de Lausanne
(EPFL) et l’Ecole Polytechnique Fédérale de Zurich (ETHZ). ANA: analyse
numérique (TP, chargés de cours: Luca Formaggia et Alfio Quarteroni),
A I: analyse I (TD, chargé de cours: Yves Biollay), A III: analyse III
(TD, chargé de cours: Yves Biollay), NM I: méthodes numériques I (TD,
chargé de cours: Rolf Jeltsch), KA: analyse complexe (TD, chargés
de cours: Pierre Balmer, Daniel Roessler), NM: analyse numérique (TD,
chargés de cours: Martin Gutknecht, Kasper Nipp, Jörg Waldvogel).

Ecole Polytechnique Fédérale de Lausanne

De mars à juillet 2001, j’ai été assistant pour le cours d’analyse numérique dispensé
par Dr. L. Formaggia et Prof. A. Quarteroni pour les étudiants de premier cycle à
l’Ecole Polytechnique Fédérale de Lausanne, responsable de la rédaction des exercices,
des corrigés des séances théoriques. Je fus également chargé de la rédaction et de la
coordination des examens (4 examens lors des sessions de juillet et de septembre 2001).
Ce cours vise à apprendre à résoudre pratiquement divers problèmes mathématiques
susceptibles de se poser aux ingénieurs. Les thèmes abordés concernent ainsi la réso-
lution de systèmes linéaires et non-linéaires, l’interpolation polynômiale, l’intégration
numérique, la résolution d’équations différentielles ordinaires. L’option pédagogique
retenue consistait à illustrer systématiquement chaque thème à la fois par des séances
d’exercices théoriques et des séances pratiques, où l’étudiant est invité à traiter des
problèmes concrets sous Matlab. Les séances hebdomadaires d’exercices pratiques et
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théoriques alternaient ainsi chaque semaine et permettaient une meilleure appréhension
des questions théoriques. Les cours du semestre d’hiver 2001/2002 concernaient l’anal-
yse pour les problèmes issus des sciences de l’ingénieur (suites, séries, calcul différentiel
et intégral de fonctions de plusieurs variables).

Ecole Polytechnique Fédérale de Zürich

Le travail d’assistant à Zürich consiste à encadrer les élèves pendant les séances de cours,
à corriger leurs travaux hebdomadaires et de façon mensuelle à assurer deux heures de
tutorat pour chaque matière. Les cours enseignés concernent essentiellement les mathé-
matiques pour l’ingénieur (analyse numérique, méthodes numériques et algèbre linéaire)
en insistant grâce aux exercices pratiques sous Matlab sur le côté applicatif. Encore une
fois, l’illustration numérique semble bénéfique et indispensable pour une majorité des
étudiants. Les attentes des étudiants en section Mathématiques ou Physique sont dif-
férentes de celles de ceux des filières Génie Civil ou Matériaux. Aussi quand bien même
les matières enseignées sont proches ou identiques, il faut savoir s’adapter à son audi-
torat et aux attentes des étudiants (rappels des bases ou bien compléments théoriques).
Aussi je considère cette nouvelle expérience (qui plus est dans une langue étrangère !)
comme enrichissante et instructive.

A.2.3. Co-encadrement d’étudiants en master recherche

J’ai pu co-encadrer les étudiants suivants:

• Oliver Guillet (étudiant en troisième année, parcours Mathématiques et In-
formatique à l’Ecole Nationale de la Météorologie, Toulouse, mars - septembre
2015): "Représentation des corrélations d’erreurs d’observation en assimilation de
données". Co-encadrement réalisé avec S. Gratton, S. Gürol et A. Weaver.

• Anne Cassier (étudiant en troisième année, parcours Mathématiques et Informa-
tique à l’ENSEEIHT, Toulouse, mars - septembre 2014): "Analyse mathématique
de méthodes numériques pour la résolution de problèmes issus de l’optimisation
et de l’assimilation de données". Co-encadrement réalisé avec S. Gratton et S.
Gürol.

• Aurélien Lecerf (étudiant en troisième année, parcours Mathématiques et Infor-
matique à l’ENSEEIHT, Toulouse, mars - septembre 2014): "Approche multisim-
ulation pour l’amélioration des performances d’un soveur, analyse d’un algorithme
autorisant la parallélisation en temps". Co-encadrement réalisé avec J. Bodart et
S. Gratton.

• Youssef Diouane (étudiant en troisième année, parcours Mathématiques et In-
formatique à l’ENSEEIHT, Toulouse, mars - septembre 2011): "Solving a two-
dimensional waveform inversion via global optimization methods". Co-encadrement
réalisé avec S. Gratton.
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• Mohamed Biari (étudiant en troisième année, parcours Mathématiques et In-
formatique à l’ENSEEIHT, Toulouse, mars - septembre 2010): "Résolution de
problèmes inverses en géophysique par des méthodes de Quasi-Newton". Co-
encadrement réalisé avec S. Gratton.

• Audrey Bonnement (étudiant en Mastère II en "Ingénierie Mathématique,
Statistique et Economique", Université de Bordeaux I, mars - août 2008): "An
iterative method for the null space detection of sparse rank-deficient matrices".
Co-encadrement réalisé avec S. Gratton.

• Antoine Gayou (étudiant en Mastère II en Mathématiques IMOI-MCS, Uni-
versité de Pau, mars - août 2007) "Flexible Generalized Conjugate Residual with
inner Orthogonalization and Deflated Restarting". Co-encadrement réalisé avec
S. Gratton.

A.2.4. Co-encadrement d’étudiants en thèse
• Je co-encadre avec Serge Gratton, Professeur, IRIT, et Julien Bodart enseignant-

chercheur à l’ISAE le travail de thèse de Thibaut Lunet depuis janvier 2015.
Son sujet de thèse est: "Développement de nouvelles stratégies pour le calcul mas-
sivement parallèle à l’échelle exa en mécanique des fluides numérique". Date de
soutenance prévue: début 2018, Ecole Doctorale Mathématiques, Informatique
et Télécommunications de Toulouse, thèse financée par la région Midi-Pyrénées,
l’ISAE et le CERFACS, réalisée à l’ISAE et au CERFACS.

• J’ai co-encadré avec Serge Gratton, Professeur, IRIT, et Selime Gürol, chercheuse
au CERFACS, le travail de thèse d’Anne Cassier de novembre 2014 à juin 2015.
Son sujet de thèse était: "Etude mathématique de préconditionnements pour des
problèmes de type point-selle de grande dimension avec applications en optimisa-
tion et en assimilation de données". Ecole Doctorale Mathématiques, Informatique
et Télécommunications de Toulouse, thèse réalisée au CERFACS sur un finance-
ment propre CERFACS. Anne Cassier a décidé de se consacrer à la préparation
du concours d’aggrégation de mathématiques et a mis un terme à ses travaux de
thèse en juin 2015.

• J’ai co-encadré avec Serge Gratton, Professeur, IRIT, et Nicolas Tardieu (EDF) le
travail de thèse de Sylvain Mercier de novembre 2012 à octobre 2015. Son sujet
de thèse était: "Solveurs non-linéaires rapides en mécanique des solides". Date
de soutenance: novembre 2015, Ecole Doctorale Mathématiques, Informatique
et Télécommunications de Toulouse, thèse CIFRE réalisée au CERFACS et au
département Analyses Mécaniques et Acoustique du centre de recherche et de
développement d’EDF à Clamart.

• J’ai co-encadré avec Serge Gratton, Professeur, IRIT, le travail de thèse de Rafael
Lago entre mars 2010 et juin 2013. Son sujet de thèse était: "Méthodes de
Krylov avancées pour la résolution de problèmes d’Helmholtz en géophysique."
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Date de soutenance: juin 2013, Ecole Doctorale Mathématiques, Informatique
et Télécommunications de Toulouse, thèse réalisée au CERFACS et financée par
TOTAL. Cette thèse a obtenu le prix Léopold Escande.

• J’ai co-encadré avec Serge Gratton, Professeur, IRIT, le travail de thèse de Xavier
Pinel entre septembre 2007 et mai 2010. Son sujet de thèse était: "Un précondi-
tionnement à deux niveaux approché pour la résolution de problèmes d’Helmholtz
en trois dimensions avec application à la géophysique". Date de soutenance : mai
2010, Ecole Doctorale Mathématiques, Informatique et Télécommunications de
Toulouse, thèse réalisée au CERFACS et financée par TOTAL.

A.2.5. Responsabilités pédagogiques

En complément des vacations en écoles d’ingénieurs, je suis également responsable de
formations données au CERFACS dans le cadre de la formation interne et externe.

• Fortran 90 (14 heures). Les nouvelles fonctionnalités du Fortran 90 sont décrites
dans ce cours. Ces concepts sont illustrés par des exercices en travaux pratiques.
J’ai donné cette formation en 2010, 2011 et 2012 avec Luc Giraud et suis seul
responsable depuis 2012.

• Outils pour la programmation parallèle (14 heures). La programmation sur
machine parallèle à mémoire distribuée grâce à Message Passing Interface (MPI)
est détaillée dans ce cours. Les principales caractéristiques de MPI (variables
d’envi-ronnement, communications point à point et collectives, types dérivés et
topologie des processeurs) sont décrites. Une introduction à Open-MP pour la pro-
grammation sur machine à mémoire partagée est également réalisée. Des travaux
pratiques sont organisés pour illustrer les notions issues du cours. J’ai donné cette
formation en 2010, 2011 et 2012 avec Luc Giraud et suis seul responsable depuis
2012.

• Résolution de systèmes linéaires (méthodes itératives) (14 heures). Les
méthodes modernes de résolution de systèmes linéaires sont passées en revue
(méthodes directes multifrontales et supernodales, méthodes de Krylov et pré-
conditionnement). Cette formation a été donnée avec Luc Giraud en 2010 suite à
une demande interne au CERFACS.

• Introduction au calcul scientifique haute-performance (8 heures) est un
cours organisé pour former les nouveaux arrivants au CERFACS. L’objectif est
d’exposer les principes généraux du calcul scientifique et de décrire les principaux
outils disponibles. J’ai donné cette formation en 2009, 2010 et 2011 avec Serge
Gratton.

J’ai également participé en tant que formateur à des cours en calcul scientifique au
niveau national:

127



A. Appendix A: Curriculum vitae détaillé

• Algèbre Linéaire Creuse Parallèle (28 novembre - 02 décembre 2011) (avec
E. Agullo, A. Guermouche, P. Ramet, J. Roman, L. Giraud, M. Kern). Ce cours
d’une semaine a été donné dans le cadre des sessions de formation de la Maison de
la Simulation (40 participants). J’étais impliqué avec Luc Giraud dans la partie
consacrée à la résolution des systèmes linéaires (cours et travaux pratiques sur
deux journées, 14 heures).

• Un Cours CERFACS/EDF de Calcul Numérique a été organisé les 29-30
avril 2009 à Clamart pour EDF. L’idée était d’initier les chercheurs et ingénieurs
à l’utilisation de méthodes avancées pour les simulations numériques. Le cours
a porté sur l’erreur inverse, les méthodes creuses directes et les méthodes itéra-
tives (décomposition de domaine, méthode multigrille). Ce cours de deux jours a
été organisé conjointement avec Olivier Boiteau (EDF) et Jean-Philippe Argaud
(EDF). Les cours étaient donnés par Philip Avery, Serge Gratton et moi-même.

A.3. Participation à la vie scientifique et responsabilités
collectives

A.3.1. Diffusion de connaissances et animation scientifique

Workshops

● Parallel in time methods, Janvier 2016. Ce workshop fait partie du semestre
thématique CIMI intitulé "High performance linear and nonlinear methods for large
scale applications" se déroulant entre juin 2015 et janvier 2016. Je suis co-organisateur
de ce workshop avec C. Besse (IMT, Toulouse) et S. Gratton.

● Sparse Days (2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014), CERFACS, Toulouse.
Membre du comité local d’organisation (environ 50 participants chaque année). Ce
workshop sur un format de deux jours rassemble des orateurs internationaux autour
de sujets proches de l’algèbre linéaire, optimisation numérique et du calcul scientifique
intensif.

● Recent advances on Optimization 2013 (July 24-26th 2013). Cette conférence
internationale d’une durée de trois jours a rassemblé 120 participants autour de l’op-
timisation numérique. Cette conférence a été partiellement financée par la fondation
RTRA STAE. J’étais membre du comité local d’organisation.

● 15th Austrian-French-German conference on Optimization, Toulouse, 19-23
septembre 2011. J’étais en charge des relations avec la mairie de Toulouse pour l’or-
ganisation de la cérémonie de bienvenue (140 participants).

● Workshop final du projet ANR Solstice en juin 2010, CERFACS, Toulouse.
Membre du comité local d’organisation (40 participants).
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●Workshop RTRA STAE "Méthodes avancées et perspectives en optimisation non-
linéaire et contrôle" 3-5 février 2010, Toulouse. Membre du comité local d’organisation
en collaboration avec la fondation RTRA STAE (120 participants). Serge Gratton et
moi-même avions reçu une bourse de la fondation RTRA STAE pour organiser ce work-
shop international. 15 orateurs internationaux dans le domaine de l’optimisation ont
été invités à cette occasion.

Exposés invités

● X. Vasseur, “Combination of multilevel methods and Krylov subspace methods for
acoustic full waveform inversion in seismics“, WAVES 2015, Karlsruhe, Germany, July
20-24th 2015. En collaboration avec H. Calandra, Y. Diouane, S. Gratton.

● X. Vasseur, “Parallel solution of linear initial-value problems with the ParaExp
algorithm“, MATHIAS, Paris, October 29-31 2014. En collaboration avec J. Bodart, S.
Gratton, A. Lecerf.

● X. Vasseur, “Geometric and algebraic multilevel methods for problems in seismic
and reservoir modelling“, MATHIAS, Paris, October 23-25 2013. En collaboration avec
H. Calandra, S. Gratton, P. Hénon and P. Jiránek.

● X. Vasseur, “Development of mathematical models for Exascale and beyond“, Exa-
math DOE workshop, Washington, USA, August 21-22 2013. En collaboration avec I.
Duff, S. Gratton and D. Titley-Péloquin.

● X. Vasseur, “Massively parallel computations for the solution of three-dimensional
Helmholtz heterogeneous problems in seismic imaging“, MATHIAS, Paris, October
26-28 2012. En collaboration avec H. Calandra, S. Gratton, R. Lago and X. Pinel.

● X. Vasseur, “Multilevel preconditioned Krylov subspace methods for the solution of
three-dimensional heterogeneous Helmholtz problems in seismics“, First Russian-French
Conference on Mathematical Geophysics, Mathematical Modeling in Continuum Me-
chanics and Inverse Problems, June 18-22th 2012. En collaboration avec H. Calandra,
S. Gratton, R. Lago and X. Pinel.

●X. Vasseur, “An approximate two-level preconditioner combined with flexible Krylov
subspace methods for the solution of heterogeneous Helmholtz problems on massively
parallel computers“, ESF OPTPDE Workshop, Wuerzburg, Germany, September 26-28th
2011. En collaboration avec H. Calandra, S. Gratton and X. Pinel.

● X. Vasseur, “Architectures massivement parallèles: quelques questions algorith-
miques ouvertes“, Ateliers de Modélisation de l’Atmosphère (AMA) 2011, Toulouse,
February 8th 2011. En collaboration avec L. Giraud.
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● X. Vasseur, “Null space computation of sparse singular matrices with MUMPS”,
MUMPS User Group Meeting, Toulouse, April 16th 2010. En collaboration avec P.
Amestoy, S. Gratton and J-Y. L’Excellent.

● X. Vasseur, “Massively parallel computations for the solution of Helmholtz problems
in geophysics”, Department of Mathematics, TU Delft, April 2009. En collaboration
avec H. Calandra, S. Gratton and X. Pinel.

●X. Vasseur, “A two-grid method used as a preconditioner for the solution of Helmholtz
problems”, Numerical Analysis Seminar, CWI Amsterdam, April 2009. En collabora-
tion avec H. Calandra, S. Gratton and X. Pinel.

● X. Vasseur, “Multigrid preconditioned Krylov subspace methods for the numerical
solution of the Helmholtz equation in geophysics”, Seminar für Analysis und Numerik,
Department of Mathematics, University of Basel, June 2007. En collaboration avec H.
Calandra, I.S. Duff, S. Gratton and X. Pinel.

● X. Vasseur, “Subspace acceleration for linear and nonlinear multigrid methods”,
Numerical Analysis seminar, Department of Mathematics, Swiss Federal Institute of
Technology, Lausanne, November 2000.

● X. Vasseur, “Quelques applications de la méthode multigrille en mécanique des
fluides numérique”, Institut Français du Pétrole, Rueil-Malmaison, May 27th 1999.

Séminaires

● 2007-2010: organisation des séminaires internes de l’équipe Algorithmes Parallèles.

A.3.2. Fonctions d’intérêt collectif

● Depuis 2015: membre du "Comité d’Entreprise" au sein du CERFACS.
● Depuis 2014: représentant du CERFACS au sein du consortium MUMPS.
● 2009-2014: membre du "Comité d’Evaluation des chercheurs et ingénieurs du CER-
FACS".
● Depuis 2009: membre du laboratoire commun avec l’IRIT.
● 2008: membre du laboratoire commun avec l’INRIA Bordeaux Sud-Ouest.

A.3.3. Expertise

Reviewer pour les journaux d’analyse numérique, d’algèbre linéaire et de calcul
scientifique suivants

● ACM Transactions on Mathematical Software (2015)
● Applied Numerical Mathematics (2009, 2010)
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● BIT (2010)
● Computation and Visualization in Science (2006)
● Concurrency and Computation: Practice and Experience (2010)
● European Journal of Mechanics B (2008)
● Journal of Computational and Applied Mathematics (2010)
● Linear Algebra and Applications (2009)
● Numerical Algorithms (2013, 2014)
● Numerical Linear Algebra with Applications (2012, 2013)
● Parallel Computing (2006, 2007, 2009, 2010, 2011, 2012)
● SIAM Journal on Numerical Analysis (2011)
● SIAM Journal on Scientific Computing (2004, 2008, 2013, 2014).

Reviewer pour les conférences suivantes

● CSE08: IEEE 11th International Conference on Computational Science and Engi-
neering
● Euro-Par15, membre du comité scientifique sur le thème "Numerical methods and
applications"
● Euro-Par12
● Euro-Par09
● Supercomputing 2012
● Supercomputing 2011
● VECPAR16: 12th International Meeting High Performance Computing for Compu-
tational Science
● VECPAR14: 11th International Meeting High Performance Computing for Compu-
tational Science
● VECPAR12: 10th International Meeting High Performance Computing for Compu-
tational Science
● VECPAR10: 9th International Meeting High Performance Computing for Computa-
tional Science
● VECPAR08: 8th International Meeting High Performance Computing for Computa-
tional Science.

Expert auprès de l’Agence Nationale de la Recherche

J’ai pu expertiser deux projets auprès de l’Agence Nationale de la Recherche au sein du
programme COSINUS (année 2010) et un autre au sein du programme "Défi Société de
l’information et de la communication - Axe Données massives et calcul intensif": enjeux
et synergies pour la simulation numérique (année 2015).

Participations aux jurys de thèse suivants

● Sylvain Mercier, "Fast nonlinear solvers in solid mechanics". Université Paul
Sabatier, Toulouse. Thèse soutenue en novembre 2015. Co-directeur de thèse. Le
directeur de thèse était Prof. Serge Gratton.
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● Youssef Diouane, "Globally convergent evolution strategies with application to an
Earth imaging problem in geophysics". Institut National Polytechnique de Toulouse.
Thèse soutenue en octobre 2014. Membre du jury. Le directeur de thèse était Prof.
Serge Gratton.

● Pablo Salas, "Physical and numerical aspects of thermoacoustic instabilities in an-
nular combustion chambers". Université de Bordeaux I. Thèse soutenue en novembre
2013. Membre du jury. Le directeur de thèse était Prof. Luc Giraud.

● Selime Gürol, "Solving regularized nonlinear least-squares problems in dual space
with application to variational data assimilation". Institut National Polytechnique de
Toulouse. Thèse soutenue en juin 2013. Membre du jury. Le directeur de thèse était
Prof. Serge Gratton.

● Rafael Lago, "A study on block flexible iterative solvers with application to Earth
imaging problem in geophysics". Institut National Polytechnique de Toulouse. Thèse
soutenue en juin 2013. Co-directeur de thèse. Le directeur de thèse était Prof. Serge
Gratton.

● Sylvie Detournay, "Multigrid methods for zero-sum two player stochastic games".
Ecole Polytechnique (Palaiseau), INRIA Saclay. Thèse soutenue en septembre 2012.
Membre du jury. Le directeur de thèse était Prof. Marianne Akian.

●Mathieu Chanaud, "Conception d’un solveur haute performance de systèmes linéaires
creux couplant des méthodes multigrilles et directes pour la résolution des équations
de Maxwell 3D en régime harmonique discrétisées par éléments finis." Université de
Bordeaux I, Département d’informatique, thèse soutenue en octobre 2011. Membre du
jury. Le directeur de thèse était Prof. Jean Roman.

● Mikko Byckling, "Preconditioning for Standard and Two-Sided Krylov Subspace
Methods", Helsinki University of Technology, Institute of Mathematics. Thèse soutenue
en janvier 2011. J’étais un des deux rapporteurs de la thèse. Le directeur de thèse était
Prof. Marko Huhtanen.

● Xavier Pinel, "A perturbed two-level preconditioner for the solution of
three-dimensional heterogeneous Helmholtz problems with applications to geophysics".
Thèse soutenue en mai 2010, Institut National Polytechnique de Toulouse. J’étais co-
encadrant et le directeur de thèse était Prof. Serge Gratton.

● Mélodie Mouffe, "Multilevel optimization in infinity norm and associated stopping
criteria". Thèse soutenue en février 2009, Institut National Polytechnique de Toulouse.
Membre du jury. Le directeur de thèse était Prof. Serge Gratton.
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B.1. A new fully coupled method for computing turbulent
flows
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We develop and analyse Neumann–Neumann methods forhp finite-element approxi-
mations of scalar elliptic problems on geometrically refined boundary layer meshes in
three dimensions. These are meshes that are highly anisotropic where the aspect ratio
typically grows exponentially with the polynomial degree. The condition number of
our preconditioners is shown to be independent of the aspect ratio of the mesh and of
potentially large jumps of the coefficients. In addition, it only grows polylogarithmically
with the polynomial degree, as in the case ofp approximations on shape-regular meshes.
This work generalizes our previous one on two-dimensional problems in Toselli & Vasseur
(2003a, submitted toNumerische Mathematik, 2003c to appear inComput. Methods Appl.
Mech. Engng.) and the estimates derived here can be employed to prove condition number
bounds for certain types of FETI methods.

Keywords: domain decomposition; preconditioning;hp finite elements; spectral elements;
anisotropic meshes.

1. Introduction

Solutions of elliptic boundary value problems in polyhedral domains have corner and
edge singularities and, in addition, boundary layers may also arise in laminar, viscous,
incompressible flows with moderate Reynolds numbers at faces, edges and corners.
Suitably graded meshes, geometrically refined towards corners, edges and/or faces, can
be employed in order to achieve an exponential rate of convergence ofhp finite-element
approximations (see e.g. Anderssonet al., 1995; Babǔska & Guo, 1996; Melenk & Schwab,
1998; Schwab & Suri, 1996; Schwabet al., 1998).

Neumann–Neumann (NN) and FETI algorithms are particular iterative substructuring
methods and are among the most popular and heavily tested domain decomposition (DD)
methods (see e.g. Le Tallec, 1994; Farhat & Roux, 1994; Mandel & Brezina, 1996;
Bhardwajet al., 2000). Unfortunately, the performance of iterative substructuring methods
might be severely compromised if very thin elements and/or subdomains or general non-
quasiuniform meshes are employed.

Some work has been done on domain decomposition preconditioners for higher-order
approximations of three-dimensional problems. It is well-known that on shape-regular

†Email: toselli@sam.math.ethz.ch
‡Email: vasseur@sam.math.ethz.ch

IMA Journal of Numerical Analysis 24(1),c© Institute of Mathematics and its Applications 2004; all rights reserved.
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meshes special care must be taken in the choice of the basis functions in order to produce
preconditioners that are robust with respect to the polynomial degree (e.g. Mandel, 1989,
1990a,b; Pavarino, 1994; Bica, 1997; Sherwin & Casarin, 2001). Forp approximations that
employ nodal basis functions on Gauss–Lobatto nodes (spectral element approximations),
many iterative substructuring methods can be successfully employed and studied (see
Pavarino & Widlund, 1996, 1997; Pavarino, 1997; Pavarino & Warburton, 2000 and
the references therein). Some of these ideas can be and have been generalized tohp
approximations (e.g. Ainsworth, 1996a,b; Odenet al., 1997; Guo & Cao, 1997; Le Tallec &
Patra, 1997; Ainsworth & Sherwin, 1999; Korneevet al., 2002 and the references therein
and, in particular, Guo & Cao, 1998 for three-dimensional problems). In all the above-
mentioned works, however, the finite-element mesh is assumed to be shape-regular and
robustness with respect to the aspect ratio is not in general ensured and often unlikely to
hold in practice.

In Toselli & Vasseur (2003a,c), we showed that NN and FETI methods can be
successfully devised for the particular geometrically refined boundary layer meshes
commonly used forhp finite-element approximations of two-dimensional problems.
Indeed, these meshes are highly anisotropic, but of a particular type:

1. they are obtained by refining an initialshape-regularmesh (macromesh);
2. refinement is only carriedtowardsthe boundary of the computational domain.

These properties, also shared by three-dimensional meshes, allowed us to obtain
condition number bounds for the corresponding preconditioned operators that only grow
polylogarithmically with the polynomial degree, as is the case ofp approximations
on shape-regular meshes. Our understanding and analysis was confirmed by numerical
experiments. In particular, we choose the macromesh as a decomposition into substructures
in such a way that subdomains are shape-regular. Roughly speaking, the reason why
such favourable condition numbers are retained lies in the fact that upper bounds come
from stable decompositions of finite-element functions into components associated with
geometrical objects (typically vertices and edges of the subdomains in two dimensions).
Because of our particular meshes, only components associated withinternal vertices need
to be considered, i.e. relative to vertices in a neighbourhood of which the mesh is shape-
regular.

Three-dimensional boundary layer meshes also share the two characteristics mentioned
above. However, stable decompositions now involve face and wirebasket components,
where the wirebasket is the union of the subdomain edges and vertices that do not lie
on the external boundary of the computational domain. By considering, for instance, an
edgeE of a macroelement that shares a face withΩ (see the face patch in Fig. 1, left, or
Fig. 2), decoupling of face and wirebasket components is now also performed close to∂Ω ,
and thus where the mesh is not shape-regular. In this work, we are however able to provide
condition number bounds that only grow polylogarithmically with the polynomial degree,
as in the two-dimensional case, and are independent of arbitrarily large aspect ratios of the
mesh.

The core of this work lies in the careful modification and derivation of certain Sobolev-
type inequalities that are independent of the aspect ratio of the mesh for wirebasket and
face components of finite-element functions; see Section 7. Provided such inequalities are
available, the definition of the algorithms and their analysis are fairly standard procedures
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in DD methods and proceed as in the two-dimensional case in Toselli & Vasseur (2003a).
Here, we will only consider thebalancing method, which belongs to the family of
Neumann–Neumann methods, but note that the estimates derived can be employed for
the analysis of other Neumann–Neumann methods and one-level FETI methods in a
straightforward way (see Pavarino, 1997; Klawonn & Widlund, 2001; Toselli & Vasseur,
2003a).

Welimit our analysis to the case of nodal basis functions built on Gauss–Lobatto nodes.
In addition, we only consider the model problem (2.1), which does not have boundary
layers but only corner and edge singularities. However, our tensor-product meshes can also
be employed when only singularities are present and do not require the use of hanging
nodes. We recall that numerical results in Toselli & Vasseur (2003c) for two-dimensional
problems showed that better performance is obtained for certain singularly perturbed
problems which exhibit boundary layers. In addition, a linear dependence ink for the
condition number was observed for problems with geometric refinement towards interfaces
that lie in the interior of the computational domain.

The remainder of this paper is organized as follows: in Sections 2 and 3, we introduce
our continuous and discrete problems, respectively. Geometric boundary layer meshes are
introduced in Section 4. A particular choice of basis functions is given in Section 5 and our
Neumann–Neumann preconditioners are defined in Section 6. Section 7 is the core of this
work and is devoted to the proof of some discrete Sobolev-type inequalities. Comparison
results for certain discrete harmonic extensions are given in Section 8. Condition number
bounds are then proven in Section 9. Section 10 contains some numerical results, while
some concluding remarks and perspectives are presented in Section 11.

2. Problem setting

We consider a linear, elliptic problem on a bounded polyhedral domainΩ ⊂ R3 of unit
diameter, formulated variationally as:
Findu ∈ H1

0 (Ω), such that

a(u, v) =
∫
Ω

ρ(x)∇u · ∇v dx = f (v), v ∈ H1
0 (Ω). (2.1)

As usual,H1(Ω) is the space of square summable functions with square summable first
derivatives, andH1

0 (Ω) its subspace of functions that vanish on∂Ω . The functional f (·)
belongs to the dual spaceH−1(Ω). Herex = (x, y, z) denotes the position vector.

The coefficientρ(x) > 0 can be discontinuous, with very different values for different
subregions, but we allow it to vary only moderately within each subregion. We will in fact
assume that the region is the union of elements (also called subdomains, substructures,
or macroelements){Ωi }. Without decreasing the generality of our results, we will only
consider the piecewise constant case:

ρ(x) = ρi , x ∈ Ωi .

In the case of a region of diameterHi , such as the substructureΩi , we use a norm with
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different relative weights obtained by a simple dilation argument:

‖u‖2
1,Ωi

= |u|21,Ωi
+ 1

H2
i

‖u‖2
0,Ωi

. (2.2)

Here, ‖ · ‖0,Ωi and | · |1,Ωi denote the norm inL2(Ωi ) and the seminorm inH1(Ωi ),
respectively. In the following we also employ the spaceW1,∞(Ωi ) of bounded functions
with bounded derivatives (see e.g. Nečas, 1967).

3. hp finite-element approximations

We now specify a particular choice of finite-element spaces. Given an affine quadrilateral
meshT of Ω and a polynomial degreek � 1, we consider the following finite-element
spaces:

X = Xk(Ω; T ) := {u ∈ H1
0 (Ω) | u|K ∈ Qk(K ), K ∈ T }. (3.1)

HereQk(K ) is the space of polynomials of maximum degreek in each variable onK . In
the following, we may drop the reference tok, Ω , and/orT whenever there is no confusion.

In this paper, we always assume that the meshes areregular, i.e. the intersection
between neighbouring elements is either a vertex, or an edge, or a face that is common
to thetwoelements.

A finite-element approximation of (2.1) consists of findingu ∈ X, such that

a(u, v) = f (v), v ∈ X. (3.2)

4. Geometric boundary layer meshes

In order to resolve boundary layers and/or singularities, geometrically graded meshes can
be employed. They are determined by a mesh grading factorσ ∈ (0, 1) and a refinement
level n � 0. The number of layers isn + 1 and the thinnest layer has a width proportional
to σ n. Robust exponential convergence ofhp finite-element approximations is achieved
if n is suitably chosen. For singularity resolution,n is required to be proportional to the
polynomial degreek (see Anderssonet al., 1995; Babǔska & Guo, 1996). For boundary
layers, the width of the thinnest layer needs to be comparable to that of the boundary layer
(see Melenk & Schwab, 1998; Schwab & Suri, 1996; Schwabet al., 1998).

A geometric boundary layer meshT = T n,σ
bl is, roughly speaking, the tensor product

of meshes that are geometrically refined towards the faces. Figure 1 shows the construction
of a geometric boundary layer meshT n,σ

bl .
The meshT n,σ

bl is built by first considering an initial shape-regular macro-triangulation
Tm, possibly consisting of just one element, which is successively refined. This process
is illustrated in Fig. 1. Every macroelement can be refined isotropically (not shown) or
anisotropically in order to obtain so-called face, edge or corner patches (Fig. 1, level 2).
Here and in the following, we only consider patches obtained by triangulating the reference
cubeQ̂ := I 3, with I := (−1, 1). A patch for an elementKm ∈ Tm is obtained by using
an affine mappingFKm : Q̂ → Km. The stability properties proven for patches on the
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Level 2

Level 1

2(1−σ) σ

FIG. 1. Hierarchic structure of a boundary layer mesh, withσ = 0·5 andn = 3.

reference cube are equally valid for an arbitrary shape-regular elementKm ∈ Tm, with a
constant that is independent of the diameter ofKm.

A face patchis given by an anisotropic triangulation of the form

T f := {Kx × I × I | Kx ∈ Tx}, (4.1)

whereTx is a mesh ofI , geometrically refined towards, say,x = 1, with grading factor
σ ∈ (0, 1) andn levels of refinement; see Fig. 1 (level 2, left). We note that the mesh
Tx × {I } of Ŝ := I 2 is a two-dimensional edge patch.

An edge patchis given by a triangulation

Te = T bl
e := {Kx × Ky × I | Kx ∈ Tx, Ky ∈ Ty} = {Kxy × I | Kxy ∈ Txy}, (4.2)

whereTx andTy are meshes ofI , geometrically refined towards, say,x = 1 and y = 1,
respectively, with grading factorσ ∈ (0, 1) and total number of layersn; see Fig. 1 (level
2, centre). The meshTxy of Ŝ is a two-dimensional corner patch.

In a similar way, we can define acorner patchTc:

Tc = T bl
c := {Kx × Ky × Kz | Kx ∈ Tx, Ky ∈ Ty, Kz ∈ Tz},

whereTx, Ty, andTz are meshes ofI , geometrically refined towards, say,x = 1, y = 1,
andz = 1, respectively; see Fig. 1 (level 2, right).

We note that every element̂K of T f , Te, andTc on the reference cube is of the form
(0, hx) × (0, hy) × (0, hz) (after a possible translation and rotation) and is thus obtained
from the reference element by an affine mappingFK̂ : Q̂ → K̂ of the form

[x y z]T = [(hx/2)(x̂ + 1) (hy/2)(ŷ + 1) (hz/2)(ẑ + 1)]T . (4.3)

The aspect ratio of̂K is the maximum of all possible ratios ofhx, hy andhz. Since the
macromesh consists of affinely mapped elementsKm, every elementK of the global mesh
T = T n,σ

bl is obtained from the reference element by combining two affine mappings

K = FK (Q̂) = FKm(FK̂ (Q̂)), K ⊂ Km ∈ Tm. (4.4)
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SinceTm is shape-regular, the aspect ratio is determined only byFK̂ ; cf. (4.3). Finally, we
note that the aspect ratio of the mesh is determined byσ andn, and is proportional toσ−n.

As in Toselli & Vasseur (2003a), our analysis will be made for a prototype mesh,
obtained from a shape-regular (not necessarily quasi-uniform) macromesh, by refining
elements that only touch∂Ω , either as corner, edge, or face patches. Such meshes only
consist of four types of patches: unrefined, face, edge, and corner patches. We also recall
that in practical applicationsσ is bounded away from one and zero.

5. Basis functions on Gauss–Lobatto nodes

For the spaceXk(Ω; T ), we choose nodal basis functions on the Gauss–Lobatto nodes.
We denote byGLL(k) the set of Gauss–Lobatto points{ξi ; 0 � i � k} on I = (−1, 1)

in increasing order and by{wi > 0} the corresponding weights (see Bernardi & Maday,
1997, Section 4). We recall that the quadrature formula based onGLL(k) has order 2k −1
and, in addition,

‖u‖2
0,I �

k∑
i =0

u(ξi )
2 wi � 3‖u‖2

0,I , u ∈ Qk(I ); (5.1)

(see Bernardi & Maday, 1997, Remark 13.3).
For the reference cubêQ = (−1, 1)3 we setGLL(k)3 = {ξi j l = (ξi , ξ j , ξl ); 0 �

i, j, l � k}. In the following, we use the same notation for the mapped Gauss–Lobatto
nodes and corresponding weights for an affinely mapped elementK ∈ T .

Given the nodesGLL(k)3, our basis functions onQk(Q̂) are the tensor product of
kth-order Lagrange interpolating polynomials onGLL(k), defined by

l̂ i (ξ j ) = δi j . (5.2)

On the reference element we can write

u(x, y, z) =
k∑

i =0

k∑
j =0

k∑
l=0

u(ξi , ξ j , ξl ) l̂ i (x)l̂ j (y)l̂ l (z), u ∈ Qk(Q̂). (5.3)

For ageneral element inT , basis functions are obtained by mapping those on the reference
element.Interior local basis functions correspond to GLL nodes insideQ̂ (all local indices
differ from 0 andk).

Equation (5.3) defines an interpolation operatorI k on the reference element

I ku(x, y, z) :=
k∑

i =0

k∑
j =0

k∑
l=0

u(ξi , ξ j , ξl ) l̂ i (x)l̂ j (y)l̂ l (z).

The pointsGLL(k)3 define a triangulationTk = Tk(Q̂) of Q̂ in a natural way,
consisting ofk3 parallelepipeds. LetYh = Yh(Q̂) = X1(Q̂; Tk) be the space of piecewise
trilinear functions on this mesh. We also denoteYk = Yk(Q̂) = Qk(Q̂). The aspect ratio
of Tk is of the order ofk (see Casarin, 1996, p. 27 for details). In a similar way we can
consider a Gauss–Lobatto mesh on an affinely mapped elementK by simply mapping the
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GLL mesh onQ̂. In the following, we will use the notationTk = Tk(K ), Yh = Yh(K )

andYk = Yk(K ) to denote the GLL mesh, the piecewise trilinear finite-element space and
Qk, respectively, for a mapped element. If the aspect ratio ofK is e.g.hx/hy (cf. (4.3) and
(4.4)), then that of the correspondingTk is (hx/hy)k.

There is a one-to-one correspondence betweenYh andYk given by

I k : Yh → Yk, I h : Yk → Yh,

where I h is the nodal interpolation operator onYh. We use the notationuh ∈ Yh and
uk ∈ Yk in order to denote two corresponding functions.

LEMMA 5.1 Let K̂ = (0, hx) × (0, hy) × (0, hz). Then there exist positive constantsc
andC, such that, foruh ∈ Yh(K̂ ),

c‖uh‖0,K̂ � ‖uk‖0,K̂ � C‖uh‖0,K̂ ,

c‖∂x(uh)‖0,K̂ � ‖∂x(uk)‖0,K̂ � C‖∂x(uh)‖0,K̂ ,

with, in particular,c andC independent ofhx, hy, hz, andk. Similar bounds hold for they
andz derivatives. IfK ∈ T is given by (4.4), then, foruh ∈ Yh(K ),

c‖uh‖0,K � ‖uk‖0,K � C‖uh‖0,K ,

c|uh|1,K � |uk|1,K � C|uh|1,K

where the constants are independent of the diameter and the aspect ratio ofK , andk.

The proof of the above result can be found in Canuto (1994, Section 2) forK = Q̂.
For an affinely mapped element a scaling argument can be used. We note that thanks to
Lemma 5.1 we can equivalently work with functions inYk or Yh.

The following result can be found in Casarin (1996, Lemma 3.3.3).

LEMMA 5.2 Let K̂ = (0, hx) × (0, hy) × (0, hz) anduh ∈ Yh(K̂ ). Givenθ ∈ W1,∞(K̂ ),
with

‖θ‖∞,K̂ � C, ‖∇θ‖∞,K̂ � C/r,

then

‖I h(θuh)‖2
0,K̂

� C‖uh‖2
0,K̂

,

‖∂x I h(θuh)‖2
0,K̂

� C(|uh|2
1,K̂

+ r −2‖uh‖2
0,K̂

),

whereC is independent ofhx, hy, hz, andk. Similar bounds hold for they andzderivatives.
If K ∈ T is given by (4.4), then, foruh ∈ Yh(K ),

‖I h(θuh)‖2
0,K � C‖uh‖2

0,K ,

|I h(θuh)|21,K � C(|uh|21,K + r −2‖uh‖2
0,K ),

whereC is independent of the diameter and the aspect ratio ofK , andk.
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Given an element̂K = (0, hx) × (0, hy) × (0, hz) and a coordinate direction, sayx,
let a, b, c andd be the vertices of a face of̂K perpendicular to this direction, and leta′, b′,
c′ andd′ be the corresponding points on the parallel face. The following lemma relies on
trivial properties of trilinear functions (cf. Casarin, 1996, Lemma 3.3.1).

LEMMA 5.3 Let K̂ = (0, hx) × (0, hy) × (0, hz) anda, b, c andd be the vertices of a
face ofK̂ perpendicular to thex direction. Then there are constants independent ofhx, hy

andhz, such that, ifu is trilinear onK̂ ,

c‖u‖2
0,K̂

� hxhyhz
∑

x=a,b,c,d
(u(x)2 + u(x′)2) � C‖u‖2

0,K̂
,

c‖∂xu‖2
0,K̂

� (hxhyhz/h2
x)

∑
x=a,b,c,d

(u(x) − u(x′))2 � C‖∂xu‖2
0,K̂

,

c‖∂xu‖2
∞,K̂

� h−2
x

∑
x=a,b,c,d

(u(x) − u(x′))2 � C‖∂xu‖2
∞,K̂

.

Similar bounds hold for they andz derivatives.

6. Neumann–Neumann methods

Iterative substructuring methods rely on a non-overlapping partition into substructures.
We mention Smithet al. (1996, Chapter 4) as a general reference to this section. In our
algorithms the substructures are chosen as the macroelements inTm = {Ωi | 1 � i � N}.
We recall that the macroelements are shape-regular. This appears to be essential for the
analysis and good performance.

Wedefine the boundariesΓi = ∂Ωi \∂Ω and the interfaceΓ as their union. We remark
thatΓ is the union of the interior subdomainfaces, regarded as open sets, which are shared
by two subregions, and subdomainedgesandvertices, which are shared by more than two
subregions. Vertices can only be endpoints of edges. In the following, we tacitly assume
that points on∂Ω are excluded from the geometrical objects that we consider, or, in other
words, we will only deal with geometrical objects (faces, edges, vertices,. . . ) that belong
to Γ . We denote the faces ofΩi by Fi j , its edges byEi j , its vertices byVi j , and its
wirebasket, defined as the union of its edges and vertices, byWi . Occasionally, we will
also use faces, edges and vertices with one or no superscript. If a vertex (edge) lies on∂Ω
we will regard it as part of the internal edge (resp., face) that shares it with∂Ω .

When restricted to the subdomainΩi , the global triangulationT determines a local
meshTi . This mesh can be of four types: face, edge, corner or consisting of just one
element. We define the local spacesXi = Xk(Ωi ; Ti ), of local finite-element functions
that vanish on∂Ω ∩ ∂Ωi

In our analysis, we will also employ the GLL meshTk(Ωi ) onΩi , generated by the local
GLL meshesTk(K ) for K ∈ Ti . The corresponding space of piecewise trilinear functions
onTk(Ωi ) that vanish on∂Ω ∩ ∂Ωi is denoted byYh(Ωi ). We setYk(Ωi ) = Xk(Ωi ; Ti ).

Wenext define the local bilinear forms

ai (u, v) =
∫
Ωi

ρi ∇u · ∇v dx, u, v ∈ Xi .

We note that ifΩi is afloatingsubdomain (i.e. its boundary does not touch∂Ω ), ai (·, ·) is
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only positive semi-definite and foru ∈ Xi we have

ai (u, u) = 0 iff u constant inΩi .

The sets of nodal points onΓi , Γ , Fi j , Ei j andWi are denoted byΓi,h, Γh, Fi j
h , Ei j

h
andWi

h, respectively. We will identify these sets with the corresponding sets of degrees
of freedom. As for the corresponding regions, we will also use notation with one or no
superscript.

Weintroduce some spaces defined on the interfaces:Ui is the space of restrictions toΓi

of functions inXk(Ωi ; Ti ) andU of restrictions toΓ of functions inXk(Ω; T ). We note
that functions inUi andU are uniquely determined by the nodal values inΓi,h andΓh,
respectively. In the following we will identify these spaces with those of the corresponding
harmonic extensions; see in particular Lemma 6.1 below. For every substructureΩi , there
is a natural interpolation operator

RT
i : Ui −→ U

that extends a function onΓi to a global function onΓ with vanishing degrees of freedom
in Γh\Γi,h. Its transpose with respect to the Euclidean scalar productRi : U → Ui extracts
the degrees of freedom inΓi,h.

Once a vectoru ∈ Xk(Ω; T ) is expanded using the basis functions introduced in
Section 5, problem (3.2) can be written as a linear system

Au = f .

We recall that the condition number ofA is expected to grow at least ask3/(hmin)
2 ∼

k3σ−2n ∼ k3σ−2k (see Melenk, 2002 for a result in two dimensions) and may thus be
extremely large for large values ofk.

The contributions to the stiffness matrix and the right-hand side can be formed one
subdomain at a time. The stiffness matrix is then obtained bysubassemblyof these parts.
We will order the nodal points interior to the subdomains first, followed by those on the
interfaceΓ . Similarly, for the stiffness matrix relative to a substructureΩi , we have

A(i ) =
(

A(i )
I I A(i )

I Γ
A(i )

Γ I A(i )
ΓΓ

)
. (6.1)

In a first step of many iterative substructuring algorithms, the unknowns in the interior
of the subdomains are eliminated by block Gaussian elimination. In this step, the Schur
complements, with respect to the variables associated with the boundaries of the individual
substructures, are calculated. The resulting linear system can be written as

SuΓ = gΓ . (6.2)

Given the local Schur complements

Si = A(i )
ΓΓ − A(i )T

I Γ A(i )−1

I I A(i )
I Γ : Ui −→ Ui ,



132 A. TOSELLI AND X . VA SSEUR

we have

S =
N∑

i =1

RT
i Si Ri : U −→ U

and an analogous formula can be found forgΓ (see Smithet al., 1996, Chapter 4).
A functionu(i ) defined onΩi is said to be discrete harmonic onΩi if

A(i )
I I u(i )

I + A(i )
I Γ u(i )

Γ = 0.

In this case, it is easy to see thatHi (u
(i )
Γ ) := u(i ) is completely defined by its value onΓi .

The space of piecewise discrete harmonic functionsu consists of functions inX that are
discrete harmonic on each substructure. In this case,u =: H(uΓ ) is completely defined by
its value onΓ .

Our preconditioners will be defined with respect to the inner product

s(u, v) = uT Sv, u, v ∈ U .

It follows immediately from the definition ofS thats(·, ·) is symmetric and coercive.
The following lemma results from elementary variational arguments.

LEMMA 6.1 Letu(i )
Γ be the restriction of a finite-element function toΓi . Then the discrete

harmonic extensionu(i ) = Hi (u
(i )
Γ ) of u(i )

Γ into Ωi satisfies

ai (u
(i ), u(i )) = min

v(i )|∂Ωi =u(i )
Γ

ai (v
(i ), v(i )) = u(i )

Γ

T
S(i )u(i )

Γ .

Analogously, ifuΓ is the restriction of a finite-element function toΓ , the piecewise discrete
harmonic extensionu = H(uΓ ) of uΓ into the interior of the subdomains satisfies

a(u, u) = min
v|Γ=uΓ

a(v, v) = s(u, u) = uT
Γ SuΓ .

This lemma ensures that instead of working with functions defined on the interfaceΓ ,
we can equivalently work with the corresponding discrete harmonic extensions. For this
reason, in the following we will identify spaces of traces on the interfaces,Ui andU , with
spaces of discrete harmonic extensions. We point out, however, that due to the particular
meshes considered, we cannot equivalently work with norms of local discrete harmonic
extensions and traces on the subdomain boundaries since our local meshes are not in
general quasi-uniform or shape-regular, and stable discrete harmonic extensions cannot
be found in general; see Section 8.

Neumann–Neumann methods provide preconditioners for the Schur complement
system: instead of solving (6.2) using, e.g. the conjugate gradient method, they employ
an equivalent system involving a preconditioned operator of the form

Ŝ−1S = PN N = P0 + (I − P0)

( N∑
i =1

Pi

)
(I − P0).
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We refer to Dryja & Widlund (1995), Mandel & Brezina (1996), Pavarino (1997) and
Klawonn & Widlund (2001) for some NN methods for theh and p finite-element
approximations. We are unaware on any such method forhp-approximations.

The operatorsPi are projection-like operators associated to a family of subspacesUi

and determined by a set of local bilinear forms defined on them:

s̃i (u, v), u, v ∈ Ui .

Given the interpolation operatorsRT
i : Ui → U , we have

Pi = RT
i P̃i , P̃i : U −→ Ui , (6.3)

with

s̃i (P̃i u, vi ) = s(u, RT
i vi ), vi ∈ Ui . (6.4)

While P0 is associated with a low-dimensional global problem, the others are associated
with the single substructures. The remainder of this section is devoted to the definition of
the various components ofPN N.

An important role is played by a family of weighted counting functionsδi , which are
associated with and defined on the individualΓi (cf. Dryja et al., 1996; Dryja & Widlund,
1995; Mandel & Brezina, 1996; Sarkis, 1994; Pavarino, 1997) and are defined forγ ∈
[1/2, ∞). GivenΩi andx ∈ Γi,h, δi (x) is determined by a sum of contributions fromΩi

and its relevant next neighbours,

δi (x) =
∑
j ∈Nx

ρ
γ

j (x)/ρ
γ

i (x), x ∈ Γi,h. (6.5)

HereNx, x ∈ Γh, is the set of indicesj of the subregions such thatx ∈ Γ j,h. These
nodal values onΓi,h are then interpolated in order to obtain a function ofδi ∈ Ui . The
pseudoinversesδ†

i ∈ Ui are defined, forx ∈ Γi,h, by

δ
†
i (x) = δ−1

i (x), x ∈ Γi,h. (6.6)

Wenote that these functions provide a partition of unity:

N∑
i =1

RT
i δi

†(x) ≡ 1. (6.7)

In particular, foru ∈ U we can use the formula

u =
N∑

i =1

RT
i ui , with ui = Hi (δ

†
i u). (6.8)

Here and from now on, we will tacitly assume that whenever we writeHi (uv) or H(uv)

we first form I k(uv), i.e. map the product of the two functionsu andv into thehp finite-
element space by interpolation, and then extend the result as a discrete harmonic function.
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If there is no confusion, we will sometimes use the notationuv in order to denoteI k(uv)

orHi (uv).
A coarse spaceU0 of minimal dimension is defined as

U0 = span{RT
i δ

†
i } ⊂ U,

where the span is taken over the floating subdomains. We note thatU0 consists of piecewise
discrete harmonic functions andRT

0 is the natural injectionU0 ⊂ U . Weconsider an exact
solver onU0

s̃0(u, v) := a(Hu,Hv) = a(u, v).

For each substructureΩi , the local bilinear form is

s̃i (u, v) := ai (Hi (δi u),Hi (δi v)), u, v ∈ Ui .

For a floating subdomainP̃i is defined only for thoseu ∈ U for which s(u, v) = 0 for all
v = RT

i vi such thatHi (δi vi ) is constant onΩi . This condition is satisfied ifa(u, RT
i δ

†
i ) =

0; we note thatRT
i δ

†
i is a basis function forU0. For such subdomains, we make the solution

P̃i u of (6.4) unique by imposing the constraint∫
Ωi

Hi (δi P̃i u)dx = 0, (6.9)

which just means that we select the solution orthogonal to the null space of the Neumann
operator. Thus, Range(P̃i ) has codimension 1 with respect to the spaceUi .

We can equally well use matrix notations. LetDi be the diagonal matrix with the
elementsδ†

i (x) corresponding to the pointx ∈ Γi,h. Then

s̃i (u, v) = uT D−1
i Si D−1

i v.

Wealso have

Pi = RT
i Di S

†
i Di Ri S,

whereS†
i is a pseudoinverse ofSi . Analogously for the coarse projection,

P0 = RT
0 S−1

0 R0S,

whereS0 = R0SRT
0 the restriction ofS to U0

The main result of this paper is a bound for the condition number ofPN N. Such bound
can be found using the abstract Schwarz theory (see e.g. Smithet al., 1996, Chapter. 6). We
refer to Mandel & Brezina (1996), Dryja & Widlund (1995), Pavarino (1997) and Klawonn
& Widlund (2001) for similar proofs.

A uniform bound for the smallest eigenvalue can be found using the decomposition
(6.8) and the fact thatP0 is an orthogonal projection.

LEMMA 6.2 We have

s(PN Nu, u) � s(u, u), u ∈ U .
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In order to find a bound for the largest eigenvalue, we need a stability property for the
local bilinear forms (see e.g. Smithet al., 1996).

ASSUMPTION6.1 We have

s(RT
i ui , RT

i ui ) � ω s̃i (ui , ui ), ui ∈ Range(P̃i ), i = 1, . . . , N,

with

ω = C (1 − σ)−6
(

1 + log

(
k

1 − σ

))2

andC independent ofk, n, σ , γ , the coefficientsρi and the diametersHi .

The proof of Assumption 6.1 is given in Section 9. Assumption 6.1 and a colouring
argument provide a bound for the largest eigenvalue (see e.g. Pavarino, 1997, Section 8).

LEMMA 6.3 Let Assumption 6.1 be satisfied. Then

s(PN Nu, u) � Cωs(u, u), u ∈ U .

Consequently, the condition number ofPN N satisfies

κ(PN N) � Cω = C (1 − σ)−6
(

1 + log

(
k

1 − σ

))2

.

7. Decomposition results

A key ingredient for the proof of Assumption 6.1 and for the analysis of many iterative
substructuring methods in three dimensions is a decomposition result for local functions in
Ui into face and wirebasket components:

u =
∑

j

uFi j + uWi , u ∈ Ui . (7.1)

The face componentuFi j vanishes on∂Ωi \ Fi j and is discrete harmonic. It is uniquely
determined by the nodal values inFi j

h . The wirebasket componentuWi is also discrete
harmonic and vanishes at all points ofΓi,h except at those inWi

h.
We can further decompose a local function by also defining edge and vertex

components:

u =
∑

j

uFi j +
∑

j

uEi j +
∑

j

uVi j , u ∈ Ui , (7.2)

whereuEi j is discrete harmonic and vanishes on∂Ωi \ Ei j , anduVi j vanishes at all nodes
in Γi,h except at the vertexVi j . We recall that we exclude geometrical objects on∂Ω and
that therefore the sums in (7.1) and (7.2) are taken over faces, edges and vertices that do
not belong to∂Ω . Discrete harmonic functions of typeuFi j , uEi j , uVi j anduWi are called
face, edge, vertex and wirebasket functions, respectively.
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FIG. 2. Face patch: partition of an edgeE that touches∂Ω into E1−σ andEσ (left) and two-dimensional mesh
T (z) for a section corresponding to a constantz (right).

Here and in the following section, we only carry out proofs for the reference cube
Q̂: since elements in the macromeshTm are shape-regular and affinely mapped, the
corresponding bounds for a generic substructureΩi ∈ Tm, of diameterHi can be obtained
by a standard scaling argument and involve the scaled norm (2.2). We recall that we only
need to consider four types of patches: face, edge, corner and unrefined ones, together with
the corresponding triangulationsT f , Te, Tc andQ̂, respectively; cf. Fig. 1. We recall that a
generic patch is denoted byΩi and its triangulation byTi .

7.1 Wirebasket components

Given an edgeE = Ei j ⊂ Wi , wedefine a discreteL2 norm onE. If E does not touch the
boundary∂Ω , wesimply set

‖u‖h,E := ‖u‖0,E.

Let now E be an edge that touches∂Ω ; see Fig. 2, left, for an example of a face patch.
After a possible translation and rotation,E can always be written as

E = {(1, 1, z) | z ∈ I }.
Then, the local meshTi gives rise to a one-dimensional triangulation onE, TE, which is not
quasiuniform and is geometrically refined towards one end point, sayz = 1. In addition,
E can be partitioned as

E = E1−σ ∪ Eσ , E1−σ = (−1, −1 + 2(1 − σ)), Eσ = (−1 + 2(1 − σ), 1).

We note thatE1−σ consists of exactly one element of length 2(1 − σ) in TE, while the
elements onEσ are geometrically refined towardsz = 1. We now consider the GLL mesh
Tk(Ωi ) and observe that all the elements that touch the edgeE have the same diameters
hi,x andhi,y, along the two directions perpendicular toE; cf. Fig. 2. Indeed,hi,x andhi,y

are of orderk−2 for a face patch, of orderk−2(1 − σ) for a corner patch and of orderk−2
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andk−2(1−σ), respectively, for an edge patch. Moreover, thanks to our particular meshes
and to the fact that local spaces of the same degreek are employed on each element, we
have the following property.

PROPERTY 7.1 LetE be an edge parallel to e.g.z, that is shared by two substructuresΩi

andΩ j . Then, the mesh sizeshi,x andh j,x, andhi,y andh j,y are comparable. In particular,
there exist constants, depending only on the aspect ratios ofΩi andΩ j , such that

c(1 − σ)hi,x � h j,x � C(1 − σ)−1hi,x.

Similar bounds hold forhi,y andh j,y.

Wedefine

‖u‖2
h,E := ‖u‖2

0,E + ‖u‖2
h,Eσ

= ‖u‖2
0,E + hi,xhi,y‖∂zu‖2

0,Eσ
.

We note that in this case the discrete norm is obtained by adding to theL2 norm onE
a weightedL2 norm of ∂zu over a part of E whereTE is not quasiuniform. A discrete
wirebasket norm is obtained by summing the contributions over all the edges:

‖u‖2
h,Wi :=

∑
E⊂Wi

‖u‖2
h,E.

LEMMA 7.1 LetuWi ∈ Ui be discrete harmonic and vanish at all nodal pointsΓi,h except
at those onWi . Then there is a constant independence ofuWi , Hi , σ andn, such that

|uWi |21,Ωi
� C(1 − σ)−2‖uWi ‖2

h,Wi .

Proof. The result follows by estimating the energy norm of the zero extension of the
boundary values and by noting that the harmonic extension has a smaller energy (cf.
Lemma 6.1). More precisely, letuk be the function that vanishes at all nodal points in
Ωi,h ∪ Γi,h except at those onWi , and u = uh = I huk the corresponding piecewise
trilinear function defined on the GLL meshTk(Ωi ). We will estimate the energy ofuh on
each elementK ∈ Tk(Ωi ) that touch an edgeE ⊂ Wi . Without loss of generality, we
assume thatE is parallel to thez axis. We only consider the worst possible case, i.e. that
of a face patch and refer to Fig. 2.

Let us first suppose thatE does not touch∂Ω . For a face patch,K has dimensionshx,
hy andhz of order

k−2 × k−2(1 − σ) × k−2,

or

k−2 × k−2(1 − σ) × k−1,

and thus

c(1 − σ)hx � hy � Chx,

hx � Chz; (7.3)
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see Fig. 2. Ifa andb are the vertices ofK that lie onE, Lemma 5.3 yields

‖∂xu‖2
0,K � C(hyhz/hx) (u(a)2 + u(b)2) � C

∫ b

a
u2dz,

where for the last inequality we have used (7.3) and standard properties of linear functions.
In a similar way, we find

‖∂yu‖2
0,K � C(1 − σ)−1

∫ b

a
u2dz, ‖∂zu‖2

0,K � C
∫ b

a
u2dz.

Let now E be an edge that touches∂Ω andK ∈ Tk(Ωi ) be an element that shares an edge
with E1−σ . For a face patch,K has dimensions of the order

k−2 × k−2 × k−2(1 − σ),

or

k−2 × k−2 × k−1(1 − σ),

and thus

chx � hy � Chx,

hx � C(1 − σ)−1hz; (7.4)

see Fig. 2, left. As before, Lemma 5.3 yields

‖∂xu‖2
0,K � C

∫ b

a
u2dz, ‖∂yu‖2

0,K � C
∫ b

a
u2dz, ‖∂zu‖2

0,K � C(1 − σ)−2
∫ b

a
u2dz.

We are now left with the case of an elementK ∈ Tk(Ωi ) that shares an edge withEσ . We
note that the first of (7.4) remains valid in this case. We then have

‖∂xu‖2
0,K � C

∫ b

a
u2dz, ‖∂yu‖2

0,K � C
∫ b

a
u2dz.

For ∂zu, we trivially have

‖∂zu‖2
0,K � C(hxhy/hz)(u(a) − u(b))2 � Chxhy

∫ b

a
(∂zu)2dz.

The proof is concluded by summing over the elementsK ∈ Tk(Ωi ) and using Lemma 5.1.
�

Wenow have a bound for the wirebasket component.

COROLLARY 7.2 Let u ∈ Ui and uWi be its wirebasket component. Then there is a
constant independent ofu, Hi , σ andn such that

|uWi |21,Ωi
� C(1 − σ)−2‖u‖2

h,Wi .
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A complementary result is given by the trace estimates in Lemma 7.3. We first
introduce some additional notation. LetE be an edge of a substructureΩi . Without
loss of generality, we assume thatΩi coincides with the reference cubêQ and that
E = {(1, 1, z) | z ∈ I }. The intersection between the plane corresponding to a constant
z ∈ I and Q̂ is the unit squarêS = (−1, 1)2, and the local meshTi gives rise to a two-
dimensional meshT (z) on Ŝwhich is either a two-dimensional edge or corner patch, or it
consists of a single elementŜ; see Fig. 2, right. LetV = (1, 1) be the intersection between
E and the closure of̂S. If KV ∈ T (z) is the two-dimensional element that containsV , we
note that, sinceE does not belong to∂Ω , KV has dimensions in{2, 2(1 − σ)}, and thus
is independent of the level of refinementn. For a fixed(x, y) ∈ K V , we finally define the
edgeE(x, y) = {(x, y, z) | z ∈ I }.
LEMMA 7.3 Letuk ∈ Xi andE and edge ofΩi . Then there is a constant independent of
uk, Hi , σ andn such that

‖uk‖2
0,E � C (1 − σ)−2 (1 + logk) ‖uk‖2

1,Ωi
,

‖uk‖2
h,E � C (1 − σ)−2 (1 + logk) ‖uk‖2

1,Ωi
.

Proof. As before, it is enough to find bounds foru = I huk. Without loss of generality,
we assumeE = {(1, 1, z) | z ∈ I }. We consider the two-dimensional meshT (z) on the
intersection between the plane corresponding to a constantzand the substructure; cf. Fig. 2,
right. Since geometric refinement onT (z) takes place far from the vertex(1, 1), we can
apply the two-dimensional result in Toselli & Vasseur (2003a, Lemma 7.6) and write

|u(1, 1, z)|2 � C (1 − σ)−2 (1 + logk) ‖u(·, ·, z)‖2
1,Ŝ

, z ∈ (−1, 1),

with a constant that is independent ofn, σ andz. Integrating overz then gives

‖u‖2
0,E � C (1 − σ)−2 (1 + logk) ‖u‖2

1,Ωi
,

which proves the first inequality and the second one for edges that do not touch∂Ω .
We now bound‖u‖h,Eσ for an edge that touches the boundary∂Ω . We consider the

one-dimensional GLL meshes for each one of the elements inTE and estimate the single
contributions from the elements of these meshes. Lete be one of these elements of length
hz and end pointsa andb. The edgee belongs to a parallelepipedKe ∈ Tk(Ωi ). We note
that Ke has dimensionshx = hi,x, hy = hi,y, andhz. Sinceu is linear one and trilinear
on Ke, we have

hxhy

∫
e
∂zu

2dz � C
hxhy

hz
(u(a) − u(b))2 � C‖∂zu‖2

0,Ke
,

where, for the last inequality, we have used Lemma 5.3. Summing over the edgese in Eσ

yields

‖u‖2
h,Eσ

� C‖∂zu‖2
0,Ωi

,

which, combined with the first inequality, proves the second bound. �
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The next lemma can be proved using the two-dimensional bound in Toselli & Vasseur
(2003a, Lemma 7.6) and similar arguments as before. We note that it is only valid for
edgesE(x, y) that are not too far fromE and thus not too close to the part ofΩi where
anisotropic refinement takes place.

LEMMA 7.4 Let E be an edge of a substructureΩi which is parallel, say, toz and
intersects the plane corresponding to a constantz in V . Let in additionKV be the element
in the two-dimensional meshT (z) that containsV . Then, for every(x, y) ∈ K V and
uk ∈ Xi ,

‖uk‖2
0,E(x,y) � C (1 − σ)−2 (1 + logk) ‖uk‖2

1,Ωi
, (7.5)

whereC is independent ofuk, σ , n, k, and(x, y), but depends only on the aspect ratio of
Ωi .

Proof. The proof can be carried out as in the previous lemma by using the two-dimensional
result in Toselli & Vasseur (2003a, Lemma 7.6). Indeed, since the point(x, y) belongs to
K V and is thus far from the region where anisotropic refinement takes place, we have

|u(x, y, z)|2 � C (1 − σ)−2 (1 + logk) ‖u(·, ·, z)‖2
1,Ŝ

, z ∈ (−1, 1).

Integration alongz concludes the proof. �

Weend this section with a stability result for vertex and edge components. It is a direct
consequence of (5.1) and of the fact that for a vertex function the modified norm‖ · ‖h,E

coincides with‖ · ‖0,E.

LEMMA 7.5 LetE be an edge of a substructureΩi andV one of its end points. Then, for
everyu ∈ Xi ,

‖uV‖2
h,Wi � C‖u‖2

h,Wi , ‖uE‖2
h,Wi � C‖u‖2

h,Wi , (7.6)

whereC is independent ofu, σ , n, k.

7.2 Face components

We next consider the face contributions of the decomposition (7.1). Bounds for face
contributions on the unrefined patch follow from standard results for spectral elements.
For face, edge and corner patches, we employ cut-off functionsθF for each face and
Lemma 5.2. We note that we need to consider one possible case for faces of the corner
patch, and two for the edge and face patches; cf. Fig. 1. In this section we only consider
the case of an edge patchΩi in full detail, with the edge(1, y, −1), y ∈ I , and the two
adjacent faces in common with∂Ω ; see Fig. 3. The other patches can be dealt with in a
similar way.

As shown in Fig. 3 for the reference cube, the edges that do not lie on∂Ω are denoted
by El , l = 1, . . . , 5, with E5 the edge that does not touch the boundary∂Ω . An edge patch
is further partitioned into three regions. The first step of geometric refinement partitions
Q̂ into four parallelepipeds with dimensions in{2, 2(1 − σ), 2σ }. Let KΩ be the one that
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FIG. 3. Edge patch on the reference cube(−1, 1)3 employed in the proofs of Lemmas 7.6 and 7.7.

contains the boundary edge andKint the one that does not touch∂Ω and contains the inner
edgeE5. The two remaining parallelepipeds are denoted byK 12 andK 34 and they touch
the edgesE1 andE2, andE3 andE4, respectively. The regionKedge is the union ofK 12

andK 34; cf. Fig. 3.
The proof of the following lemma is a modification of those of Casarin (1996,

Lemma 3.3.6) and Toselli & Vasseur (2003a, Lemma 7.7).

LEMMA 7.6 Given a face F j of Ωi that does not lie on∂Ω , there exists a continuous
function θF j , defined onΩi , that is equal to one at the nodal points ofF j

h and zero on

Γi,h \ F j
h , such that ∑

F j ⊂Γi

θF j (x) = 1, x ∈ (Ωi,h ∪ Γi,h) \ Wi
h,

0 � θF j � 1,

|∇θF j | � C/r, in Ωi \ KΩ

|∇θF j | � C/Hi , in KΩ ,

(7.7)

wherer = r (x) is the distance to the closest edge ofΩi that does not lie on∂Ω .

Proof. We only need to construct four functions and we will do that by constructing them
in the three regionsKint , Kedge, andKΩ separately.

We start with the inner regionKint and employ a similar construction as in Casarin
(1996, Lemma 3.3.6). We further partitionΩi into eight parallelepipeds by bisecting
{Kint , K 12, K 34, KΩ } with the planey = 0; see Fig. 3, left. Let the centreC be the
common vertex to these parallelepipeds and{C j , j = 1, . . . , 6} be their vertices that
belong to the six faces ofΩi ; see Fig. 3, right. By connecting the centreC with the centres
C j and with the eight vertices ofΩi , and, for each face, by connecting the pointC j with
the four vertices of this face, we can partitionΩi into 24 tetrahedra; see Fig. 3, right.
By intersecting them withKint , we obtain a partition ofKint into eight tetrahedra. We
first define a functionϑF j associated with the faceF j , defined to be 1/4 at the centreC
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andϑF j (Cl ) = δ j l at the centres of the faces. On the segmentsCCl , these functions are
obtained by linear interpolation of the values atC andCl ; see Fig. 3, right. The values
inside each subtetrahedron formed by the segmentCCl and one edge ofFl are defined to
be constant on the intersection of any plane through that edge, and are given by the value
on the segmentCCl . Wenote that this procedure determinesϑF j at all points inΩi except
on the wirebasketWi .

We next consider the GLL triangulationTk(Ωi ) and interpolateϑF j at the GLL nodes
in K int \ Wi :

θF j (x) = (I hϑF j )(x), x ∈ K int \ Wi .

The functionθF j is set to zero on the nodes inWi
h. The functionsθF j are non-negative and

bounded by one: this proves the second of (7.7) for points inKint . By construction, also
the first of (7.7) holds for every node inK int \ Wi . The third of (7.7) can be proven by
proceeding in the same way as for Casarin (1996, Lemma 3.3.6).

Wenext construct the functionsθF j in Kedge. Westart withK 12. Wetake the values on

the common faceK 12∩ K int and we extend them as constants intoK 12 along the segments
parallel toE1 andE2; see Fig. 3, left. The inequalities in (7.7) remain valid. We note that
the function obtained is independent ofx in K 12. A similar construction is carried out in
K 34.

Finally, we constructθF j in KΩ . We note thatKΩ is divided into two parallelepipeds
and that on their internal faces the functionθF j has already been defined. In addition,
θF j is bilinear on these faces. It is then enough to assign the value 1/4 at the end points
and mid-point of the boundary edge and interpolate these values inKΩ in order to obtain
a piecewise trilinear function. The first, second and fourth of (7.7) follow from standard
properties of trilinear functions. �

By examining the proof of the previous lemma, we see that, for an edgeE that touches
∂Ω , the value of the functionsθF j is independent of the coordinate along the direction of
E in all the elements of the GLL meshes that touchEσ ; cf. Fig. 3, left.

PROPERTY 7.2 LetF be a face ofΩi andE be an edge, parallel to sayz, that touches∂Ω .
In any elementKE ∈ Tk(Ωi ) that shares an edge withEσ the functionθF is independent
of z.

Weare now able to bound the face components in the decomposition (7.1).

LEMMA 7.7 LetθF j be the functions in Lemma 7.6, whereF j is a face of the substructure
Ωi . Then, for everyx ∈ Ωi,h ∪ Γi,h that is not on the wirebasket ofΩi ,∑

j

I k(θF j u)(x) =
∑

j

I h(θF j u)(x) = u(x), u ∈ Xi

and

|I k(θF j u)|21,Ωi
� C (1 − σ)−4

(
1 + log

(
k

1 − σ

))2

||u||21,Ωi
.
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Proof. Weonly consider the case of an edge patchΩi in full detail; see Fig. 3. The proof is
similar to that in Toselli & Vasseur (2003a, Lemma 7.8) and Casarin (1996, Lemma 3.3.7)
but particular care is required close to the edges that touch∂Ω . Indeed, thanks to Lemma
5.1, it is enough to find a bound for the piecewise trilinear functionI h(θF j u).

The first equality follows directly from the first of (7.7). For the second inequality,
we consider an elementK , of dimensionshx, hy, andhz, in the GLL meshTk(Ωi ). We
consider three cases (as opposed to Casarin, 1996, Lemma 3.3.7 where only two cases
are considered):K may belong to the regionKΩ containing the boundary edge, touch the
wirebasket, or may not touch it; see Fig. 3.

Case1. We start with an element that touches an edgeE and does not belong toKΩ . We
can proceed as in Casarin (1996, Lemma 3.3.7) ifE does not touch∂Ω (E = E5) or, in
case it does (E = El , l = 1, . . . , 4), if K does not touchEσ . We only consider the case
of E = E3 in full detail; cf. Fig. 3, left. The nodal values ofI h(θF j u) on K are 0, 0, 0,
0, u(a), u(b), θF j (c)u(c) andθF j (d)u(d), with a andb vertices on a face andc andd
vertices insideΩi . It is immediate to see that

c(1 − σ)hx � hy � C(1 − σ)−1hx,

hx � C(1 − σ)−1hz.
(7.8)

Using Lemma 5.3 and (7.8), we can easily find

|I h(θF j u|21,K � C(1 − σ)−2hz (u(a)2 + u(b)2 + u(c)2 + u(d)2)

� C(1 − σ)−2
(∫ b

a
u2dz +

∫ d

c
u2dz

)
,

where we have also used the fact thatθF j has values between zero and one. Summing over
the elementK and using in Lemma 7.4 for segments that are parallel toE gives∑

K

|I h(θF j u)|21,K � C (1 − σ)−4 (1 + logk) ‖u‖2
1,Ωi

,

where the sum is taken over the elements inTk(Ωi ) that touch an edgeE, such thatE does
not touch∂Ω or, if it does,K does not touchEσ .

We next consider the case whereK shares an edge withEσ . The terms involving the
x and y derivatives can be bounded as before: indeed, the first of (7.8) still holds in this
case. However, the second of (7.8), needed to bound thez derivative, does not hold. Using
Lemma 5.3 we find

‖∂zI h(θF j u)‖2
0,K � C(hxhy/hz)

(
(u(a) − u(b))2 + (θF j (c)u(d) − θF j (d)u(d))2

)
.

Property 7.1 ensures thatθF j (c) = θF j (d) and thus

‖∂zI h(θF j u)‖2
0,K � C‖∂z(θF j u)‖2

0,K .

Summing over the elementsK that touchEσ gives∑
K

‖∂z(I h(θF j u)‖2
0,K � C ‖∂z(θF j u)‖2

0,Ωi
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and thus ∑
K∩Wi =∅

|I h(θF j u)|21,K � C (1 − σ)−4 (1 + logk) ‖u‖2
1,Ωi

. (7.9)

Case2. We now consider an elementK ∈ Tk(Ωi ) that does not touch the wirebasket
and does not belong toKΩ . The proof for this case is similar to that of Casarin (1996,
Lemma 3.3.7). Using Lemma 5.2 and the second of (7.7), we have∑

K⊂Ωi \KΩ
K∩Wi =∅

|I h(θF j u)|21,K � C
∑

K

(|u|21,K + r −2
K ‖u‖2

0,K ),

wherer K is the distance of the baricentre ofK from the wirebasket. We have∑
K

r −2
K ‖u‖2

0,K � C
∫

Kint∪K 12∪K 34

r −2u2dx

� C
∫

Kint

r −2
5 u2dx + C

2∑
j =1

∫
K 12∪Kint

r −2
j u2dx + C

4∑
j =3

∫
K 34∪Kint

r −2
j u2dx,

wherer j denotes the distance of a point from the edgeE j , and the region consisting of the
elements in the GLL meshTk(Ωi ) that touch the wirebasket is assumed to be excluded from
the domains of integration; cf. Fig. 3, left. Each of the integrals on the right, associated with
an edgeE = E j , can be estimated using cylindrical coordinates with theζ axis coinciding
with E j and the radial directionr j normal toE j . Weonly considerE5 in detail; cf. Fig. 3.
The other integrals can be estimated in the same way. If the pointV is the intersection
betweenE5 and the section corresponding to a fixedζ , and KV is the element of the
two-dimensional meshT (ζ ) that containsV , wecan write

∫
Kint

r −2
5 u2dx � C

∫
KV

r −2
5 dxdy

1∫
−1

u2dζ

� C(1 − σ)−2(1 + logk)‖u‖2
1,Ωi

∫
KV

r −2
5 dxdy,

where we have used Lemma 7.4 for the last inequality; cf. Fig. 2, right. The last integral
can be estimated by∫

KV

r −2
5 dxdy � C

∫ 2

k−2(1−σ)

r −1
5 dr5

∫ 2π

0
dφ � C

(
1 + log

(
k

1 − σ

))
.

Considering similar contributions for the other edges, we then find

∑
K⊂Ωi \KΩ
K∩Wi =∅

|I h(θF j u)|21,K � C|u|21,Ωi
+ C(1 − σ)−2

(
1 + log

(
k

1 − σ

))2

‖u‖2
1,Ωi

.

(7.10)
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FIG. 4. The cross sections of an edge and a face patch, or a corner and an edge patch, with a common faceF .

Case3. We are now left with the caseK ⊂ KΩ . Since, in this case,|∇θF j | is bounded by
aconstant, Lemma 5.2 ensures∑

K⊂KΩ

|I h(θF j u)|21,K � C ‖u‖2
1,Ωi

.

The proof is concluded by combining this inequality with (7.9) and (7.10), and applying
Lemma 5.1. �

8. Comparison results

In the analysis of many iterative substructuring methods, it is necessary to compare certain
norms of discrete harmonic functions on different substructures that have the same trace
on a common face, edge or vertex.

As already pointed out in Toselli & Vasseur (2003a), if the local meshes are shape-
regular and quasi-uniform, the comparison for functions on adjacent substructures that
have the same value on a common face can be made using a trace theorem (which is valid
for general functions inH1) and a stable extension from the face. However, the existence of
stable extensions for meshes that are not quasi-uniform or shape-regular is far from trivial.
For this reason, here we will adopt the same strategy as in Toselli & Vasseur (2003a), since
the meshes considered are highly anisotropic but of a particular type.

Wenote that we only need to consider three cases: that of a face shared by an unrefined
and a face patch, by a face and an edge patch, and by an edge and a corner patch. We
only consider the last two cases in full detail, since the former can be treated in exactly the
same way. We consider the two substructuresΩi andΩ j in Fig. 4, which share the face
F . Since we proceed in exactly the same way as in Toselli & Vasseur (2003a, Section 7.3),
we do not present any proof here. We first considerΩi and suppose that it coincides with
the reference cubêQ. The faceF corresponds tox = 1. LetΩF be the layer of points in
Ωi within a distance 2(1 − σ) from F .

The following lemma can be proven in the same way as Toselli & Vasseur (2003a,
Lemma 7.9).

LEMMA 8.1 LetuF ∈ Ui be a face function onΩi , i.e. a discrete harmonic function that
vanishes on∂Ωi \ F , andũF ∈ Xi , such that
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1. ũF is equal touF on F and vanishes on∂ΩF \ F ;
2. ũF is discrete harmonic inΩF ;
3. ũF vanishes inΩi \ ΩF .

Then

|uF |21,Ωi
� |ũF |21,Ωi

� ‖∇θσ,F‖2∞ |uF |21,Ωi
,

whereθσ,F ∈ W1,∞(Ωi ) is any function that is equal to one onF , vanishes inΩi \ ΩF ,
and has values in(0, 1) in the rest ofΩi . In particular, we can find a function such that

‖∇θσ,F‖∞ � C(1 − σ)−1.

The comparison result for face functions can be then found by noting that we can map
Ω j and its mesh intoΩF and the corresponding local mesh, by a simple dilation in the
horizontal direction.

COROLLARY 8.2 LetF be a face that is common toΩi andΩ j anduF ∈ U be a piecewise
discrete harmonic function that is identically zero at all nodal points inΓh \ Fh . Then,

c (1 − σ) |uF |21,Ωi
� |uF |21,Ω j

� C(1 − σ)−1 |uF |21,Ωi
.

For vertex and edge functions the following lemma is sufficient for our analysis.

LEMMA 8.3 Let Ωi andΩ j be two substructures andu ∈ X. If V = Vi = V j is a
common vertex, then the vertex components ofu satisfy

‖uV j ‖2
h,W j � C(1 − σ)−1‖uVi ‖2

h,Wi .

If E = Ei = E j is a common edge, then the edge components ofu satisfy

‖uE j ‖2
h,W j � C(1 − σ)−2‖uEi ‖2

h,Wi .

Proof. For the first inequality, we note that the modified norms‖ · ‖h,Wi and‖ · ‖h,W j

coincide with theL2 norms, since a vertex function vanishes at all nodal points inΓh

except at that vertex and we only consider internal vertices. It is enough to compare a
contribution from an edgeE j of Ω j with that of an edgeEi of Ωi . The worst possible
case occurs whenE j does not touch∂Ω but Ei does; cf. Fig. 4. Letφ(ẑ) be the function
in Qk(I ) that vanishes at all the GLL nodes inI , except at−1 where it is equal tou(V).
Using the change of variablesz = (1− σ)(ẑ+ 1)− 1 and the fact thatuVi vanishes inEi

σ ,
we have∫

E j
uV j (ẑ)2dẑ =

∫ 1

−1
φ(ẑ)2dẑ = (1 − σ)−1

∫ −1+2(1−σ)

−1
φ(z)2dz

= (1 − σ)−1
∫

Ei
1−σ

uVi (z)2dz = (1 − σ)−1
∫

Ei
uVi (z)2dz.

For the second inequality, it is enough to use the definition of the modified norms‖ · ‖h,Wi

and‖ · ‖h,W j and Property 7.1 �
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9. Proof of Assumption 6.1

We are now ready to give an upper bound forω in Assumption 6.1. Our proof is similar
to that in Pavarino (1998, Lemma 9.1). We note that ifui ∈ Ui , its extensionu = RT

i ui

vanishes onΓh except at the nodal points inΓi,h and its support is thus contained in the
union of Ωi and its neighbouring substructures. In order to estimateω we thus have to
estimate the energy ofu in these substructures in terms of the energy ofHi (δi ui ) in Ωi

alone.
Wefirst note that, by simple calculation, we have

ρ j (δ
†
i (x))2 = ρ j δi (x)−2 � min{ρi , ρ j }, x ∈ Γi,h, j ∈ Nx. (9.1)

Let ui ∈ Range(P̃i ). We start with a substructureΩ j that only has a vertexV = Vi =
V j in common withΩi . We note that, according to the decomposition (7.2),u has only a
wirebasket componentuV j = u on Ω j , which vanishes at all nodes inΓ j,h except atV .
Using Lemma 7.1, we find

aj (u, u) = ρ j |uV j |21,Ω j
� C ρ j (1 − σ)−2 ‖uV j ‖2

h,W j

= C ρ j δ−2
i,V (1 − σ)−2 ‖δi uV j ‖2

h,W j ,

whereδi,V = δi (V). We next note that, thanks to Lemma 8.3, the norm‖·‖h,W j associated
with Ω j can be bounded by‖ · ‖h,Wi . In addition, we can apply Lemmas 7.5 and 7.3 and
find

ρi ‖δi uV j ‖2
h,W j � C(1 − σ)−1ρi ‖(δi ui )Vi ‖2

h,Wi � C(1 − σ)−1ρi ‖Hi (δi ui )‖2
h,Wi

� C(1 − σ)−3(1 + logk) ρi ‖Hi (δi ui )‖2
1,Ωi

= C(1 − σ)−3(1 + logk) (ai (Hi (δi ui ),Hi (δi ui )) + ρi H−2
i ‖Hi (δi ui )‖2

0,Ωi
).

The L2 component in the last term can be bounded by the local bilinear formai (·, ·),
thanks to a Poincaré inequality for floating subdomains (cf. (6.9)), or thanks to a Friedrichs
inequality for substructures that touch∂Ω . Combining these two estimates and using (9.1),
we find

aj (u, u) = aj (uV j , uV j ) � C(1 − σ)−5(1 + logk) ai (Hi (δi ui ),Hi (δi ui )). (9.2)

We next consider a substructureΩ j that only has an edgeE = Ei = E j in common
with Ωi , with verticesV j 1 = Vi 1 and V j 2 = Vi 2. We note that, according to the
decompositions (7.1) and (7.2),u has only a wirebasket component onΩ j ,

u = uW j = uV j 1 + uV j 2 + uE j ,

which vanishes at all nodes inΓ j,h except at those on the closureE j . We then have

aj (u, u) � 3aj (uV j 1, uV j 1) + 3aj (uV j 2, uV j 2) + 3aj (uE j , uE j ).

For the two vertex components, we can proceed as before and find similar bounds to (9.2).
For the edge component, we use Lemma 7.1, the definition of‖ · ‖h,E j and the fact thatδi
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is constant at all the nodal points inEh. We find

aj (uE j , uE j ) = ρ j |uE j |21,Ω j
� C

ρ j

(1 − σ)2
‖uE j ‖2

h,E j � C
ρ j δ−2

i,E

(1 − σ)2
‖δi uE j ‖2

h,E j ,

whereδi,E is the constant value ofδi on E. Thanks to Lemma 8.3, the norm‖ · ‖h,E j

associated withΩ j can be bounded by‖ · ‖h,Ei . In addition, we can apply Lemmas 7.5 and
7.3 and find

ρi ‖δi uE j ‖2
h,E j � C(1 − σ)−2ρi ‖(δi ui )Ei ‖2

h,Ei � C(1 − σ)−2ρi ‖Hi (δi ui )‖2
h,Ei

� C(1 − σ)−4(1 + logk) ρi ‖Hi (δi ui )‖2
1,Ωi

= C(1 − σ)−4(1 + logk) (ai (Hi (δi ui ),Hi (δi ui )) + ρi H−2
i ‖Hi (δi ui )‖2

0,Ωi
).

As before, theL2 component in the last term can be bounded by the local bilinear form
ai (·, ·), thanks to a Poincaré or aFriedrichs inequality. Combining these two estimates and
using (9.1), we find

aj (uE j , uE j ) � C(1 − σ)−6(1 + logk) ai (Hi (δi ui ),Hi (δi ui )). (9.3)

We next consider a substructureΩ j that shares a faceF and thus also the edges and
vertices that lie on∂F . Wenote that onΩ j , u can be decomposed as

u = uW j + uF .

We have

aj (u, u) = ρ j |u|21,Ω j
� 2ρ j (|uW j |21,Ω j

+ |uF |21,Ω j
).

The wirebasket component can be bounded as before; cf. (9.2) and (9.3). For the face
component we first note that the functionδi is equal to a constant valueδi,F at all nodal
points insideF . Using (9.1), we can then write

ρ j |uF |21,Ω j
= ρ j δ

−2
i,F |H j (δi uF )|21,Ω j

� ρi |H j (δi uF )|21,Ω j
.

Using Corollary 8.2 and Lemma 7.7 yields

|H j (δi uF )|21,Ω j
� C(1 − σ)−1|Hi (δi uF )|21,Ωi

� C(1 − σ)−5
(

1 + log

(
k

1 − σ

))2

||u||21,Ωi
.

Combining the last two estimates and using a Poincaré or aFriedrichs inequality, we find

aj (uF , uF ) � C (1 − σ)−5
(

1 + log

(
k

1 − σ

))2

ai (Hi (δi u),Hi (δi u)). (9.4)

Wefinally need to consider the energy ofu in Ωi , ai (u, u). Wenote that we can decompose
u on Ωi according to (7.1). The wirebasket and the face components can be bounded as
before. Summing overi and the neighbouring subdomains, we then find

a(u, u) � C

(1 − σ)6

(
1 + log

(
k

1 − σ

))2
(∑

Vi j

1 +
∑
Ei j

1 +
∑
Fi j

1

)
ai (Hi (δi u),Hi (δi u)).
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TABLE 1 Balancing Neumann–Neumann algorithm

1. Initialize
u0 = RT

0 S−1
0 R0gΓ + w̃, w̃ ∈ Range(I − P0)

q0 = gΓ − S u0

2. Iteratej = 1, 2, . . . until convergence

Project: w j −1 = (I − PT
0 )qj −1

Precondition: zj −1 =
N∑

i =1
RT

i Di S†
i Di Ri w j −1

Project: yj −1 = (I − P0)zj −1

β j = 〈yj −1, w j −1〉/〈yj −2, w j −2〉 [β1 = 0]
pj = yj −1 + β j pj −1 [p1 = y0]
α j = 〈yj −1, w j −1〉/〈pj , S pj 〉
u j = u j −1 + α j pj

qj = qj −1 − α j S pj

Since the partitionTm is shape-regular, the number of subdomains to which an edge or a
vertex may belong is bounded. We finally obtain

ω � C (1 − σ)−6
(

1 + log

(
k

1 − σ

))2

.

Since in practiceσ is bounded away from one, we obtain the same bound as for Neumann–
Neumann methods forp finite-element approximations on shape-regular meshes

κ(PN N) � C (1 + logk)2;
(see e.g. Pavarino, 1997). We stress the fact that the constants in the last two estimates are
independent of the coefficientsρi and the refinement leveln (and thus of the aspect ratio
of the meshT n,σ

bl ).

10. Numerical results

The purpose of this section is to present two numerical experiments in order to validate
our analysis on some medium-size problems. A more detailed and thorough study will be
presented in Toselli & Vasseur (2003b).

The balancing Neumann–Neumann method of Section 6 can be implemented as a
projected preconditioned conjugate gradient algorithm and is shown in Table 1 (see Toselli
& Vasseur, 2003c for more details). In this table〈·, ·〉 denotes the Euclidean inner product.

It is easy to show thatw j = qj thanks to the choice of the initial guess, and the first
projection step can therefore be omitted. In addition, the application of the pseudoinverses
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S†
i can be carried out by applying the pseudoinverses of the original matricesA(i ), cf. (6.1),

which amounts to solving local Neumann problems on the substructures (see Smithet al.,
1996, Section 4.2.1 for details). The total amount of work for each step consists of the
solution of one coarse problem (application ofS−1

0 ), one Neumann problem (application

of S†
i ) and two Dirichlet problems (application ofS for P0 and for the calculation of the

new search direction) on each subdomain. The most expensive parts of the methods are the
factorizations of the local matricesA(i ) and A(i )

I I , and of the globalS0. The matricesA(i )

andA(i )
I I have roughly the same size.

Weremark that the amount of work per step of the unpreconditioned conjugate gradient
algorithm for the Schur complement system (6.2) amounts to solving one Dirichlet problem
on each substructure (one application ofS for the calculation of the new search direction).
The rate of convergence however deteriorates very fast with the problem size. A more
detailed numerical study on the performance and cost of our algorithm will be performed
in Toselli & Vasseur (2003b).

Our first numerical experiment targets the efficiency of the Neumann–Neumann
preconditioner for a Laplace problem defined on a boundary layer mesh (corner
refinement), whereas the second one is a standard domain decomposition test case defined
on a uniform mesh. In both experiments, the conjugate gradient iteration is stopped after a
reduction of the Euclidean norm of the initial residual of 10−14 and homogeneous Dirichlet
boundary conditions have been used.

10.1 Laplace problem on a boundary layer mesh

We consider approximations on the unit cubeΩ = (0, 1)3. We chooseρ ≡ 1 and the
right-hand sidef ≡ 1. The macromeshTm consists ofN × N × N cubic substructures.
Geometric refinement is performed towards the three edgesx = 0, y = 0, andz = 0, with
σ = 0·5; see Fig. 5, left. Given a polynomial degreek, we choosen = k as is required for
robust exponential convergence (see e.g. Anderssonet al., 1995; Babǔska & Guo, 1996).

We note that even for moderate values ofk andN, extremely large linear systems are
obtained; cf. Tables 2 and 3. Huge local blocks need to be inverted, both for the application
of S (solution of local Dirichlet problems) and the preconditioner (solution of local
Neumann problems). Due to memory limitations in our Matlab implementation, direct
solvers could not always be employed and thus we have employed approximate solvers
for local Dirichlet and Neumann problems. We refer to Smithet al.(1996, Section 4.4) for
details on the implementation. In particular, we have used a conjugate gradient iteration
with an incomplete Cholesky factorization with drop tolerance 10−3 for all local problems.
The iteration is stopped after a reduction of the initial residual of a factor 10−3 or after 20
iteration steps. In the sequel, we denote by NN (inexact) the resulting balancing Neumann–
Neumann method with this strategy for the approximate solvers. An exact variant denoted
by NN (exact) is derived, when solving all the local subproblems now up to machine
precision with the same iterative solver as in the inexact case. Our numerical results show
that the theoretical bounds for the case of exact solvers in Lemma 6.2 remain valid in this
case; cf. Tables 2 and 3.

For a fixed partition into substructures withN = 3, Table 2 shows the size of the
original problem, the iteration count, the estimated maximum and minimum eigenvalues,
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FIG. 5. Geometric refinement towards one corner (N = 3, σ = 0·5, andn = 6), left, and estimated condition
numbers (circles) from Table 2 (inexact variant) and least-square second-order logarithmic polynomial fit (solid
line) versusk, right.

TABLE 2 Conjugate gradient method for the global system with Neumann–Neumann
preconditioner with inexact and exact solvers: iteration counts, maximum and minimum
eigenvalues, and condition numbers, versus the polynomial degree, for the case of a fixed
partition. The size of the original problem is also reported. Fixed number of subdomains
(N = 3)

NN (inexact) NN (exact)

k Size It λmax λmin κ It λmax λmin κ

2 1331 15 1·8379 1 1·8379 13 1·6255 1·00002 1·6255
3 6859 20 2·8165 0·99997 2·8166 18 2·8165 1·00001 2·8161
4 24389 25 3·9507 0·99947 3·9528 21 3·9506 1·00002 3·9498
5 68921 29 5·1507 0·99799 5·1611 25 5·1507 1·00002 5·1493
6 166375 34 6·3675 0·99801 6·3803 28 6·3675 1·00002 6·3658
7 357911 38 7·5082 0·99395 7·5540 32 7·5067 1·00002 7·5065
8 704969 40 8·5298 0·99574 8·5663 34 8·5064 1·00002 8·5062

and the condition number for different values ofk for both inexact and exact variants. We
note that the minimum eigenvalue is close to one when using inexact solvers; see Lemma
6.2. In addition, a moderate growth of the maximum eigenvalue is observed withk; such
growth is consistent with the quadratic bound in Lemma 6.3; see Fig. 5, right. Using inexact
solvers for the local subproblems induces a moderate increase of number of iterations.
Nevertheless, quite satisfactory condition numbers are still obtained, see Table 2.

We next consider the same problem, and fix the polynomial degreek = 4. Table 3
shows the results for different values ofN. In both variants, the iteration counts, and
the smallest and largest eigenvalues appear to be bounded independently of the number
of subdomains. We note that when the number of subdomains increases, the number
of iterations to reach the convergence criterion for both variants is nearly identical.
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TABLE 3 Conjugate gradient method for the global system with Neumann–Neumann
preconditioner with inexact and exact solvers: iteration counts, maximum and minimum
eigenvalues, and condition numbers, versus the number of substructures, for the case of
a fixed polynomial degree and partitions into N× N × N substructures. The size of the
original problem is also reported. Fixed spectral degree k= 4

NN (inexact) NN (exact)

N Size It λmax λmin κ It λmax λmin κ

2 15625 18 2·6417 0·99929 2·6436 15 2·6412 1·0003 2·6406
3 24389 25 3·9507 0·99947 3·9528 21 3·9506 1·0002 3·9498
4 35937 28 4·1084 0·99934 4·1111 25 4·1082 1·0002 4·1074
5 50653 29 4·1378 0·99940 4·1402 26 4·1375 1·0002 4·1369
6 68921 30 4·1492 0·99945 4·1515 28 3·5746 1·0002 3·5741
7 91125 30 4·1555 0·99952 4·1575 28 3·6133 1·0001 3·6128
8 117649 30 4·1593 0·99955 4·1612 29 3·6289 1·0001 3·6284
9 148877 30 4·1618 0·99962 4·1634 29 3·6475 1·0001 3·6470
10 185193 30 4·1636 0·99970 4·1648 29 3·6582 1·0001 3·6577

Nevertheless, the difference on the condition number estimates is more pronounced than
in Table 2.

10.2 Laplace problem with jump coefficients

The theoretical bound for the condition number in Lemma 6.3 is independent of arbitrary
jumps on the coefficients between the substructures. The purpose of this numerical
experiment is to check this property. In consequence, the coefficientρ possibly changes
between the substructures by orders of magnitudes. The right-hand side isf ≡ 1. Given a
partition ofΩ = (0, 1)3 into N × N × N cubic substructures (T = Tm = N × N × N),
a checkerboard distribution on this partition is considered forρ which is equal to either
ρ1 or ρ2 as in Mandel & Brezina (1996). Inexact solvers for the Dirichlet and Neumann
problems have been considered.

For a fixed partition into substructures withN = 3 and for fixed jumps between the
substructures withρ1 = 10−3 andρ2 = 103, we have investigated the behaviour of the
condition number of the preconditioned operator versus the polynomial degreek. This
behaviour is shown in Fig. 6 and is consistent with the quadratic bound in Lemma 6.3.

For a fixed partition into substructures withN = 3 and for a fixed polynomial degree
k = 4, we have investigated the influence of the jumpρ2/ρ1 on the convergence behaviour
of the balancing Neumann–Neumann method.ρ1 is fixed to 1, whereasρ2 is varying from 1
to 106. A checkerboard distribution has also been used. The results are presented in Table 4.
The number of preconditioned CG iterations in order to satisfy the stopping criterion is
bounded independently of the ratioρ2/ρ1, in agreement with the bound for the case of
exact solvers in Lemma 6.3.
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FIG. 6. Laplace problem with jump coefficients. Case ofρ1 = 10−3 andρ2 = 103. Fixed partition 3× 3 × 3.
Estimated condition numbers (circles) and least-square second order logarithmic polynomial (solid line) versus
the spectral degree for the balancing Neumann–Neumann method (inexact variant).

TABLE 4 Laplace problem with jump coefficients.
Case of k = 4 and ρ1 = 1. Conjugate
gradient method for the global system with balanc-
ing Neumann–Neumann method (inexact solvers):
iteration counts, maximum and minimum eigen-
values, and condition numbers versusρ2. Fixed
number of subdomains (N= 3)

NN (inexact)

ρ2 It λmax λmin κ

1 15 2·1153 1 2·1153
10 15 2·1185 0·99999 2·1186
102 15 2·0370 1 2·0370
103 14 2·0262 1 2·0262
104 14 2·0251 0·99991 2·0253
105 17 2·0275 0·96406 2·1031
106 16 2·0266 0·98234 2·0630

11. Concluding remarks

As for the analysis in Toselli & Vasseur (2003a), some important issues still need to be
addressed. We refer to our previous work for a full discussion of these issues.

Our analysis is restricted to approximations that employ nodal basis functions on
the Gauss–Lobatto nodes. Indeed, for three-dimensional shape-regular meshes good
performance of iterative substructuring methods is in general ensured only if these
basis functions are employed and for more generalp or hp version finite-element
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approximations many important issues remain to be solved even for shape-regular meshes
(see e.g. Sherwin & Casarin, 2001 and the references therein).

The Dirichlet and Neumann problems that we need to solve (Si and S†
i ) can

be potentially very large. Approximate local solvers can be employed for iterative
substructuring methods (see e.g. Smithet al., 1996; Klawonn & Widlund, 2000) and some
have been proposed in Korneevet al. (2002) for hp-approximations. In our numerical
experiments, we have employed a conjugate gradient iteration with an incomplete Choleski
preconditioner. However, we believe that the tensor product structure of corner, edge and
face patches can be exploited. This is left to a future work.

Webelieve that the analysis and/or the development of iterative substructuring methods
for general meshes with hanging nodes still need to be fully addressed. These meshes are
widely used in practice. There is no straightforward way of defining Neumann–Neumann
or FETI algorithms when hanging nodes lie on the interfaceΓ (see Toselli & Vasseur,
2003a, Remark 6.1 for more details).

Finally, our analysis has been carried out for the model problem (2.1), which indeed
does not exhibit boundary layers. As for the two-dimensional problems in Toselli &
Vasseur (2003a,c), numerical results show that our algorithms are robust when applied
to certain singularly perturbed problems. Extensive numerical results will be presented in
Toselli & Vasseur (2003b).
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Numerische Mathematik.

TOSELLI, A. & VASSEUR, X. (2003b) A numerical study on Neumann–Neumann and
FETI methods for hp-approximations on geometrically refined boundary layer meshes II.Three-
dimensional problems, in preparation.

TOSELLI, A. & VASSEUR, X. (2003c) A numerical study on Neumann–Neumann and FETI methods
for hp-approximations on geometrically refined boundary layer meshes in two dimensions.
Technical Report02–20, (Seminar f̈ur Angewandte Mathematik, ETH, Zürich, 2002). To appear
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WITH INNER ORTHOGONALIZATION AND DEFLATED
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Abstract. This work is concerned with the development and study of a minimum residual norm
subspace method based on the generalized conjugate residual method with inner orthogonalization
(GCRO) method that allows flexible preconditioning and deflated restarting for the solution of non-
symmetric or non-Hermitian linear systems. First we recall the main features of flexible generalized
minimum residual with deflated restarting (FGMRES-DR), a recently proposed algorithm of the
same family but based on the GMRES method. Next we introduce the new inner-outer subspace
method named FGCRO-DR. A theoretical comparison of both algorithms is then made in the case of
flexible preconditioning. It is proved that FGCRO-DR and FGMRES-DR are algebraically equiva-
lent if a collinearity condition is satisfied. While being nearly as expensive as FGMRES-DR in terms
of computational operations per cycle, FGCRO-DR offers the additional advantage to be suitable for
the solution of sequences of slowly changing linear systems (where both the matrix and right-hand
side can change) through subspace recycling. Numerical experiments on the solution of multidimen-
sional elliptic partial differential equations show the efficiency of FGCRO-DR when solving sequences
of linear systems.

Key words. flexible or inner-outer Krylov subspace methods, variable preconditioning, defla-
tion, iterative solver
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1. Introduction. In recent years, several authors studied inner-outer Krylov
subspace methods that allow variable preconditioning for the iterative solution of
large sparse linear systems of equations. One of the first papers describing a sub-
space method with variable preconditioning is due to Axelsson and Vassilevski, who
proposed the generalized conjugate gradient method [1]. See also [2, section 12.3] for
additional references. Since then, numerous methods have been proposed to address
the symmetric, nonsymmetric, or non-Hermitian cases; these include flexible conjugate
gradient [20], flexible GMRES (FGMRES) [24], flexible QMR [31], and GMRESR [34],
among others. This class of methods is required when preconditioning with a different
(possibly nonlinear) operator at each iteration of a subspace method is considered.
This notably occurs when adaptive preconditioners using information obtained from
previous iterations [3, 14] are used or when inexact solutions of the preconditioning
system using, e.g., adaptive cycling strategy in multigrid [19] or approximate interior
solvers in domain decomposition methods [32, section 4.3] are considered. The latter
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situation is frequent when solving very large systems of linear equations resulting from
the discretization of partial differential equations in three dimensions. Thus flexible
Krylov subspace methods have gained a considerable interest in the recent years and
are the subject of both theoretical and numerical studies [27]. We refer the reader to
[29, section 10] for additional comments on flexible methods.

When nonvariable preconditioning is considered, the full GMRES method [23] is
often chosen for the solution of nonsymmetric or non-Hermitian linear systems be-
cause of its robustness and its minimum residual norm property [26]. Nevertheless to
control both the memory requirements and the computational cost of the orthogonal-
ization scheme, restarted GMRES is preferred; it corresponds to a scheme where the
maximal dimension of the approximation subspace is fixed. It means in practice that
the orthonormal basis built is thrown away at the end of the cycle. Since some infor-
mation is discarded at the restart, the convergence may stagnate and is expected to be
slower compared to full GMRES. Nevertheless to retain the convergence rate a num-
ber of techniques have been proposed; they fall in the class of augmented and deflated
methods; see, e.g., [4, 10, 11, 16, 25]. Deflated methods compute spectral informa-
tion at a restart and use this information to improve the convergence of the subspace
method. One of the most recent procedures based on a deflation approach is GMRES
with deflated restarting (GMRES-DR) [18]. This method reduces to restarted GM-
RES when no deflation is applied, but may provide a much faster convergence than
restarted GMRES for well-chosen deflation spaces as described in [18].

Quite recently a new minimum residual norm subspace method based on GMRES
allowing deflated restarting and variable preconditioning has been proposed in [15]. It
mainly attempted to combine the numerical features of GMRES-DR and the flexibil-
ity property of FGMRES. Numerical experiments in [15] have shown the efficiency of
FGMRES with deflated restarting (FGMRES-DR) on both academic and industrial
examples. In this paper we study a new minimum residual norm subspace method
based on the generalized conjugate method with inner orthogonalization (GCRO) [9]
allowing deflated restarting and variable preconditioning. It is named flexible gener-
alized conjugate residual method with inner orthogonalization and deflated restarting
(FGCRO-DR) and can be viewed as an extension of GCRO-DR [22] to the case of
variable preconditioning. A major advantage of FGCRO-DR over FGMRES-DR is
its ability to solve sequences of linear systems (where both the left- and right-hand
sides can change) through recycling [22]. In [22] Parks et al. mentioned that GCRO-
DR and GMRES-DR were algebraically equivalent, i.e., both methods produce the
same iterates in exact arithmetic when solving the same given linear system starting
from the same initial guess. When variable preconditioning is considered, it seems
therefore natural to ask whether FGCRO-DR and FGMRES-DR could also be alge-
braically equivalent. We address this question in this paper, and the main theoretical
developments that are proposed will help us to answer this question. The main
contributions of the paper are then twofold. First we prove that FGCRO-DR and
FGMRES-DR can be considered algebraically equivalent if a collinearity condition
between two certain vectors is satisfied at each cycle. When considering nonvari-
able preconditioning, these theoretical developments will also allow us to show the
algebraic equivalence between GCRO-DR and GMRES-DR that was stated without
proof in [22]. Second we carefully analyze the computational cost of FGCRO-DR and
show that the proposed method is nearly as expensive as FGMRES-DR in terms of
operations per cycle. Furthermore it is explained how to include subspace recycling
into FGCRO-DR, and numerical experiments are reported showing the efficiency of
FGCRO-DR.
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This paper is organized as follows. In section 2 we introduce the general back-
ground of this study. We briefly recall the main properties of FGMRES-DR and then
introduce the FGCRO-DR method both from a mathematical and an algorithmic
point of view. Section 3 is mainly devoted to the analysis of both flexible methods.
Therein we show that both methods can be algebraically equivalent in the flexible
case if a certain collinearity condition is satisfied at each cycle. In section 4 we com-
pare FGCRO-DR and FGMRES-DR in terms of computational operations per cycle
and storage and discuss the solution of sequences of linear systems through subspace
recycling. Finally we draw some conclusions and perspectives in section 5.

2. Flexible Krylov methods with restarting.

2.1. General setting.
Notation. Throughout this paper we denote by ‖.‖ the Euclidean norm, by Ik ∈

Ck×k the identity matrix of dimension k, and by 0i×j ∈ Ci×j the zero rectangular
matrix with i rows and j columns. Given N ∈ Cn×m, ΠN⊥ = In − N N † will
represent the orthogonal projector onto range(N)⊥, where the superscript † refers
to the Moore–Penrose inverse. Finally, given Zm = [z1, . . . , zm] ∈ Cn×m, we will
usually decompose Zm into two submatrices defined as Zk = [z1, . . . , zk] ∈ C

n×k and
Zm−k = [zk+1, . . . , zm] ∈ Cn×(m−k).

Setting. We focus on minimum residual norm based subspace methods that allow
flexible preconditioning for the iterative solution of

(2.1) Ax = b, A ∈ C
n×n, x, b ∈ C

n,

given an initial vector x0 ∈ Cn. In this paper A is supposed to be nonsingular.
Flexible methods refer to a class of methods where the preconditioner is allowed to
vary at each iteration. We refer the reader to, e.g., [29] for a general introduction
on Krylov subspace methods and to [29, section 10] and [26, section 9.4] for a review
on flexible methods. The minimum residual norm GMRES method [23] has been
extended by Saad [24] to allow variable preconditioning. The resulting algorithm
known as FGMRES(m) relies on the Arnoldi relation

(2.2) AZm = Vm+1H̄m,

where Zm ∈ Cn×m, Vm+1 ∈ Cn×(m+1) has orthonormal columns and H̄m ∈ C(m+1)×m

is upper Hessenberg. We denote by Mj the preconditioning operator at iteration j
and remark that Mj may be a nonlinear preconditioning function. We will then
denote by Mj(v) the action of Mj on a vector v. In (2.2), the columns of Vm+1 form
an orthonormal basis of the subspace spanned by the vectors

{r0, Az1, . . . , Azm} with r0 = b−Ax0,

whereas Zm = [z1, . . . , zm] and Vm = [v1, . . . , vm] are related by

Zm = [M1(v1), . . . ,Mm(vm)] with v1 =
r0

‖r0‖ .

At the end of the cycle an approximate solution xm ∈ Cn is then found by minimizing
the residual norm ‖r0 −AZmy‖ over the space x0 + range(Zm). Thus we obtain that

xm = x0 + Zmy∗,

where y∗ is the solution of the following least-squares problem of size (m+ 1)×m:

y∗ = argminy∈Cm‖r0 −AZmy‖ = argminy∈Cm‖‖r0‖ e1 − H̄my‖,
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where e1 is the first canonical vector of C
m+1. Flexible subspace methods with restart-

ing are based on a procedure where the construction of the subspace is stopped after
a certain number of steps (denoted by m in this paper with m < n). The method
is then restarted mainly to control both the memory requirements and the cost of
the orthogonalization scheme. In FGMRES(m) the restarting consists in taking as an
initial guess the last iterate of the cycle (xm).

The main focus of this paper is to present minimum residual norm subspace
methods with deflated restarting that allow flexible preconditioning. Deflated restart-
ing aims at determining an approximation subspace of dimension m as a direct sum
of two subspaces of smaller dimension, where one of these subspaces will contain rele-
vant spectral information that will be kept for the next cycle. We refer the reader to,
e.g., [25] and [29, section 9] for a review of augmented and deflated methods. Flexible
methods with deflated restarting will notably satisfy the following flexible Arnoldi
relation:

(2.3) AZm = Vm+1H̄m with V H
m+1 Vm+1 = Im+1,

where H̄m ∈ C(m+1)×m is not necessarily of upper Hessenberg form. In this paper we
call this relation a flexible Arnoldi-like relation due to its similarity to relation (2.2).

Stagnation and breakdown. We refer the reader to [27, section 6] for general com-
ments and a detailed discussion on the possibility of both breakdown and stagnation
in flexible inner-outer Krylov subspace methods. Although important, these issues
are not addressed in this paper, and we assume that no breakdown occurs in the
inner-outer subspace methods that will be proposed.

2.2. Flexible GMRES with deflated restarting. A number of techniques
have been proposed to compute spectral information at a restart and use this infor-
mation to improve the convergence rate of the Krylov subspace methods; see, e.g.,
[16, 17, 18, 25]. These techniques have been exclusively developed in the case of a
fixed preconditioner. GMRES-DR is one of these methods. It focuses on removing
(or deflating) the eigenvalues of smallest magnitude. A full subspace of dimension
k, k < m (and not only the approximate solution with minimum residual norm) is
now retained at the restart, and the success of this approach has been demonstrated
in many academic examples [16]. Approximations of eigenvalues of smallest magni-
tude are obtained by computing harmonic Ritz pairs of A with respect to a certain
subspace [18]. We present here a definition of a harmonic Ritz pair equivalent to the
one introduced in [21, 30]; it will be of key importance when defining appropriate
deflation strategies.

Definition 2.1 (harmonic Ritz pair). Consider a subspace U of Cn. Given
B ∈ Cn×n, θ ∈ C, and y ∈ U , (θ, y) is a harmonic Ritz pair of B with respect to U if
and only if

By − θ y ⊥ B U
or, equivalently, for the canonical scalar product,

∀w ∈ range(B U) wH (By − θ y) = 0.

We call y a harmonic Ritz vector associated with the harmonic Ritz value θ.
As in the case of fixed preconditioning, deflated restarting may also improve

the convergence rate of flexible subspace methods. In [15] a deflated restarting pro-
cedure has been proposed for the FGMRES algorithm. The ith cycle of the re-
sulting algorithm, called FGMRES-DR, is now briefly described, and we denote by
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r
(i−1)
0 = b − Ax

(i−1)
0 , Vm+1, H̄m, and Zm the residual and matrices obtained at the

end of the (i − 1)th cycle.
Based on the Arnoldi-like relation (2.3), the deflation procedure proposed in [15,

Proposition 1] relies on the use of k harmonic Ritz vectors Yk = VmPk of AZmV H
m

with respect to range(Vm), where Yk ∈ Cn×k and Pk ∈ Cm×k. In Lemma 2.2 shown
in [15, Lemma 3.1], we recall a useful relation satisfied by the harmonic Ritz vectors.

Lemma 2.2. In FGMRES-DR, the harmonic Ritz vectors are given by Yk =
VmPk with corresponding harmonic Ritz values λk. Pk ∈ Cm×k satisfies the following
relation:

AZmPk = Vm+1

[[
Pk

01×k

]
, c− H̄my∗

] [
diag(λ1, . . . , λk)

α1×k

]
,(2.4)

AZmPk = [VmPk, r
(i−1)
0 ]

[
diag(λ1, . . . , λk)

α1×k

]
,(2.5)

where r
(i−1)
0 = Vm+1(c− H̄my∗) and α1×k = [α1, . . . , αk] ∈ C1×k.

Next, the QR factorization of the (m + 1) × (k + 1) matrix appearing on the
right-hand side of relation (2.4) is performed as[[

Pk

01×k

]
, c− H̄my∗

]
= QR,(2.6)

where Q ∈ C(m+1)×(k+1) has orthonormal columns and R ∈ C(k+1)×(k+1) is upper
triangular, respectively. We write the matrix Q obtained in relation (2.6) as

(2.7) Q =

[[
Qm×k

01×k

]
,

ρ̄

‖ρ̄‖
]
,

where Qm×k ∈ Cm×k and ρ̄ ∈ Cm+1 is defined as

(2.8) ρ̄ =

(
Im+1 −

[
Qm×k

01×k

] [
Qm×k

01×k

]H)
(c− H̄my∗).

Proposition 1. In FGMRES-DR, the flexible Arnoldi relation

A Zk = Vk+1H̄k,(2.9)

V H
k+1Vk+1 = Ik+1,(2.10)

range
([

Yk, r
(i−1)
0

])
= range (Vk+1)(2.11)

holds at the ith cycle with matrices Zk, Vk ∈ Cn×k and H̄k ∈ C(k+1)×k defined as

Zk = ZmQm×k,(2.12)

Vk+1 = Vm+1Q,(2.13)

H̄k = QHH̄mQm×k,(2.14)

where Vm+1, Zm, and H̄m refer to matrices obtained at the end of the (i−1)th cycle.
Proof. Relations (2.9), (2.10), (2.12), (2.13), and (2.14) have been shown in [15,

Proposition 2]. From relations (2.13) and (2.6), respectively, we deduce

Vk+1R = Vm+1

[[
Pk

01×k

]
, c− H̄my∗

]
,

Vk+1R =
[
VmPk, r

(i−1)
0

]
,(2.15)
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which finally shows that range([Yk, r
(i−1)
0 ]) = range(Vk+1) since R is supposed to be

nonsingular.
FGMRES-DR then carries out m− k Arnoldi steps with flexible preconditioning

and starting vector vk+1 while maintaining orthogonality to Vk, leading to

A [zk+1, . . . , zm] = [vk+1, . . . , vm+1] H̄m−k and V H
m+1 Vm+1 = Im+1.

We note that H̄m−k ∈ C(m−k+1)×(m−k) is upper Hessenberg. At the end of the ith
cycle this gives the flexible Arnoldi-like relation

A [Zk, Zm−k] = [Vm+1]

[[
H̄k

0m−k×k

] [
Bk×m−k

H̄m−k

]]
,

where Vm+1 ∈ Cn×(m+1), H̄m ∈ C(m+1)×m, and Bk×m−k ∈ Ck×(m−k) results from
the orthogonalization of [vk+2, . . . , vm+1] against Vk+1. We note that H̄m is no longer
upper Hessenberg due to the leading dense (k+1)×k submatrix H̄k. At the end of the

ith cycle, an approximate solution x
(i)
0 ∈ Cn is then found by minimizing the residual

norm ‖b − A(x
(i−1)
0 + Zmy)‖ over the space x

(i−1)
0 + range(Zm), the corresponding

residual being r
(i)
0 = b − Ax

(i)
0 , with r

(i)
0 ∈ range(Vm+1). We refer the reader to [15]

for the complete derivation of the method and numerical experiments showing the
efficiency of FGMRES-DR in both academic and industrial examples.

2.3. Flexible GCRO with deflated restarting. GCRO-DR [22]—a combi-
nation of GMRES-DR and GCRO—is a Krylov subspace method that allows deflated
restarting and subspace recycling simultaneously. This latter feature is particularly
interesting when solving sequences of linear systems with possibly different left- or
right-hand sides. As pointed out in [22], GCRO-DR is attractive because any sub-
space may be recycled. In this paper we restrict the presentation to the case of a
single linear system as proposed in (2.1).

GCRO and GCRO-DR belong to the family of inner-outer methods [2, Chap.
12] where the outer iteration is based on GCR, a minimum residual norm method
proposed by Eisenstat, Elman, and Schultz [13]. To this end GCR maintains a cor-
rection subspace spanned by range(Zm) and an approximation subspace spanned by
range(Vm), where Zm, Vm ∈ Cn×m satisfy

A Zm = Vm,

V H
m Vm = Im.

The optimal solution of the minimization problem min ‖b − Ax‖ over the subspace
x0 + range(Zm) is then found as xm = x0 +Zm V H

m r0. Consequently rm = b−A xm

satisfies

rm = r0 − Vm V H
m r0 = ΠV ⊥

m
r0, rm ⊥ range(Vm).

In [9] de Sturler proposed an improvement to GMRESR [34], an inner-outer method
based on GCR in the outer part and GMRES in the inner part, respectively. He
suggested that the inner iteration takes place in a subspace orthogonal to the outer
Krylov subspace. In this inner iteration the projected residual equation(

In − Vm V H
m

)
Az = rm

is solved only approximately. If a minimum residual norm subspace method is used
in the inner iteration to solve this projected residual linear system, the residuals over
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1218 L. M. CARVALHO, S. GRATTON, R. LAGO, AND X. VASSEUR

both the inner and outer subspaces are minimized. This leads to the GCRO Krylov
subspace method [9]. Numerical experiments [9] indicate that the resulting method
may perform better than other inner-outer methods (without orthogonalization) in
some cases.

The GCRO method with deflated restarting (named GCRO-DR) based on har-
monic Ritz value information was proposed in [22]. An approximate invariant sub-
space is used for deflation following closely the GMRES-DR method. We refer the
reader to [22] for a description of this method, algorithms, and implementation de-
tails. We present now a new variant of GCRO-DR that allows flexible preconditioning
by explaining the different steps occurring during the ith cycle. Again we denote by

r
(i−1)
0 = b − Ax

(i−1)
0 , Vm+1, H̄m, and Zm the residual and matrices obtained at the

end of the (i − 1)th cycle.
We suppose that a flexible Arnoldi-like relation of type (2.3) holds. As in sec-

tion 2.2 an important point is to specify which harmonic Ritz information is selected.
Given a certain matrix Wm ∈ Cn×m to be specified later on, such as range(Wm) =
range(Vm), the deflation procedure relies on the use of k harmonic Ritz vectors Yk =
WmPk of AZmW †

m with respect to range(Wm), where Yk ∈ C
n×k and Pk ∈ C

m×k.
Wm will notably satisfy a property detailed in Lemma 3.3 and we point out that the
calculation of W †

m is not needed in the practical implementation of the algorithm (see
section 4.1.1). In Lemma 2.3 we detail a useful relation satisfied by the harmonic Ritz
vectors.

Lemma 2.3. In flexible GCRO with deflated restarting (FGCRO-DR), the har-
monic Ritz vectors are given by Yk = WmPk with corresponding harmonic Ritz values
θk. The matrix Pk = [p1, . . . , pk] ∈ Cm×k satisfies the following relation:

(2.16) AZmPk =
[
WmPk, r

(i−1)
0

] [ diag(θ1, . . . , θk)
β1×k

]
,

where r
(i−1)
0 = Vm+1(c− H̄my∗) and β1×k = [β1, . . . , βk] ∈ C1×k.

Proof. According to Definition 2.1, the harmonic residual vectorsAZmW †
mWmpj−

θj Wmpj and the residual vector r
(i−1)
0 = Vm+1(c− H̄my∗) all belong to a subspace of

dimension m+ 1 (spanned by the columns of Vm+1) and are orthogonal to the same
subspace of dimension m (spanned by the columns of AZm subspace of range(Vm+1)),
so they must be collinear. Consequently there exist k coefficients noted βj ∈ C with
1 ≤ j ≤ k such that

∀j ∈ {1, . . . , k} AZmpj − θjWmpj = βjr
(i−1)
0 .(2.17)

Setting β1×k = [β1, . . . , βk] ∈ C1×k, the collinearity expression (2.17) can be written
in matrix form as

AZmPk =
[
WmPk, r

(i−1)
0

] [ diag(θ1, . . . , θk)
β1×k

]
.

Due to the flexible Arnoldi-like relation (2.3), relation (2.16) can be also expressed as

(2.18) Vm+1H̄mPk =
[
WmPk, r

(i−1)
0

] [
diag(θ1, . . . , θk)

β1×k

]
.

If required, β1×k can be deduced from (2.18) by

(2.19) (c− H̄my∗)H(H̄mPk − V H
m+1WmPkdiag(θ1, . . . , θk))

= (c− H̄my∗)H(c− H̄my∗)β1×k.
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Next, the QR factorization of the (m+1)× k matrix H̄mPk appearing in relation
(2.18) is performed as H̄mPk = QR with Q ∈ C(m+1)×k and R ∈ Ck×k.

Proposition 2. In FGCRO-DR, the relation AZk = Vk with V H
k Vk = Ik holds

at the ith cycle with matrices Zk, Vk ∈ Cn×k defined as

Zk = ZmPkR
−1,

Vk = Vm+1Q,

where Vm+1 and Zm refer to matrices obtained at the end of the (i − 1)th cycle. In

addition V H
k r

(i−1)
0 = 0 holds during the ith cycle.

Proof. By using information related to the QR factorization of H̄mPk and the
flexible Arnoldi relation (2.3) exclusively, we obtain

A Zk = AZmPkR
−1

= Vm+1H̄mPkR
−1

= Vm+1Q

= Vk.

Since both Vm+1 and Q have orthonormal columns, Vk satisfies V H
k Vk = Ik. Finally

since r
(i−1)
0 is the optimum residual at the (i− 1)th cycle, i.e., (AZm)Hr

(i−1)
0 = 0, we

obtain

PH
k (AZm)Hr

(i−1)
0 = 0,

(Vm+1H̄mPk)
Hr

(i−1)
0 = 0,

RHV H
k r

(i−1)
0 = 0.

This finally shows that V H
k r

(i−1)
0 = 0 since R is supposed to be nonsingular.

To complement the subspaces, the inner iteration is based on the approximate
solution of (

In − Vk V H
k

)
Az =

(
In − Vk V H

k

)
r
(i−1)
0 = r

(i−1)
0 ,

where the last equality is due to Proposition 2. For that purpose FGCRO-DR then
carries out m− k steps of the Arnoldi method with flexible preconditioning, leading
to (

In − VkV
H
k

)
A [zk+1, . . . , zm] = [vk+1, . . . , vm+1] H̄m−k,(

In − VkV
H
k

)
A Zm−k = Vm−k+1 H̄m−k

with vk+1 = r
(i−1)
0 /||r(i−1)

0 ‖. At the end of the cycle this gives the flexible Arnoldi-like
relation

A [Zk, Zm−k] = [Vk, Vm−k+1]

[
Ik V H

k A Zm−k

0m−k+1×k H̄m−k

]
,

A Zm = Vm+1 H̄m,

where Zm ∈ Cn×m, Vm+1 ∈ Cn×(m+1), and H̄m ∈ C(m+1)×m. At the end of the ith

cycle, an approximate solution x
(i)
0 ∈ Cn is then found by minimizing the residual

norm ‖b − A(x
(i−1)
0 + Zmy)‖ over the space x

(i−1)
0 + range(Zm), the corresponding

residual being r
(i)
0 = b− Ax

(i)
0 , with r

(i)
0 ∈ range(Vm+1).
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2.4. Algorithms. Details of the FGCRO-DR method are given in Algorithm 1,
where MATLAB-like notations are adopted (for instance, in step 7b, Q(1 : m, 1 : k)
denotes the submatrix made of the first m rows and first k columns of matrix Q noted
Qm×k in (2.7)). For the sake of completeness the FGMRES-DR algorithm has also
been described with notation chosen as closely as possible to FGCRO-DR to make
code comparison easier. Concerning Algorithm 1 we make the following comments:

• As will be discussed later, the computation of W †
m in step 5a is not required

thanks to the definition of the harmonic Ritz pair (see Definition 2.1).
• As pointed out by Morgan [18] and Parks et al. [22] we might have to adjust k
during the algorithm to include both the real and imaginary parts of complex
eigenvectors.

• In steps 10a and 10b M(i)
j denotes the possibly nonlinear preconditioning

operator at iteration j during the ith cycle.

Algorithm 1. FGCRO-DR(m, k) and FGMRES-DR(m, k).
1: Choose m, k, tol, and x0

2: r0 = b− Ax0, β = ‖r0‖, v1 = r0/β, c = βe1, i← 0
3: Apply FGMRES(m) to obtain H̄m, Zm, Vm+1 such that AZm = Vm+1H̄m, y∗ =

arg min
y∈Cm

‖c− H̄my‖, x(0)
0 = x0 + Zmy∗, r(0)0 = b− Ax

(0)
0 = Vm+1(c− H̄my∗), Wm = Vm

4: while ‖r(i)0 ‖ > ‖b‖ × tol do i← i+ 1

FGCRO-DR
5a: Compute k harmonic Ritz

vectors of AZmW †
m with

respect to range(Wm) and
store them in Yk. Define Pk
such that Yk = WmPk

6a: Q R = H̄mPk
7a: Wk = WmPkR

−1

8a: Vk = Vm+1Q

9a: Zk = ZmPkR
−1

10a: Apply m − k flexible pre-
conditioned Arnoldi steps
with (In − VkV

H
k )A and

vk+1 = r
(i−1)
0 /‖r(i−1)

0 ‖
such that (In −
VkV

H
k )A

[
zk+1, . . . , zm

]
=[

vk+1, . . . , vm+1
]
H̄m−k

with zj =M(i)
j (vj)

11a: Set H̄m =[
Ik V H

k AZm−k
0m−k+1×k H̄m−k

]
yielding A

[
z1, . . . , zm

]
=[

v1, . . . , vm+1
]
H̄m

and define Wm =[
Wk Vm(1 : n, k + 1 : m)

]

FGMRES-DR
5b: Compute k harmonic Ritz

vectors of AZmV H
m with re-

spect to range(Vm) and store
them in Yk. Define Pk such
that Yk = VmPk

6b: QR =

[[
Pk

01×k

]
c− H̄my∗

]
7b: H̄k = QHH̄mQ( 1 : m , 1 : k)
8b: Vk+1 = Vm+1Q
9b: Zk = ZmQ( 1 : m , 1 : k)

10b: Apply m − k flexible precon-
ditioned Arnoldi steps with A
and vk+1 while maintaining
orthogonality to Vk such
that A

[
zk+1, . . . , zm

]
=[

vk+1, . . . , vm+1
]
H̄m−k

with zj = M(i)
j (vj) and

V H
m+1 Vm+1 = Im+1

11b: Set H̄m =[[
H̄k

0m−k×k

] [
Bk×m−k

H̄m−k

]]
yielding A

[
z1, . . . , zm

]
=[

v1, . . . , vm+1
]
H̄m

12: y∗ = arg min
y∈Cm

‖c− H̄my‖ with c = V H
m+1r

(i−1)
0

13: x
(i)
0 = x

(i−1)
0 + Zmy∗

14: r
(i)
0 = b− Ax

(i)
0

15: end while
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3. Analysis of FGMRES-DR and FGCRO-DR. We compare now the flexi-
ble variants of GMRES-DR and GCRO-DR introduced in sections 2.2 and 2.3, respec-
tively. In the following we use ˜ to denote quantities related to the FGMRES-DR algo-
rithm, e.g., Ỹk denotes the set of harmonic Ritz vectors computed in the FGMRES-DR
algorithm. When analyzing both algorithms we will suppose that identical precondi-
tioning operators are used in steps 10a and 10b, respectively, i.e.,

(3.1) ∀i, ∀j ∈ {k + 1, . . . ,m}, M(i)
j (.) = M̃(i)

j (.).

3.1. Equivalent preconditioning matrix.
Definition 3.1 (equivalent preconditioning matrix). Suppose that Vp = [v1, . . . ,

vp] ∈ Cn×p and Zp = [M1(v1), . . . ,Mp(vp)] ∈ Cn×p obtained during a cycle of a
flexible method with (standard or deflated) restarting (with 1 ≤ p ≤ m < n) are both
of full rank, i.e., rankVp = rankZp = p. We will then denote by MVp ∈ Cn×n a
nonsingular equivalent preconditioning matrix defined as

(3.2) Zp
def
= MVp Vp.

Such a matrix represents the action of the nonlinear operators Mj on the set of vectors
vj (with j = 1, . . . , p). It can be chosen, e.g., as MVp = [Zp Zp][Vp Vp]

−1, where Zp

(respectively, Vp) denotes an orthogonal complement of Zp (respectively, Vp) in Cn.

3.2. Relations between Zm and Wm and Z̃m and Ṽm. We denote by M
(0)
Wm

and M̃
(0)
˜Vm

the equivalent preconditioning matrices used in the initialization phase of

both algorithms (step 3 in Algorithm 1). With this notation we remark that the
following relations hold:

Zm = M
(0)
Wm

Wm = Z̃m = M̃
(0)
˜Vm

Ṽm.(3.3)

We first analyze the relation between Z̃m and Ṽm.
Lemma 3.2. At the end of the ith cycle of the FGMRES-DR method, Z̃m and

Ṽm satisfy

(3.4) Z̃m = M̃
(i)
˜Vm

Ṽm =
[
M̃

(i−1)
˜Vm

Ṽk, M̃
(i)
˜Vm−k

Ṽm−k

]
.

Proof. The initialization phase leads to the relation Z̃m = M̃
(0)
˜Vm

Ṽm. We suppose

that at the end of the (i − 1)th cycle the following relation holds: Z̃m = M̃
(i−1)
˜Vm

Ṽm.

At step 9b of the ith cycle, Z̃k is defined as

Z̃k = Z̃mQ̃m×k = M̃
(i−1)
˜Vm

ṼmQ̃m×k = M̃
(i−1)
˜Vm

Ṽk.

The proof is then complete since Z̃m−k = [M̃(i)
k+1(ṽk+1), . . . ,M̃(i)

m (ṽm)] = M̃
(i)
˜Vm−k

Ṽm−k

at the end of step 10b.
The next lemma details a relation between Zm and Wm that is satisfied in the

FGCRO-DR method.
Lemma 3.3. At the end of the ith cycle of the FGCRO-DR method, Zm and Wm

satisfy

(3.5) Zm = M
(i)
Wm

Wm =
[
M

(i−1)
Wm

Wk, M
(i)
Wm−k

Wm−k

]
.
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Proof. The initialization phase leads to the relation Zm = M
(0)
Wm

Wm. We suppose

that at the end of the (i − 1)th cycle the following relation holds: Zm = M
(i−1)
Wm

Wm.
At step 9a of the ith cycle, Zk is defined as

Zk = ZmPkR
−1

= M
(i−1)
Wm

WmPkR
−1

= M
(i−1)
Wm

Wk.

The proof is then complete since Zm−k = [M(i)
k+1(wk+1), . . . ,M(i)

m (wm)] = M
(i)
Wm−k

Wm−k at the end of step 11a.

Lemmas 3.2 and 3.3 show that Z̃m, Ṽm, Zm, and Wm satisfy relations that will
play a central role in section 3.3. We investigate next the relation between Zm and
Vm.

Lemma 3.4. At the end of the ith cycle of the FGCRO-DR method, Zm and Vm

satisfy

(3.6) [AZk, Zm−k] =
[
Vk, M

(i)
Vm−k

Vm−k

]
.

Proof. We use the relation AZk = Vk satisfied in the FGCRO-DR method

shown in Proposition 2. The proof is then complete since Zm−k = [M(i)
k+1(vk+1), . . . ,

M(i)
m (vm)] = M

(i)
Vm−k

Vm−k at the end of step 11a.
We conclude this section by presenting a technical lemma related to the FGMRES-

DR method.
Lemma 3.5. During the ith cycle of the FGMRES-DR method, ṽk+1 satisfies the

relation

(3.7) ṽk+1 = ˜̄vk+1/||˜̄vk+1|| with ˜̄vk+1 = Π[˜Yk]⊥
r̃
(i−1)
0 ,

where r̃
(i−1)
0 = b − Ax̃

(i−1)
0 denotes the residual obtained at the end of the (i − 1)th

cycle.
Proof. Using Proposition 1 and relation (2.8) we obtain

˜̄vk+1 = Ṽm+1ρ̄ = r̃
(i−1)
0 − Ṽm+1

[
Q̃m×k

01×k

] [
Q̃m×k

01×k

]H
Ṽ H
m+1r̃

(i−1)
0 ,

˜̄vk+1 = Ṽm+1ρ̄ = r̃
(i−1)
0 − ṼmQ̃m×k(ṼmQ̃m×k)

H r̃
(i−1)
0 .

Since ṼmQ̃m×k has orthonormal columns, this last expression now becomes

v̄k+1 = Π[˜Vm
˜Qm×k]⊥

r̃
(i−1)
0 .

Because Q̃m×k is the orthogonal factor of the QR decomposition of P̃k, we obtain

range(ṼmP̃k) = range(ṼmQ̃m×k).

Since from Lemma 2.3 Ỹk = ṼmP̃k, the proof is then complete.
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3.3. Analysis of the FGMRES-DR and FGCRO-DR methods. Lemma
3.3 has already described an important property satisfied by Wm in the FGCRO-
DR method proposed in Algorithm 1. We will analyze further the relation between
the FGMRES-DR and FGCRO-DR methods. The next theorem states that the two
flexible methods generate the same iterates in exact arithmetic under some conditions
involving notably two vectors.

Theorem 3.6. We denote by r
(i)
0 = b−Ax

(i)
0 the residual obtained at the end of

the ith cycle of the FGCRO-DR method (see step 14 of Algorithm 1). We suppose that
Definition 3.1 holds and that the same equivalent preconditioning matrix is obtained
at the end of the ith cycle of both the FGCRO-DR and FGMRES-DR algorithms, i.e.,

M
(i)
Wm

= M̃
(i)
˜Vm

. Under this assumption the harmonic Ritz vectors Ỹk and Yk can be

chosen equal during the (i+1)th cycle. If in addition there exists a real-valued positive
coefficient ηi+1 such that

(3.8) Π
[Yk,r

(i)
0 /‖r(i)0 ‖]⊥AM

(i+1)
k+1

(
ΠY ⊥

k
r
(i)
0 /‖ΠY ⊥

k
r
(i)
0 ‖
)

= ηi+1 Π
[Yk,r

(i)
0 /‖r(i)0 ‖]⊥AM

(i+1)
k+1

(
r
(i)
0 /‖r(i)0 ‖

)
in the FGCRO-DR algorithm, then both algorithms generate the same iterates in exact
arithmetic and

range(Vm+1) = range(Ṽm+1),(3.9)

range(Zm) = range(Z̃m),(3.10)

with

Vm+1 = [Ṽk+1Q̂, vk+2, . . . , vm+1], Ṽm+1 = [Ṽk+1, vk+2, . . . , vm+1],(3.11)

Zm = [Z̃k+1X̂, zk+2, . . . , zm], Z̃m = [Z̃k+1, zk+2, . . . , zm],(3.12)

where Q̂ ∈ C(k+1)×(k+1) is a unitary matrix and X̂ ∈ C(k+1)×(k+1) is a nonsingular
triangular matrix.

Proof. The whole proof is performed in three parts assuming that we analyze
the (i+ 1)th cycle of each algorithm. Suppose that at the beginning of the (i+ 1)th

cycle (step 4) there exist a unitary matrix Q̂ ∈ C(k+1)×(k+1) and a nonsingular matrix

X̂ ∈ C(k+1)×(k+1) such that the following relations hold:

Vk+1 = Ṽk+1Q̂,(3.13)

Zk+1 = Z̃k+1X̂,(3.14)

[vk+2, . . . , vm+1] = [ṽk+2, . . . , ṽm+1] ,(3.15)

[zk+2, . . . , zm] = [z̃k+2, . . . , z̃m] .(3.16)

We will then prove the existence of a unitary matrix Q̂′ ∈ C(k+1)×(k+1) and of a
nonsingular matrix X̂ ′ ∈ C(k+1)×(k+1) such that at the end of the (i+ 1)th cycle

Vk+1 = Ṽk+1Q̂
′,(3.17)

Zk+1 = Z̃k+1X̂
′,(3.18)

[vk+2, . . . , vm+1] = [ṽk+2, . . . , ṽm+1] ,(3.19)

[zk+2, . . . , zm] = [z̃k+2, . . . , z̃m] .(3.20)
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1224 L. M. CARVALHO, S. GRATTON, R. LAGO, AND X. VASSEUR

Regarding FGCRO-DR we assume that at the beginning of the (i + 1)th cycle (step
4)

range(Wm) = range(Vm).(3.21)

We will also prove that relation (3.21) holds at the end of the (i+1)th cycle. Note that
relations (3.9), (3.10), and (3.21) are obviously satisfied before the first cycle, because

steps 1 to 3 are identical in both algorithms, yielding Vm+1 = Ṽm+1, Zm = Z̃m, and
Wm = Vm. Finally a consequence of (3.13), (3.15), (3.14), and (3.16) is that the
residuals of the linear system Ax = b in both algorithms are equal at the beginning

of the (i + 1)th cycle, i.e., r
(i)
0 = r̃

(i)
0 . We will denote by r0 this residual for ease of

notation.
Part I: Steps 5a and 5b. In this part, we prove that we can choose Ỹk = Yk with

Yk = WmPk = ṼmP̃k.
FGCRO-DR. Let yj = Wmpj be the jth column of Yk. Since yj is a harmonic

Ritz vector of AZmW †
m with respect to range(Wm), the following relation holds (see

Definition 2.1):

ZH
mAH (AZmpj − θjWmpj) = 0.(3.22)

Due to (3.14) and (3.16) there exists a nonsingular matrix X ∈ Cm×m that relates

Zm and Z̃m:

Zm = Z̃mX.(3.23)

Using (3.23), the harmonic Ritz relation (3.22) now becomes

XH Z̃H
mAH (AZ̃mXpj − θjWmpj) = 0.

From Lemma 3.3 and relation (3.23) we deduce

XHZ̃H
mAH (AZ̃mXpj − θjM

(i)−1

Wm
Zmpj) = 0,

XH Z̃H
mAH (AZ̃mXpj − θjM̃

(i)−1

˜Vm
Z̃mXpj) = 0,

where we have used explicitly the assumption on the equivalent preconditioning matrix

obtained at the end of the ith cycle, i.e., M
(i)
Wm

= M̃
(i)
˜Vm

. Next, the application of

Lemma 3.2 leads to

XHZ̃H
mAH (AZ̃mṼ H

m ṼmXpj − θj ṼmXpj) = 0.(3.24)

Since X is nonsingular the last equality proves that ṼmXpj is a harmonic Ritz vector

of AZ̃mṼ H
m with respect to range(Ṽm) associated to the Ritz value θj . From relations

(3.22) and (3.24) we deduce that the harmonic Ritz vectors can be chosen to be equal
and correspond to the same harmonic Ritz values. In this case they notably satisfy
the following equality:

∀j ∈ {1, . . . , k}, ṼmXpj = Wmpj , i.e., p̃j = Xpj.(3.25)

We will then denote by Y = Ỹk = Yk the k harmonic Ritz vectors computed in
either FGCRO-DR or FGMRES-DR. We assume that the harmonic Ritz values θj
(1 ≤ j ≤ k) are nonzero.
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Part IIa: Steps 6a–10a, 6b–10b. We show that at the end of steps 10a and 10b the

following relations hold: range(Vk+1) = range(Ṽk+1) = range([Y, r
(i)
0 /‖r(i)0 ‖]). This

result will help us to prove the existence of the matrix Q̂′ introduced in relation (3.17).
FGCRO-DR. Since AZmPk = VkR (Proposition 2), we deduce from Lemma 2.3[

Vk, r
(i)
0 /‖r(i)0 ‖

]
=
[
Y, r

(i)
0 /‖r(i)0 ‖

] [ diag(θ1, . . . θk)R
−1 0k×1

‖r(i)0 ‖β1×kR
−1 1

]
.(3.26)

This relation leads to the following result:

(3.27) range(Vk+1) = range
([

Y, r
(i)
0 /‖r(i)0 ‖

])
.

Similarly Wk+1 = [Wk,
r
(i)
0

‖r(i)0 ‖ ], using Y = WmPk, can be written as

[Wk, r
(i)
0 /‖r(i)0 ‖] =

[
WmPkR

−1,
r
(i)
0

‖r(i)0 ‖

]
=
[
Y R−1, r

(i)
0 /‖r(i)0 ‖

]
=
[
Y, r

(i)
0 /‖r(i)0 ‖

] [
R−1 0k×1

01×k 1

]
.(3.28)

From relations (3.28) and (3.27) we deduce that

(3.29) range(Wk+1) = range(Vk+1).

This last result also proves that range(Wm) = range(Vm) at the end of the cycle.
FGMRES-DR. In Proposition 1 we have shown that

(3.30) range(Ṽk+1) = range
([

Y, r
(i)
0 /‖r(i)0 ‖

])
.

Since both Vk+1 and Ṽk+1 have orthonormal columns, we deduce from (3.27) and

(3.30) that there exists a unitary matrix Q̂′ such that

(3.31) Vk+1 = Ṽk+1Q̂
′,

which proves the relation proposed in (3.17).
Part IIb: Steps 6a–10a, 6b–10b. We show that at the end of steps 10a and 10b

the following relation holds: range(Zk+1) = range(Z̃k+1). This result will help us to

prove the existence of the matrix X̂ ′ introduced in relation (3.18).
FGCRO-DR. Concerning Zk+1 = [Zk, zk+1], there exists a nonsingular matrix

M
(i+1)

[Wk,r
(i)
0 /‖r(i)0 ‖] ∈ C

n×n (see Definition 3.1) such that

Zk+1 = M
(i+1)

[Wk,r
(i)
0 /‖r(i)0 ‖]

[
Wk, r

(i)
0 /‖r(i)0 ‖

]
.

If T ∈ C(k+1)×(k+1) denotes the triangular matrix

T =

[
R 0k×1

01×k 1

]
due to relation (3.28), then Zk+1T can be written as

Zk+1T = M
(i+1)

[Wk,r
(i)
0 /‖r(i)0 ‖]

[
Y, r

(i)
0 /‖r(i)0 ‖

]
.(3.32)
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FGMRES-DR. Similarly, from Lemma 3.2, Z̃k+1 can be expressed as

Z̃k+1 = M̃
(i+1)
˜Vk+1

Ṽk+1,

where M̃
(i+1)
˜Vk+1

∈ Cn×n is nonsingular (see Definition 3.1). If T̃ ∈ C(k+1)×(k+1) denotes

the triangular matrix

T̃ = R̃

[
Ik 0k×1

01×k 1/‖r(i)0 ‖
]
,

Z̃k+1T̃ can be expressed as

Z̃k+1T̃ = M̃
(i+1)
˜Vk+1

[
Y, r

(i)
0 /‖r(i)0 ‖

]
(3.33)

thanks to relation (2.15). Relations (3.32) and (3.33) characterize Zk+1T and Z̃k+1T̃

with respect to [Y, r
(i)
0 /‖r(i)0 ‖]. We can further improve this result by showing the

following equality:

M
(i+1)

[Wk,r
(i)
0 /‖r(i)0 ‖]

[
Y, r

(i)
0 /‖r(i)0 ‖

]
= M̃

(i+1)
˜Vk+1

[
Y, r

(i)
0 /‖r(i)0 ‖

]
.(3.34)

Lemma 3.3 and Lemma 3.2, respectively, give us two useful relations forM
(i+1)

[Wk,r
(i)
0 /‖r(i)0 ‖]

[Y, r
(i)
0 /‖r(i)0 ‖] and M̃

(i+1)
˜Vk+1

[Y, r
(i)
0 /‖r(i)0 ‖], i.e.,

M
(i+1)

[Wk,r
(i)
0 /‖r(i)0 ‖]

[
Y, r

(i)
0 /‖r(i)0 ‖

]
=
[
M

(i)
Wm

Y, M(i+1)
k+1

(
r
(i)
0 /‖r(i)0 ‖

)]
,(3.35)

M̃
(i+1)
˜Vk+1

[
Y, r

(i)
0 /‖r(i)0 ‖

]
=
[
M̃

(i)
˜Vm

Y, M̃(i+1)
k+1

(
r
(i)
0 /‖r(i)0 ‖

)]
.(3.36)

Using the assumption on the equivalent preconditioning matrix obtained at the end

of the ith cycle, i.e., M
(i)
Wm

= M̃
(i)
˜Vm

, we have

M
(i)
Wm

Y = M̃
(i)
˜Vm

Y.(3.37)

The fact that identical (possibly nonlinear) preconditioning operators are used in steps
10a and 10b of Algorithm 1 (see relation (3.1)) allows us to write

M(i+1)
k+1

(
r
(i)
0 /‖r(i)0 ‖

)
= M̃(i+1)

k+1

(
r
(i)
0 /‖r(i)0 ‖

)
.(3.38)

Relations (3.37) and (3.38) finally show the relation (3.34). Consequently from re-
lations (3.32), (3.33), and (3.34) we deduce that there exists a nonsingular matrix

X̂ ′ ∈ C(k+1)×(k+1) such that

(3.39) Zk+1 = Z̃k+1X̂
′.

This proves the relation proposed in (3.18). Since T and T̃ are both triangular, we

note that X̂ ′ = T̃ T−1 is also triangular.
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Part IIIa: Steps 10a and 10b. We first show that ṽk+2 = vk+2 by expressing these

two quantities as a function of r
(i)
0 and Y .

FGCRO-DR. The Arnoldi relation (step 10a) yields vk+2 = v̄k+2/||v̄k+2||, where
v̄k+2 = (In − vk+1v

H
k+1)(In − VkV

H
k )AM(i+1)

k+1 (r
(i)
0 /‖r(i)0 ‖). Since from Proposition 2

V H
k r

(i)
0 = 0 in the (i + 1)th cycle, (In − vk+1v

H
k+1) and (In − VkV

H
k ) commute, and

from Part IIa of the proof, the following expression can be derived:

(3.40) v̄k+2 = ΠV ⊥
k+1

AM(i+1)
k+1 (r

(i)
0 /‖r(i)0 ‖) = Π

[Y,r
(i)
0 /‖r(i)0 ‖]⊥AM

(i+1)
k+1 (r

(i)
0 /‖r(i)0 ‖).

FGMRES-DR. The following expression for ṽk+2 = ˜̄vk+2/||˜̄vk+2|| is obtained
using Lemma 3.5:
(3.41)˜̄vk+2 = (In−Ṽk+1Ṽ

H
k+1)AM(i+1)

k+1 (ṽk+1) = Π
[Y,r

(i)
0 /‖r(i)0 ‖]⊥AM

(i+1)
k+1 (ΠY ⊥r

(i)
0 /‖ΠY ⊥r

(i)
0 ‖).

Due to the assumption (3.8) of Theorem 3.6 we deduce from (3.40) and (3.41)
that v̄k+2 = ηi+1 ˜̄vk+2 with ηi+1 positive, and therefore vk+2 = ṽk+2.

Part IIIb: Steps 10a and 10b. In this part we continue the analysis of the Arnoldi
procedure with flexible preconditioning and show that vk+2+j = ṽk+2+j for j =
1, . . . ,m− k − 1.

For the case j = 1, we introduce v̄k+3 and ˜̄vk+3 such that vk+3 = v̄k+3/||v̄k+3|| and
ṽk+3 = ˜̄vk+3/||˜̄vk+3||. The application of the Arnoldi procedure in both algorithms
leads to

v̄k+3 = (In − vk+2v
H
k+2)(In − Vk+1V

H
k+1) AM(i+1)

k+2 (v̄k+2),˜̄vk+3 = (In − ṽk+2ṽ
H
k+2)(In − Ṽk+1Ṽ

H
k+1) AM(i+1)

k+2 (˜̄vk+2).

Thus from Parts II and IIIa of the proof we obtain that vk+3 and ṽk+3 are equal. The
proof can then be completed by induction.

Results from Parts II and III justify relation (3.19), i.e., [vk+2, . . . , vm+1] =
[ṽk+2, . . . , ṽm+1]. Consequently from Lemma 3.2, Lemma 3.4, and relation (3.1) we
deduce relation (3.20). This finally shows the main relations (3.9) and (3.10) of The-
orem 3.6 that are satisfied at the end of the (i+ 1)th cycle.

3.3.1. First consequence of Theorem 3.6.
Corollary 3.7. If the same flexible preconditioning operators are used in both

Arnoldi procedures (steps 10a and 10b of Algorithm 1) and if at each cycle i there
exists a real-valued positive coefficient ηi such that

Π
[Y,r

(i−1)
0 /‖r(i−1)

0 ‖]⊥AM
(i)
k+1(ΠY ⊥r

(i−1)
0 /‖ΠY ⊥r

(i−1)
0 ‖)

= ηi Π[Y,r
(i−1)
0 /‖r(i−1)

0 ‖]⊥AM
(i)
k+1(r

(i−1)
0 /‖r(i−1)

0 ‖),

or, equivalently (from relations (3.40) and (3.41)), such that ˜̄vk+2 = ηi v̄k+2, FGCRO-
DR and FGMRES-DR are algebraically equivalent.

Proof. We have already emphasized that M
(0)
Wm

= M̃
(0)
˜Vm

in relation (3.3). In

Theorem 3.6 we have analyzed the (i + 1)th cycle of both algorithms assuming that

M
(i)
Wm

= M̃
(i)
˜Vm

. First we have proved in Part IIb the relation (3.34), and second in Parts

IIIa and IIIb that [vk+2, . . . , vm] = [ṽk+2, . . . , ṽm] and [zk+2, . . . , zm] = [z̃k+2, . . . , z̃m],
respectively. Consequently the same equivalent preconditioner matrix is obtained at

the end of the (i+1)th cycle, i.e., M
(i+1)
Wm

and M̃
(i+1)
˜Vm

can be chosen equal. We deduce

that FGCRO-DR and FGMRES-DR are algebraically equivalent.
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3.3.2. About GCRO-DR and GMRES-DR. We propose a second conse-
quence of Theorem 3.6 analyzed now with a fixed preconditioning matrix M .

Corollary 3.8. When a fixed right preconditioner is used, the GCRO-DR and
GMRES-DR methods sketched in Algorithm 1 are algebraically equivalent.

Proof. We denote by M the fixed right preconditioning operator. A straightfor-
ward reformulation of Lemma 3.3 in this context leads to the relation Zm = MWm

in GCRO-DR. Exploiting now Lemma 2.3 allows us to derive the following relation,
which holds during the (i+ 1)th cycle:

AMWmPk = AMY = [Y, r
(i)
0 ]

[
diag(θ1, . . . , θk)

β1×k

]
.

Thus

(3.42) Π
[Y,r

(i)
0 ]⊥AMY = 0.

Due to (3.42) and Part IIIa of the proof of Theorem 3.6 we deduce the following
development:

v̄k+2 = Π
[Y,r

(i)
0 ]⊥AM

(
r
(i)
0 − Y Y †r(i)0

)
,

v̄k+2 = Π
[Y,r

(i)
0 ]⊥AMΠY ⊥r

(i)
0 ,

v̄k+2 = ˜̄vk+2.

By induction it is possible to deduce the rest of the proof regarding v̄k+j , j > 2. Using

range(Ṽk+1) = range(Vk+1) obtained in Part IIa we deduce that

(3.43) range(Ṽm) = range(Vm) = range(Wm).

A straightforward reformulation of Lemma 3.2 leads to the relation Z̃m = MṼm in
GMRES-DR. From relation (3.43) we finally deduce that

range(Z̃m) = range(Zm).

Consequently the minimization problem min ‖r(i)0 − AZmy‖ leads to the same so-
lution for both algorithms at each cycle: GCRO-DR and GMRES-DR sketched in
Algorithm 1 are thus algebraically equivalent.

3.3.3. A numerical illustration. In this section we intend to illustrate the re-
sults shown in sections 3.3.1 and 3.3.2 on a simple numerical example. We consider a
real symmetric positive definite matrix A = Q D QT of size 200 with Q orthonormal
and D diagonal with entries ranging from 10−4 to 1. The spectrum of A contains
eigenvalues of small magnitude,1 and consequently the use of deflation techniques
should improve the convergence rate of Krylov subspace methods if the harmonic
Ritz values of smallest modulus are taken into account. In this experiment we con-
sider a polynomial preconditioner represented by two iterations of unpreconditioned
GMRES for the solution of Ax = b with b given by b = Ae

‖Ae‖2
(e ∈ R200 denot-

ing the vector with all components equal to one) starting from a zero initial guess.
Figure 3.1 shows the histories of convergence of various flexible methods minimizing

1The eigenvalues of A are logarithmically spaced (10−4, 10−3, 10−2) and linearly distributed
between 0.02 and 1 with step 1/200.
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Fig. 3.1. Convergence histories of different flexible methods applied to Ax = b, where A ∈
R200×200 is symmetric positive definite with some eigenvalues of small magnitude.

Table 3.1

Scalar product vTk+2ṽk+2 during the first five cycles of FGCRO-DR(10,6) when solving the

linear system considered in section 3.3.3 using a variable preconditioner (two iterations of GMRES)
and a fixed right preconditioner (diagonal preconditioning).

Cycle index 1 2 3 4 5

Variable preconditioner 0.92 0.89 0.45 0.90 0.90

Fixed right preconditioner 1.00 1.00 1.00 1.00 1.00

over a subspace of same dimension, i.e., FGMRES(10), FGMRES-DR(10,6), FGCRO-
DR(10,6), respectively, and full flexible GMRES with such a variable preconditioner.
Flexible methods with deflated restarting are found to be efficient since they are close
to the full flexible GMRES method in terms of performances. We also remark that
the convergence histories of FGCRO-DR(10,6) and FGMRES-DR(10,6) are different.
According to Corollary 3.7 we compute the scalar product of vk+2 and ṽk+2 (which
are both vectors of unit norm) to determine the cosine of the angle between these
two vectors. The values are reported in Table 3.1 for the first five cycles. With such
a variable preconditioner it is found that the methods are not equivalent in the first
cycle already since the collinearity condition between vk+2 and ṽk+2 is not fulfilled.
The situation is similar during the following cycles, which explains why different con-
vergence histories for FGMRES-DR(10,6) and FGCRO-DR(10,6) observed in Figure
3.1 are obtained in such a case. As expected from section 3.3.2, if a fixed right precon-
ditioner is used, the convergence histories of GMRES-DR(10,6) and GCRO-DR(10,6)
are found to be exactly the same (results not shown here). In such a case vk+2 and
ṽk+2 fulfill the collinearity condition; this is confirmed in Table 3.1 when a diagonal
preconditioning is used.
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4. Further features of FGCRO-DR(m,k). In this section we first compare
FGCRO-DR(m, k) with FGMRES-DR(m, k) presented in Algorithm 1 from both a
computational and a storage point of view. Then we detail how subspace recycling
can be used in FGCRO-DR(m, k) when solving a sequence of linear systems.

4.1. Computational cost. We first analyze the computational cost related to
the generalized eigenvalue problem to deduce harmonic Ritz information and then
detail the total cost of the proposed method.

4.1.1. Harmonic Ritz information. The generalized eigenvalue problem (3.22)
can also be written as

(4.1) H̄H
m H̄my = θH̄H

mV H
m+1Wmy.

Since Wm = [Wk+1, vk+2, . . . , vm], V H
m+1Wm can be decomposed at the end of the

cycle as

(4.2) V H
m+1Wm =

⎡⎣ V H
k+1 Wk+1 0(k+1)×(m−k−1)

0(m−k−1)×(k+1) Im−k−1

01×(k+1) 01×(m−k−1)

⎤⎦ ,

where the structure of the (k + 1)× (k + 1) block V H
k+1 Wk+1 is as follows:

V H
k+1 Wk+1 =

[
V H
k Wk V H

k wk+1

vHk+1 Wk vHk+1 wk+1

]
=

[
V H
k Wk 0k×1

vHk+1 Wk 1

]
.

V H
k Wk is a k × k matrix that satisfies the following relation at the end of the ith

cycle:

(V H
k Wk)

(i) = QH (V H
m+1Wm)(i−1) PkR

−1,

where the superscript is related to the cycle index. Thus storing the (m + 1) × m
matrix (V H

m+1Wm)(i−1) can be used to obtain (V H
k Wk)

(i) at a cost that is independent
of n. Next we analyze how to compute efficiently vHk+1 Wk during the ith cycle. From
relation (2.18) shown in Lemma 2.3 and Proposition 2, respectively, we deduce the
relation

vHk+1VkR = vHk+1WkR diag(θ1, . . . , θk) + vHk+1r
(i−1)
0 β1×k.(4.3)

Due to Proposition 2 and the definition of vk+1, we have v
H
k+1Vk = 0. Thus we finally

obtain that

vHk+1Wk = −‖(c− H̄my∗)(i−1)‖2 β1×k (R diag(θ1, . . . , θk))
−1,(4.4)

where β1×k is obtained from relation (2.19), which does only involve projected quan-
tities. This allows us to deduce vHk+1Wk at a cost independent of n. From this de-
velopment we draw two important consequences from a computational point of view.
First, (V H

m+1Wm)(i) can be obtained recursively at a cost that is independent of the
problem size n. Second, storing Wm (which would represent m additional vectors of
size n) is not mandatory; only V H

m+1Wm—matrix of size (m+ 1)×m—is required.
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Table 4.1

Computational cost of a generic cycle of FGMRES-DR(m, k) and FGCRO-DR(m, k). C rep-
resents the total cost of FGCRO-DR(m, k) and corresponds to C = (m− k)(opM + opA) + n(2(m+
1)k + 1 + 2mk + (m− k)(2m+ 2k + 6)).

Computation of FGMRES-DR(m,k) FGCRO-DR(m,k)

Vm(:, 1 : k + 1) 2n(m + 1)(k + 1) 2n(m + 1)k + n

Zm(:, 1 : k) 2nmk 2nmk

Vm(:, k + 2 : m+ 1)
(m − k)opA+

n(m− k)(2m + 2k + 5)
(m − k)opA+

n(m− k)(2m + 2k + 6)

Zm(:, k + 1 : m) (m− k)opM (m− k)opM

Total cost C + n (m + k + 1) C

4.1.2. Cost of a cycle. We summarize in Table 4.1 the main computational
costs associated with each generic cycle of FGMRES-DR(m, k) and FGCRO-DR(m, k).
In FGCRO-DR(m, k), an Arnoldi method based on the modified Gram–Schmidt pro-
cedure has been assumed.2 We have included only the costs proportional to the size
of the original problem n which is supposed to be much greater than m and k. We
denote by opA and opM the floating point operation counts for the matrix-vector
product and the preconditioner application, respectively.

The generalized eigenvalue problem in FGCRO-DR(m, k) has been ignored in
Table 4.1 since it can be performed at a cost independent of n as outlined in sec-
tion 4.1.1. Furthermore the computation of c (required at step 12 of Algorithm 1)
has not been included in Table 4.1 since in both methods it can be obtained at a
cost independent of n (see Proposition 3 in [15] for FGMRES-DR). From Table 4.1
we deduce that FGCRO-DR(m, k) requires slightly fewer operations per cycle than
FGMRES-DR(m, k).

4.2. Storage requirements. We consider only the storage proportional to the
size of the original problem n. Similarly, as in FGMRES-DR(m, k) (see [15, sec-
tion 3.2.2]), if the matrix multiplications Vm+1Q and ZmPkR

−1 at steps 8a and 9a
of Algorithm 1 are performed in place (i.e., overwriting Vk and Zk, respectively),
FGCRO-DR(m, k) requires only the storage of Zm and Vm+1, which corresponds to
(2m+1) vectors of length n. The same storage cost is needed in FGMRES-DR(m, k)
as detailed in [15].

4.3. Solution of sequence of linear systems. As advocated in [22], GCRO-
DR(m, k) is suited for the solution of a sequence of slowly changing linear systems
defined as Alxl = bl where both the matrix Al ∈ C

n×n and the right-hand side
bl ∈ Cn change from one system to the next, and the linear systems may typically not
be available simultaneously. Next, we analyze how subspace recycling can be used in
FGCRO-DR(m, k). We suppose that FGCRO-DR(m, k) has been applied for the so-
lution of a given linear system (indexed by s−1) in this sequence and that appropriate
subspaces to be recycled, Zs−1

k and W s−1
k , have been selected during a given cycle.

2In FGCRO-DR(m, k) (step 10a of Algorithm 1) the action of (In − VkV
H
k ) requires∑m

j=k+1(4nk + n) operations, the Arnoldi method based on modified Gram–Schmidt requires∑m
j=k+1

∑j
i=k+1(4n) operations, whereas norm computation and normalization cost

∑m
j=k+1(3n)

operations. In FGMRES-DR(m, k) (step 10b of Algorithm 1) the Arnoldi method based on modi-

fied Gram–Schmidt requires
∑m

j=k+1

∑j
i=1(4n) operations due to maintaining orthogonality to Vk,

whereas norm computation and normalization cost
∑m

j=k+1(3n) operations.
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As explained in Proposition 2, the relations As−1Zs−1
k = V s−1

k with V s−1
k

H
V s−1
k = Ik

and range(W s−1
k ) = range(V s−1

k ) are then supposed to hold. Proposition 3 details
how to consider subspace recycling in the initial phase of FGCRO-DR(m, k), when
solving the new linear system Asxs = bs with x0 as an initial guess.

Proposition 3. Suppose that Zs−1
k and W s−1

k are defined from solving a previous
linear system As−1xs−1 = bs−1 with FGCRO-DR(m, k) and that Asxs = bs is the new
linear system to be solved. In the initial phase of FGCRO-DR with subspace recycling,
the relation AsZs

k = V s
k with V s

k
HV s

k = Ik holds with matrices V s
k , Z

s
k ∈ C

n×k defined
as

V s
k = Q,

Zs
k = Zs−1

k R−1

with QR = AsZs−1
k , where Q ∈ Cn×k has orthonormal columns and R ∈ Ck×k is

upper triangular. In addition we define W s
k ∈ Cn×k as W s

k = W s−1
k R−1.

Proof. By using information related to the reduced QR factorization of AsZs−1
k

and the relation As−1Zs−1
k = V s−1

k , respectively, we easily obtain

AsZs
k = AsZs−1

k R−1 = Q

= V s
k .

Since Q has orthonormal columns, V s
k satisfies V s

k
HV s

k = Ik. Finally W s
k = W s−1

k R−1

is imposed to make sure that the relation shown in Lemma 3.3 will hold at the end
of the initial phase of FGCRO-DR(m, k) with subspace recycling.

In the case of a sequence where only the right-hand sides are changing, we note
that the reduced QR factorization (step 3 in Algorithm 2) is not required. The
complete construction of the initial generation of subspaces V s

m+1, Z
s
m,W s

m is sketched
in Algorithm 2. Once V s

m+1, Z
s
m, and W s

m have been obtained, the main cycle of
FGCRO-DR(m, k) (lines 4 to 15 of Algorithm 1) can be applied straightforwardly.

Algorithm 2. Initial generation of V s
m+1, Z

s
m, and W s

m when subspace recycling is
used to solve Asxs = bs.

1: Suppose that V s−1
k , Zs−1

k and W s−1
k are defined from solving a previous linear

system As−1xs−1 = bs−1 and satisfy As−1Zs−1
k = V s−1

k with V s−1
k

H
V s−1
k =

Ik and range(W s−1
k ) = range(V s−1

k )
2: r0 = bs −Asx0

3: Q R = AsZs−1
k

4: V s
k = Q

5: Zs
k = Zs−1

k R−1

6: W s
k = W s−1

k R−1

7: x
(0)
0 = x0 + Zs

kV
s
k
Hr0

8: r
(0)
0 = r0 − V s

k V
s
k
Hr0

9: Apply m − k flexible preconditioned Arnoldi steps with (In − V s
k V

s
k
H)As

and vsk+1 = r
(0)
0 /‖r(0)0 ‖ such that (In − V s

k V
s
k
H)As

[
zsk+1, . . . , z

s
m

]
=[

vsk+1, . . . , v
s
m+1

]
H̄m−k with zsj = M(i)

j (vsj )

10: d∗ = arg min
d∈Zs

m

‖r(0)0 −Asd‖, x(1)
0 = x

(0)
0 + d∗, r(1)0 = bs −Asx

(1)
0

11: W s
m =

[
W s

k V s
m(1 : n, k + 1 : m)

]D
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Table 4.2

Solution of a d-dimensional elliptic partial differential equation problem on a 16d grid with
homogeneous Dirichlet boundary conditions (d = 2, . . . , 5). Shown are the total number of matrix-
vector products (#Mvp) required to solve a sequence of twelve linear systems with different flexible
methods. The variable preconditioner is based on four iterations of unpreconditioned GMRES. The
stopping criterion corresponds to a reduction of six orders of magnitude of the normalized residual in
the Euclidean norm. Harmonic Ritz values of smallest modulus have been considered when deflating.

Grid 162 163 164 165

Problem size (n) (225) (3375) (50625) (759375)

Method #Mvp #Mvp #Mvp #Mvp

FGMRES(20) 972 1176 1272 1128

FGMRES-DR(20,10) 732 948 1020 876

FGCRO-DR(20,10) (no recycling) 732 948 1020 876

FGCRO-DR(20,10) (with recycling) 457 541 547 529

Subspace recycling can thus be easily used in FGCRO-DR(m, k) to solve sequences
of linear systems.

4.3.1. A numerical illustration. As a numerical illustration we consider se-
quences of linear systems arising from the finite difference discretization of multi-
dimensional elliptic partial differential equations (isotropic Laplace operator) posed
on the [0, 1]d hypercube with homogeneous Dirichlet boundary conditions. These se-
quences correspond to situations where only the right-hand sides are changing for
a given dimension d. An efficient solution method is of primary interest in certain
applications related to, e.g., financial engineering, molecular biology, or quantum dy-
namics [5, 6]. In the numerical experiments reported here (performed in MATLAB)
we have used second order finite difference discretization schemes leading to sparse
matrices with at most 2d+1 nonzero elements per row. We analyze the performances
of various flexible methods used with four iterations of unpreconditioned GMRES
as a preconditioner. This polynomial preconditioner is a variable nonlinear function
which thus requires a flexible Krylov subspace method as an outer method [28]. Table
4.2 collects the number of matrix-vector products of some flexible methods minimiz-
ing over a subspace of the same dimension, i.e., FGMRES(20), FGMRES-DR(20,10),
FGCRO-DR(20,10), and FGCRO-DR(20,10) with subspace recycling, respectively.
Using deflation helps to improve the convergence rate of FGMRES in this application
since a reduction of approximately 20% to 25% in terms of matrix-vector products
is obtained for FGMRES-DR(20,10) independently of the dimension d. FGCRO-
DR(20,10) leads to numbers of matrix-vector products which are similar to FGMRES-
DR(20,10) although the convergence histories are found to be different. Finally, using
both deflation and recycling in FGCRO-DR leads to a significant decrease in terms of
matrix-vector products. A reduction in the range of 40% to 45% is indeed obtained
versus another flexible Krylov subspace method with deflated restarting (FGMRES-
DR(m, k)). This can be considered as a primary advantage over FGMRES-DR(m, k)
since FGMRES-DR(m, k) does not allow subspace recycling. It nicely extends to the
flexible setting the advantage of GCRO-DR versus GMRES-DR previously illustrated
in [22]. We note that the resulting method is factorization free and mostly relies on
matrix-vector products, a nice feature if distributed memory platforms are targeted
to address numerical problems of larger size in higher dimension.

5. Conclusion and perspectives. In this paper we have studied a new min-
imum residual norm subspace method with deflated restarting that allows flexible
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preconditioning based on the GCRO subspace method. The resulting method, named
FGCRO-DR, has been presented together with FGMRES-DR, a recently proposed
algorithm of the same family but based on the GMRES subspace method. A the-
oretical comparison analysis of both algorithms has been performed in section 3,
where Theorem 3.6—the main result of this paper—proves the algebraic equivalence
of FGMRES-DR and FGCRO-DR if a certain collinearity condition holds at each cy-
cle. Corollary 3.8 has also proved that GMRES-DR and GCRO-DR are algebraically
equivalent when a fixed right preconditioner is used. Furthermore we have carefully
analyzed the computational cost of a given cycle of FGCRO-DR and have shown that
FGCRO-DR is nearly as expensive as FGMRES-DR in terms of operations. FGCRO-
DR offers the additional advantage of being suitable for the solution of sequences
of slowly changing linear systems (where both the matrix and right-hand side can
change) through subspace recycling.

In [8] variants of FGCRO-DR have been proposed which only differ in the for-
mulation of the projected generalized eigenvalue problem. In future work we plan to
investigate the numerical properties of these variants on realistic problems of large
size for both single and multiple left- or right-hand side situations. Of interest are
applications related to, e.g., steady or unsteady simulations of nonlinear equations
[7] or stochastic finite element methods [12, 33] in three dimensions where variable
preconditioning using approximate solvers has to be usually considered. We also note
that when all right-hand sides are available simultaneously and when the matrix is
fixed, block subspace methods may be also suitable. Thus a perspective could be to
propose a block variant of FGCRO-DR.
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SUMMARY

In this paper, we address the solution of three-dimensional heterogeneous Helmholtz problems discretized
with second-order finite difference methods with application to acoustic waveform inversion in geophysics.
In this setting, the numerical simulation of wave propagation phenomena requires the approximate solution
of possibly very large indefinite linear systems of equations. For that purpose, we propose and analyse
an iterative two-grid method acting on the Helmholtz operator where the coarse grid problem is solved
inaccurately. A cycle of a multigrid method applied to a complex shifted Laplacian operator is used as a
preconditioner for the approximate solution of this coarse problem. A single cycle of the new method is
then used as a variable preconditioner of a flexible Krylov subspace method. We analyse the properties of
the resulting preconditioned operator by Fourier analysis. Numerical results demonstrate the effectiveness of
the algorithm on three-dimensional applications. The proposed numerical method allows us to solve three-
dimensional wave propagation problems even at high frequencies on a reasonable number of cores of a
distributed memory computer. Copyright © 2012 John Wiley & Sons, Ltd.
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KEY WORDS: complex shifted Laplacian preconditioner; flexible Krylov subspace methods; Helmholtz
equation; heterogeneous media; variable preconditioning

1. INTRODUCTION

The efficient simulation of wave propagation phenomena in three-dimensional heterogeneous media
is of great research interest in many environmental inverse problems (e.g. monitoring of pollution
in groundwater, earthquake modelling or location of hydrocarbon in fractured rocks). Such inverse
problems aim at determining accurately the material properties of the subsurface by analysing the
observed scattered fields after a sequence of multiple seismic shots. One of the main computational
kernels of these large-scale nonlinear optimization problems is the approximate solution of a linear
system issued from the discretization of a Helmholtz scalar wave equation typically written in the
frequency domain. Hence, the design of efficient iterative solvers for the resulting large indefinite
linear systems is of major importance. This will be the main topic of the present paper.

When the medium is homogeneous (or similarly when the wavenumber is uniform), efficient
multilevel solvers have been proposed in the literature. To name a few, we mention the wave-ray
multigrid method [1], which exploits the structure of the error components that standard multigrid
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workshop held in Würzburg, Germany, on 26–28 September 2011. Revised version.
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664 H. CALANDRA ET AL.

methods fail to eliminate [2] and the FETI-H non-overlapping domain decomposition method [3],
a generalization of the FETI method [4] for Helmholtz type problems, whose rate of convergence
is found to be independent of the fine grid step size, the number of subdomains, and the wavenum-
ber in many practical problems (e.g. [5, Section 11.5.2]). In this paper, we rather focus on the case
of three-dimensional Helmholtz problems defined in heterogeneous media for which the design of
robust iterative methods that are scalable with respect to the frequency for such indefinite prob-
lems is currently an active research topic. The literature on iterative solvers for discrete Helmholtz
problems is quite rich, and we refer the reader to the recent survey papers [6, 7] for a taxonomy of
advanced preconditioned iterative methods based on domain decomposition or multigrid.

In [8], Bayliss et al. have considered to precondition the Helmholtz operator with a different
operator. A few iterations of the symmetric successive over-relaxation method were then used to
approximately invert a Laplacian preconditioner. Later, this work has been generalized by Laird
and Giles [9], proposing a Helmholtz preconditioner with a positive sign in front of the Helmholtz
term. In [10, 11], Erlangga et al. have further extended this idea: a modified Helmholtz operator
with a complex wavenumber (i.e. where a complex term (hereafter named complex shift) is multi-
plying the square of the wavenumber) was used as a preconditioner of the Helmholtz operator. This
preconditioning operator is, since then, referred to as a complex shifted Laplacian operator in the lit-
erature. This idea has received a lot of attention over the last few years; see, among others [11–13].
Indeed with an appropriate choice of the imaginary part of the shift, standard multigrid methods
can be applied successfully, that is the convergence of the multigrid method as a solver or as a pre-
conditioner applied to a complex shifted Laplacian operator is mathematically found to be mesh
independent at a given frequency [14]. Nevertheless, when a multigrid method applied to a shifted
Laplacian operator is considered as a preconditioner for the Helmholtz operator, the convergence
is found to be frequency dependent as observed in [14, 15]. This behaviour occurs independently
of the way the preconditioner is inverted (approximately or exactly). A linear increase in precon-
ditioner applications versus the frequency is usually observed on three-dimensional problems in
heterogeneous media. In practice, preconditioning based on a complex shifted Laplacian operator is
considered nowadays as a successful algorithm for low to medium range frequencies.

At high frequency (or equivalently at large wavenumbers), numerical results on the contrary show
a steep increase in the number of outer iterations (e.g. [14] for a concrete application in seismic
imaging). The analysis of the shifted Laplace preconditioned operator provided in [13] has indeed
shown that the smallest eigenvalues of the preconditioned operator tend to zero as the wavenumber
increases. Hence, it becomes essential to combine this preconditioner with deflation techniques to
yield an efficient numerical method as analysed in [16, 17]. As far as we know, the resulting algo-
rithms have not yet been applied to concrete large-scale applications on realistic three-dimensional
heterogeneous problems. This is indeed a topic of current research most likely due to the complexity
of the numerical method. Alternatives are required and a straightforward choice considered in, for
example, [18, 19] is to apply a multigrid cycle (with a limited number of grids in the hierarchy)
to the Helmholtz operator. In [20], Pinel has proposed a two-grid cycle acting on the Helmholtz
operator where the coarse grid problem is solved only inaccurately by a preconditioned Krylov sub-
space method. A theoretical analysis of this inexact preconditioner has been obtained by rigorous
Fourier analysis [21] and numerical experiments on both homogeneous and heterogeneous prob-
lems have confirmed the theoretical developments. The convergence of the two-grid preconditioned
Krylov subspace method was experimentally found to be mesh independent but still frequency
dependent. This preconditioner has been successfully applied to the solution of huge Helmholtz
problems on three-dimensional problems in heterogeneous media. Indeed numerical results reported
in [20, Chapter 4] have demonstrated that the solution of large Helmholtz problems with billions of
unknowns in seismic was tractable with such a two-grid preconditioned Krylov subspace method.
Since then, this two-grid preconditioner has been applied to the solution of acoustic forward prob-
lems with multiple sources leading to multiple right-hand side problems [22] and to the solution of
linear systems issued from the high-order discretization of the acoustic Helmholtz equation [23].

The numerical method presented in [20] is found to require a reduced number of precondi-
tioner applications, each application being however computationally expensive. Indeed, this cycle
relies on an approximate solution of a coarse problem that is highly indefinite and ill-conditioned.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:663–688
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Efficient algebraic one-level preconditioners to be applied on the coarse level are missing and
advanced strategies should be considered to improve the convergence properties of the two-grid
approach. Hence, we propose to use a multigrid method applied to a shifted Laplacian operator as
a preconditioner when solving the coarse problem. A single cycle of the new resulting method will
then be used as a variable preconditioner for a flexible Krylov subspace method. By combining these
two approaches, we expect an increased robustness of the numerical method and simultaneously a
reduction of the computational cost of the two-grid cycle.

The contribution of this paper will be twofold. First, we will derive a new two-grid preconditioner
for solving Helmholtz problems in three-dimensional heterogeneous media and analyse its proper-
ties by rigorous Fourier analysis. Second, we will show the relevance of the numerical method on a
challenging application in geophysics.

The paper is organized as follows. In Section 2, we introduce the acoustic Helmholtz equation
written in the frequency domain and derive the discrete linear system to be solved in the forward
problem. Then in Section 3, we review two different existing preconditioners on the basis of multi-
grid and combine them to develop the new preconditioner. In Section 4, properties of the combined
preconditioner are analysed by rigorous Fourier analysis. Furthermore, we demonstrate the effec-
tiveness of the proposed algorithm on an academic problem and on a challenging application in
geophysics in Section 5. Finally, we draw some conclusions in Section 6.

Throughout this paper, we denote by k.k2 the Euclidean norm, Ik 2 Ck�k the identity matrix of
order k and �.M/ the spectral radius of a square matrixM . Given a vector d 2Ck with components
di , D D diag.d/ is the diagonal matrix D 2Ck�k such that Di i D di , .16 i 6 k/.

2. THE ACOUSTIC HELMHOLTZ EQUATION IN THE FREQUENCY DOMAIN

In this section, we briefly describe the wave propagation problem associated with acoustic imaging
[24] in geophysics and introduce the mathematical formulation of this problem.

2.1. Mathematical formulation

Given a three-dimensional physical domain �p of parallelepiped shape, the propagation of a
wavefield in a heterogeneous medium can be modelled by the Helmholtz equation written in the
frequency domain [25]:

�

3X
iD1

@2u

@x2i
�
.2�f /2

c2
uD ı.x� s/, xD .x1, x2, x3/ 2�p . (1)

In Equation (1), the unknown u represents the pressure wavefield in the frequency domain, c the
acoustic-wave velocity in m s�1, which varies with position, and f the frequency in Hertz. The
source term ı.x� s/ represents a harmonic point source located at sD .s1, s2, s3/ 2�p . The wave-
length � is defined as �D c=f and the wavenumber as 2�f=c. A popular approach—the Perfectly
Matched Layer (PML) formulation [26, 27]—has been used to obtain a satisfactory near boundary
solution, without many artificial reflections. Artificial boundary layers are then added around the
physical domain to absorb outgoing waves at any incidence angle as shown in [26]. We denote by
�PML the surrounding domain created by these artificial layers. This formulation leads to the fol-
lowing set of coupled partial differential equations (PDE) with homogeneous Dirichlet boundary
conditions imposed on � , the boundary of the domain:

�

3X
iD1

@2u

@x2i
�
.2�f /2

c2
uD ı.x� s/ in �p , (2)

�

3X
iD1

1

�xi .xi /

@

@xi

�
1

�xi .xi /

@u

@xi

�
�
.2�f /2

c2
uD 0 in �PMLn� , (3)

uD 0 on � , (4)
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where the one-dimensional �xi function represents the complex-valued damping function of the
PML formulation in the i th direction, selected as in [28]. The set of Equations (2)–(4) defines the
forward problem related to acoustic imaging in geophysics that will be considered in this paper, and
we note that the proposed numerical method can be applied to other application fields, where wave
propagation phenomena appear as well.

2.2. Finite difference discretization

We use a standard second-order accurate seven-point finite difference discretization of the
Helmholtz problem (2)–(4) on a uniform equidistant Cartesian grid of size nx � ny � n´
(see [20, Appendix A] for a complete description of the discretization). We denote later by h the
corresponding mesh grid size, �h the discrete computational domain and nPML the number of
points in each PML layer. A fixed value of nPML D 10 has been used hereafter. Because a stability
condition has to be satisfied to correctly represent the wave propagation phenomena [29], we con-
sider a standard second-order accurate discretization scheme with 10 points per wavelength. This
implies that the mesh grid size h and the minimal wavelength in the computational domain must
satisfy the following inequality [29]:

h

min.x1,x2,x3/2�h �.x1, x2, x3/
6 1

10
.

Hereafter, we have considered the following condition to determine the step size h, given a certain
frequency f and a heterogeneous velocity field c:

hD
min.x1,x2,x3/2�h c.x1, x2, x3/

10 f
. (5)

The discretization of the forward problem (2)–(4) leads to the following linear system Ah xh D
bh, where Ah 2 Cn�n is a sparse complex matrix, which is non-Hermitian and non-symmetric
because of the PML formulation [20,27,30] and where xh, bh 2Cn represent the discrete frequency-
domain pressure field and source, respectively. The stability condition (5) imposes to solve large
systems of equations at the (usually high) frequencies of interest for the geophysicists, a task that
may be too memory expensive for standard [30, 31] or advanced sparse direct methods exploit-
ing hierarchically semi-separable structure [32, 33] on a reasonable number of cores of a parallel
computer. Consequently, preconditioned Krylov subspace methods are most often considered and
efficient preconditioners must be developed for such indefinite problems. Indeed, due to the
indefiniteness and the ill-conditioning of the matrices Ah, these linear systems are known to be
very challenging for iterative methods [7]. Efficient preconditioners must be then developed, and, in
the last years, several authors have proposed various numerical methods related to this challenging
topic [12, 15, 16, 18, 34–36]. We describe next, in detail, a new iterative method proposed for the
solution of the forward problem related to acoustic imaging.

3. TWO-LEVEL AND MULTI-LEVEL PRECONDITIONED KRYLOV SUBSPACE METHOD

In this section, we briefly discuss two existing preconditioning multilevel strategies for the solu-
tion of wave propagation problems presented in Section 2. Then, we introduce the new two-grid
preconditioner and focus on its algorithmic description.

3.1. Two-grid cycle acting on the Helmholtz operator

We first present the general framework of the two-grid preconditioner that will serve as a basis
for the new method considered in this paper and introduce some notations. The fine and coarse
levels denoted by h and H are associated with discrete grids �h and �H , respectively. Due to the
application in geophysics introduced in Section 2, where structured grids are routinely used, it seems
natural to consider a geometric construction of the coarse grid�H . The discrete coarse grid domain
�H is then deduced from the discrete fine grid domain �h by doubling the mesh size in each

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:663–688
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direction as classically done in vertex-centred geometric multigrid [21]. In the following, we assume
that AH represents a suitable approximation of the fine grid operator Ah on �H . We also introduce
IH
h
W G.�h/ ! G.�H /, a restriction operator, where G.�k/ denotes the set of grid functions

defined on �k . Similarly, I hH W G.�H / ! G.�h/ will represent a given prolongation operator.
More precisely, we select as a prolongation operator, trilinear interpolation and as a restriction its
adjoint, which is often called the full weighting operator [21]. We refer the reader to [37, Section 2.9]
for a complete description of these operators in three dimensions.

The two-grid cycle to be used as a preconditioner is sketched in Algorithm 1, where it is assumed
that the initial approximation ´0

h
is equal to zero on �h, denoted later by 0h. As in [19, 38],

polynomial smoothers based on GMRES [39] have been selected for both pre-smoothing and
post-smoothing phases. Here, a cycle of preconditioned GMRES(ms) on �h involves ms matrix–
vector products with Ah and ms� iterations of damped Jacobi. In the framework of indefinite
Helmholtz problems with homogeneous velocity field, solving only approximately the coarse level
problem has been analysed by rigorous Fourier analysis in [20]. Theoretical developments supported
by numerical experiments have notably shown that solving approximately the coarse level problem
may also lead to an efficient two-grid preconditioner. We refer the reader to [20, Section 3.4] for a
complete description of this analysis on three-dimensional model problems. Finally we note that the
approximation at the end of the cycle ´h can be represented as ´h D T .vh/, where T is a nonlinear
function due both to the use of a polynomial method based on GMRES as a smoother and to the
approximate solution obtained on the coarse grid.

3.2. Multigrid cycle acting on a complex shifted Laplacian operator

A potential drawback of the two-grid cycle acting on the Helmholtz operator presented in Section 3.1
is the indefiniteness of the coarse grid problem, which prevents from deriving an efficient multilevel
method as recognized in [19]. In [11,12], Erlangga et al. have exploited the pioneering idea to define
a preconditioning operator based on a different PDE for which a truly multilevel solution is possible.
In the context of this paper, the corresponding set of equations reads as follows:

�

3X
iD1

@2u

@x2i
� .1C iˇ/

.2�f /2

c2
uD ı.x� s/ in �p , (6)

�

3X
iD1

1

�xi .xi /

@

@xi

�
1

�xi .xi /

@u

@xi

�
� .1C iˇ/

.2�f /2

c2
uD 0 in �PMLn� , (7)

uD 0 on � , (8)
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where the parameter 1C iˇ 2 C is called the complex shift§. We introduce a sequence of l grids
denoted by�1, � � � ,�l (with�l as the finest grid) and of appropriate operators S .ˇ/

k
(k D 1, � � � , l).

Here, S .ˇ/
k

is simply obtained from the second-order finite difference discretization of (6)–(8)

on �k . S .ˇ/
k

is later called the complex shifted Laplacian operator on �k . To describe the algo-
rithm in detail, we denote by I k�1

k
W G.�k/ ! G.�k�1/ a restriction operator from �k to �k�1,

I k
k�1
W G.�k�1/ ! G.�k/ a prolongation operator from �k�1 to �k and C the cycling strategy

(which can be of V , F orW type). The complex shifted multigrid algorithm considered in this paper
is then sketched in Algorithm 2.

In Algorithm 2, the 	 parameter controls the type of cycling strategy of the multigrid hierarchy,
for example, [21]. Trilinear interpolation and full-weighting are used as prolongation and restriction
operators, respectively. An approximate solution on the coarsest level is considered as in the two-
grid approach proposed in Section 3.1. We note that the approximation at the end of the cycle yl can
be represented as yl DMl ,C .wl/ where Ml ,C is a nonlinear function because a Krylov subspace
method (namely preconditioned GMRES(mˇ )) is used as an approximate solver on the coarsest
grid �1.

The multigrid cycle of Algorithm 2 is based on a Jacobi smoother as promoted in [12] and slightly
differs from the original algorithm proposed in [12]. Indeed Erlangga et al. in [12] have used the
matrix-dependent interpolation operator of [40], a Galerkin coarse grid approximation to deduce the
discrete coarse operators and an exact solution on the coarsest grid. For three-dimensional applica-
tions, Erlangga [6] and Riyanti et al. [14] have proposed a multigrid method with a two-dimensional
semi-coarsening strategy combined with line-wise damped Jacobi smoothing in the third direction.
A cycle of multigrid acting on this complex shifted Laplacian operator is then considered as a
preconditioner for the Helmholtz operator, and the theoretical properties of this preconditioner
have been investigated in [13]. Since its introduction, this preconditioning technique based on a
different PDE has been extensively used, see, for example , [14, 15, 34, 36] for applications in
three dimensions.

3.3. Combined cycle

One of the main difficulties related to the two-grid preconditioner presented in Section 3.1 is that the
coarse linear system is strongly indefinite at large wavenumbers because of the stability condition
(5). Consequently, even a loose approximate solution is found to be computationally expensive
to obtain with standard preconditioned Krylov subspace solvers. To circumvent this difficulty,

§In [11], the authors have introduced the complex shifted Laplacian with a negative imaginary part for the shift in the
case of first-order or second-order radiation boundary conditions. Due to the PML formulation considered in this paper,
we have used a shift with positive imaginary part to derive an efficient preconditioner as explained in [20, Section 3.3.2].

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:663–688
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we introduce a multigrid cycle acting on a complex shifted Laplacian operator as a preconditioner
for the coarse grid system AH´H D vH defined on �H . The complex shifted Laplacian operator is
simply obtained by direct coarse grid discretization of Equations (6)–(8) on�H . The new cycle can
be seen as a combination of two cycles defined on two different hierarchies. First, a two-grid cycle
using �h and �H only as fine and coarse levels, respectively, is applied to the Helmholtz operator.
Second, a sequence of grids�k (k D 1, � � � , l) with the finest grid�l defined as�l WD�H is intro-
duced. On this second hierarchy, a multigrid cycle applied to a complex shifted Laplacian operator
S
.ˇ/
H WD S

.ˇ/

l
is then used as a preconditioner when solving the coarse level system AH´H D vH

of the two-grid cycle. The new combined cycle is sketched in Algorithm 3.

The notation Tl ,C uses subscripts related to the cycle applied to the shifted Laplacian operator
(i.e. number of grids l of the second hierarchy and cycling strategy C (which can be of V , F or
W type), respectively). The combined cycle then involves discretization of operators on l C 1 grids
in total. Hence, later in the numerical experiments, we will compare Tl ,C with MlC1,C . Figure 1
shows a possible configuration with a three-grid cycle applied to the shifted Laplacian operator. The
combined cycle is related to the recursively defined K-cycle introduced in [41]. Nevertheless, we
note that the combined cycle relies on a preconditioning operator on the coarse level that is differ-
ent from the original operator. The approximation at the end of the cycle ´h can be represented as
´h D Tl ,C .vh/, where Tl ,C is a nonlinear function obtained as a combination of functions intro-
duced in Sections 3.1 and 3.2, respectively. Consequently, this cycle leads to a variable nonlinear
preconditioner, which must be combined with an outer flexible Krylov subspace method [42, 43]

Ω3

Ω2

Ω1

Ωh

ΩH

A H zH = H A H zH H

used as a preconditioner when solving
Cycle applied to the complex shifted Laplace operator S ( )

3 S ( )
H

Cycle applied to the Helmholtz operator

=

=

Figure 1. Combined cycle applied toAh´h D vh sketched in Algorithm 3. Case of T3,F . The two-grid cycle
is applied to the Helmholtz operator (left part), whereas the three-grid cycle, to be used as a preconditioner
when solving the coarse grid problem AH´H D vH , is shown on the right part. This second multigrid cycle

acts on the shifted Laplacian operator with ˇ as a shift parameter.
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and [44, Chapter 10]. We have selected an outer Krylov subspace method of minimum residual
type, namely flexible GMRES (FGMRES(m)) [45]. This choice allows us to characterize effec-
tively the quality of the preconditioner even on realistic problems at a cheap cost as discussed later
in Section 5.3.

4. FOURIER ANALYSIS OF MULTIGRID PRECONDITIONERS

In this section, we provide a two-grid rigorous Fourier analysis to select appropriate relaxation
parameters in the smoother and to understand the convergence properties of the two-grid methods
used as a preconditioner introduced in Section 3. For this analysis only, we consider a two-grid
method based on a Jacobi smoother, standard coarsening, full-weighting, trilinear interpolation and
exact solution on the coarse grid, applied to a model problem of Helmholtz type. We refer the reader
to [21, 46] for the theoretical foundations of rigorous Fourier analysis.

4.1. Rigorous Fourier analysis

Notation. Throughout Section 4, we consider the complex shifted Laplace equation with a uni-
form wavenumber given by k D 2�f=c on the unit cube � D Œ0, 1
3 and homogeneous Dirichlet
boundary conditions on the boundary of the domain:

��u� �2ˇuD g in �, (9)

uD 0 on @�, (10)

with �ˇ defined as �2
ˇ
D .1C ˇi/k2, where ˇ denotes a real parameter lying in Œ0, 1
. A classical

tool in multigrid theory to deduce some information about the two-grid convergence rate is based
on a rigorous Fourier analysis (RFA) [37, Section 3.3.4]. To perform this analysis, we introduce
some additional notations. First, we discretize the model problem (9) and (10) on a uniform mesh of
step size ~ D 1=n~ . We denote by L.ˇ/~ the corresponding discrete operator on the considered fine
grid �~ D G~ \ Œ0, 1
3 where G~ is the infinite grid and by D.ˇ/

~ the matrix corresponding to the
diagonal part of L.ˇ/~ . The discrete eigenfunctions of L.ˇ/~ :

'l1,l2,l3
~ .x,y, ´/D sin.l1�x/ sin.l2�y/ sin.l3�´/ with l1, l2, l3 D 1, : : : ,n~�1 and .x,y, ´/ 2�~ ,

generate the space of all fine grid functions, F.�~), and are orthogonal with respect to the discrete
inner product on �~ :

.v~ ,w~/ WD ~
3

X
.x,y,´/2�~

v~.x,y, ´/w~.x,y, ´/ with v~ ,w~ 2 F.�~/.

The space of all fine grid real-valued functions F.�~) can be divided into a direct sum of (at most)
eight-dimensional subspaces—called the 2~-harmonics [37, Equation (3.4.1)]—

El1,l2,l3
~ D span

h
'l1,l2,l3
~ ,�'n~�l1,n~�l2,n~�l3

~ ,�'n~�l1,l2,l3
~ ,'l1,n~�l2,n~�l3

~ ,

�'l1,n~�l2,l3
~ ,'n~�l1,l2,n~�l3

~ ,�'l1,l2,n~�l3
~ ,'n~�l1,n~�l2,l3

~

i
,

for l1, l2, l3 D 1, � � � ,n~=2.

The dimension of El1,l2,l3
~ , denoted by l1,l2,l3

~ , is eight, four, two and one if zero, one, two or three
of the indices l1, l2, l3 is equal to n~=2, respectively. Similarly as on the fine grid �~ , we introduce
the discrete eigenfunctions of the coarse grid operator L.ˇ/2~ on the space of all coarse grid functions
F.�2~/ with �2~ DG2~ \ Œ0, 1
3:

'
l1,l2,l3
2~ .x,y, ´/D sin.l1�x/ sin.l2�y/ sin.l3�´/, with l1, l2, l3 D1, : : : ,

n~

2
�1 and .x,y, ´/2�2~ .
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E
l1,l2,l3
2~ is then defined as span

h
'
l1,l2,l3
2~

i
because the eigenfunctions of L2~ coincide up to their

sign on �2~ for l1, l2, l3 D 1, � � � ,n~=2 [37]. We denote later by ` the multi-index ` D .l1, l2, l3/,
by L~ D f` j1 6 max.l1, l2, l3/ < n~=2g and by H~ D f` jn~=2 6 max.l1, l2, l3/ < n~g the sets of
multi-indices corresponding to the low-frequency and high-frequency harmonics, respectively. We
also define the set LD~ D f` j1 6 max.l1, l2, l3/ 6 n~=2g. Later in this section, the Fourier repre-
sentation of a given discrete operator M~ is denoted by cM ~ and the restriction of cM ~ to E`~ with
` 2 L~ is noted cM ~.`/ D cM ~jE`~

in short. The Fourier representation of the discrete Helmholtz

operator L.ˇ/~ and the Jacobi iteration matrix J .ˇ/~ are denoted bL.ˇ/~ andbJ .ˇ/~ , respectively. To write
the Fourier representation of these operators in a compact form, we also introduce the �i parameters

such that �i D sin2
�
li�~
2

�
for i D 1, 2, 3. Finally, we denote by ~ D h the finest mesh grid size

considered, nh the corresponding number of points per direction and k~ the wavenumber on the grid
with mesh size ~.

4.2. Smoothing analysis

The multigrid method acting on a complex shifted Laplacian operator presented in Algorithm 2 is
based on a Jacobi smoother as used in [12] in two dimensions. Indeed in [12], it has been numer-
ically shown that this method enjoys good smoothing properties on all the grids of the hierarchy
when the relaxation parameters !~ are well chosen. In Proposition 1, we give the Fourier repre-
sentation of the Jacobi iteration matrix J .ˇ/~ applied to the complex shifted Laplacian matrix L.ˇ/~ .
Then, we derive related smoothing factors and by numerical experiments we deduce appropriate
damping parameters to obtain good smoothing properties in three dimensions.

Proposition 1
The harmonic spaces E`~ for ` 2 LD~ are invariant under the Jacobi iteration matrix J .ˇ/~ D I~ �

!~

�
D
.ˇ/
~

��1
L
.ˇ/
~

�
J
.ˇ/
~ WE`~ �!E`~ , for ` 2 LD~

�
. The operator J .ˇ/~ is orthogonally equivalent

to a block diagonal matrix of (at most) 8� 8 blocks defined as

bJ .ˇ/~ .`/D I�`~ �

�
!~~

2

6� .�ˇ~/2

�bL.ˇ/~ .`/, ` 2 LD~ , (11)

where bL.ˇ/~ denotes the representation of the complex shifted Laplacian operator L.ˇ/~ with respect
to the space E`~ and `~ the dimension of E`~ , respectively. With notation introduced in Section 4.1,

if ` 2 L~ , the representation of bL.ˇ/~ with respect to E`~ is a diagonal matrix defined as

bL.ˇ/~ .`/D diag

0BBBBBBBBBBBBBB@

4

~2

0BBBBBBBBBBB@

.�1C �2C �3/

.3� �1 � �2 � �3/

.1� �1C �2C �3/

.2C �1 � �2 � �3/

.1C �1 � �2C �3/

.2� �1C �2 � �3/

.1C �1C �2 � �3/

.2� �1 � �2C �3/

1CCCCCCCCCCCA

��2
ˇ

��2
ˇ

��2
ˇ

��2
ˇ

��2
ˇ

��2
ˇ

��2
ˇ

��2
ˇ

1CCCCCCCCCCCCCCA
, ` 2 L~ . (12)

If one of the indices of ` equals n~=2, bL.ˇ/~ .`/ degenerates to a diagonal matrix of dimension
`~ . Its entries then correspond to the first `~ entries of the matrix given on the right-hand side of
relation (12).

Proof
Obviously, because the eigenfunctions spanningE`~ are eigenfunctions ofL.ˇ/~ , the harmonic spaces

E`~ (` 2 L~) are invariant under L.ˇ/~ , and hence invariant under J .ˇ/~ . The representation of L.ˇ/~
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with respect to the harmonic space E`~ is obtained by writing the eigenvalues of the basis functions
of E`~ in terms of �i , a straightforward calculation that only involves trigonometric identities. �

The representation of the Jacobi iteration matrix in the Fourier space obtained in Proposition 1
allows us to easily investigate its smoothing properties, that is to compute the smoothing factor
� versus various parameters (ˇ, mesh grid size ~, wavenumber k~ and relaxation parameter
!~ , respectively). With � denoting the number of relaxation sweeps, the smoothing factor
�.ˇ, ~, k~ ,!~/ is defined as follows [47]:

�.ˇ, ~, k~ ,!~/D max
`2LD~

ˇ̌̌̌�
�
�bQ~.`/

�bJ .ˇ/~ .`/
���1=� ˇ̌̌̌

, (13)

where bQ~ is the matrix representation of a projection operator that annihilates the low-frequency
error components and leaves the high-frequency components unchanged [21], for example,bQ~.`/ D diag..0, 1, 1, 1, 1, 1, 1, 1/T / for ` 2 L~ . In addition, if we assume that �ˇ~ (or similarly
k~~) is a given constant (which is the case in practice due to the stability condition to be satisfied),
it is then possible to deduce the supremum �?.ˇ, ~, k~ ,!~/ of the smoothing factor over ~ as

�?.ˇ, ~, k~ , ,!~/Dmax

(
j1�!~

2� �2
ˇ
~2

6� �2
ˇ
~2
j, j1�!~

12� �2
ˇ
~2

6� �2
ˇ
~2
j

)
, (14)

or similarly:

�?.ˇ, ~, k~ ,!~/Dmax

�
j1�!~ C

4!~

6� .1C iˇ/k2~~
2
j, j1�!~ �

6!~

6� .1C iˇ/k2~~
2
j

�
. (15)

For a fixed value of k~~, this formula can then give guidance in choosing the optimal relaxation
parameters and in understanding how the optimal value of the relaxation parameter !?~ depends on
k~~ and on ˇ, respectively. Indeed, a simple calculation gives the real-valued optimal relaxation
parameter as

!?~ D 1�
1

7� k2~~
2

.

We notice that the optimal value of the relaxation parameter does not depend on the shift parameter
ˇ, and note that we recover the optimal relaxation parameter and the supremum of the smoothing
factor of the Jacobi method for the Poisson equation in three dimensions when k~ is set to zero
[37, Section 2.9.2].

Fourier results. We select two relaxation sweeps (� D 2) in the Jacobi method and compute the
smoothing factor �.ˇ, ~, k~ ,!~/ for different values of the shift parameter ˇ, !~ on four consec-
utive grids in the multigrid hierarchy (~ D h, ~ D 2h, ~ D 4h, ~ D 8h)(Figure 2). The selected

wavenumbers satisfy the relation¶ k~ D
nh

n~

�

5h

�
or similarly k~ D

~

h

�

5h

�
, and we consider the

case of nh D 512 on the finest grid.
From Figure 2, we observe a similar behaviour as was obtained in the two-dimensional case

in [12, 19]. Smoothing difficulties do occur neither on the fine grid nor on the coarsest grid of
the multigrid hierarchy but on intermediate grids only. Indeed, when ~ D 4h (bottom left part of
Figure 2), smoothing factors less than one cannot be obtained unless using a complex shifted Laplace
operator with ˇ � 0.4. Consequently—and in agreement with the discussion provided in [12] in
the two-dimensional case—we have decided to fix the shift parameter to ˇ D 0.5. According to
Figure 2, this choice leads us to consider the following relaxation parameters: !h D 0.8, !2h D 0.8,
!4h D 0.2, !8h D 1 or in short

.!h,!2h,!4h,!8h/D .0.8, 0.8, 0.2, 1/. (16)

¶This corresponds to the stability condition (5) on the finest grid and to practical situations of interest on the other coarse
grids of the hierarchy.
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Figure 2. Smoothing factors �.ˇ, ~, k~ ,!~/ of the Jacobi method (Equation (13)) versus ˇ and !~
considering two relaxation sweeps (� D 2) on four different grids (~ D h, ~ D 2h, ~ D 4h, ~ D 8h)
on the model problem (9) and (10). Case of ~ D h (top left), ~ D 2h (top right), ~ D 4h (bottom left) and

~ D 8h (bottom right). The wavenumber k~ is defined as k~ D
nh

n~

�

5h
with nh D 512.

Table I. Optimal smoothing factors �?.ˇ, ~, k~ ,!~/ and optimal
relaxation parameters !?~ versus ~ on the model problem (9) and
(10) for two values of the shift parameter ˇ. The wavenumber k~ is

defined as k~ D
nh

n~

�

5h
with h designing the stepsize of the finest

grid (nh D 512).

ˇ D 0 ˇ D 0.5

~ �?.ˇ, k~~,!?~ / !?~ �?.ˇ, k~~,!?~ / !?~

h 0.757 0.848 0.756 0.848
2h 0.922 0.815 0.908 0.815
4h > 1 0.918 0.193
8h 0.274 1.055 0.231 1.055

These relaxation parameters will be selected in Section 5, and we note that they are close to the
optimal values based on (15) given in Table I.

Finally, it has been shown that reasonably good smoothing factors for the Jacobi smoother can be
obtained on all the grid hierarchy for the complex shifted Laplacian operator in three dimensions;
see also [48], where a local Fourier analysis of the damped Jacobi method is performed on the com-
plex shifted Laplacian in one and two dimensions. With the selected relaxation parameters, we now
investigate the spectrum of preconditioned Helmholtz matrices.
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4.3. Fourier analysis of preconditioned Helmholtz operator

As shown in [47], the rigorous Fourier analysis can also provide the spectrum of a two-grid
preconditioned operator inexpensively. This feature is notably quite helpful when analysing the
convergence of a given preconditioned Krylov subspace method, here restarted GMRES. Next, we
will perform this analysis not only on the fine level (~ D h) to characterize the quality of the
two-grid preconditioners but also on the second level (~ D 2h) where preconditioners proposed in
Algorithms 2 and 3 will be investigated. We first briefly describe how to deduce the representation
of these preconditioned operators in the Fourier space.

4.3.1. Iteration matrix of a two-grid cycle.

Assumptions on the components of the cycle. In this paragraph, we assume that both the fine grid
operator and the smoother leave the spacesE`~ invariant for ` 2 LD~ . As shown in Proposition 1,L.ˇ/~
and the corresponding Jacobi iteration matrix J .ˇ/~ do satisfy this invariance property. Furthermore,
we assume that the transfer operators I 2~~ , I ~2~ satisfy the following relations:

I 2~~ WE
`
~ ! span

h
'`2~

i
, I ~2~ W span

h
'`2~

i
!E`~ , for ` 2 L~ . (17)

and that the coarse discretization operator leaves the subspace spanŒ'`2~ 
 invariant for ` 2 L~ . We

note that the discrete coarse Helmholtz matrix L.ˇ/2~ satisfies this last property and that the trilinear
interpolation and its adjoint also satisfy relation (17) [37].

Proposition 2
If the previous assumptions are satisfied, the iteration matrix of the two-grid cycle (M .ˇ/

~ W E`~ �!

E`~ , for ` 2 LD~ ) leaves the spaces of 2~-harmonics E`~ with an arbitrary ` 2 LD~ invariant. The

Fourier representation of the two-grid iteration matrix M .ˇ/
~ is as a block-diagonal matrix of (at

most) 8� 8 blocks defined as follows:

cM .ˇ/
~ .`/D

�bJ .ˇ/~ .`/
�� bK.ˇ/~,2~.`/

�bJ .ˇ/~ .`/
��

for ` 2 LD~ , (18)

with bK.ˇ/~,2~.`/ D I8 � Œc d
T 
=ƒ

.ˇ/
2~ if ` 2 L~ , where ƒ.ˇ/2~ D

4
~2
..1 � �1/�1 C .1 � �2/�2 C

.1� �3/�3/� �
2
ˇ

and c 2R8 , d 2C8, are defined as follows:8̂<̂
:
c1 D .1� �1/.1� �2/.1� �3/, c2 D �1�2�3, c3 D �1.1� �2/.1� �3/, c4 D .1� �1/�2�3,

c5 D .1� �1/�2.1� �3/, c6 D �1.1� �2/�3, c7 D .1� �1/.1� �2/�3, c8 D �1�2.1� �3/,

d DbL.ˇ/~ .`/ c, where bL.ˇ/~ .`/ is defined in Equation (12).

If one of the indices of ` is equal to n~=2, bK.ˇ/~,2~.`/ is reduced to the identity matrix of
dimension `~ .

Proof
Under the assumptions given earlier, it is straightforward to prove that the iteration matrix of the
two-grid cycle leavesE`~ for ` 2 LD~ invariant. We obtain formula (18) by just combining the Fourier
representation of each of its components. The complete details of these trigonometric calculations
can be found in [20, Section 3.3.1]. �

4.3.2. Fourier representation of preconditioned Helmholtz operator. In this paragraph, we con-
sider the solution of the following linear system L

.�L/
~ y~ D w~ with a given Krylov subspace

method. The corresponding matrix L.�L/~ is a possibly complex shifted Laplacian matrix with

�2�L D .1 C i�L/k
2
~ 2 C, k~ D

nh

n~

�

5h
, where ~ is the mesh grid size and �L denotes a shift

parameter lying in Œ0, 1
 . The preconditioning matrix can be a two-grid iteration matrix M .�p/
~ or a
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Jacobi iteration matrix J .�p/~ , both applied to a possibly complex shifted Laplacian operator L.�p/~

with �2�p D .1C i�p/k
2
~ , where �p denotes a shift parameter lying in Œ0, 1
. Each preconditioning

step requires an approximate solution of the linear systemL
.�p/
~ ´~ D v~ . If one cycle of a geometric

two-grid method is used to approximate the inverse of L.�p/~ , we denote by Ã�1~ .�p/ this approx-
imation. Similarly, if � relaxation sweeps of a Jacobi method are used to approximate the inverse

of L.�p/~ , we denote by ‡�1~ .�p/ this approximation. The convergence of the Krylov subspace

method with right preconditioning is partly related to the spectra of the matrices L.�L/~ Ã�1~ .�p/
or L.�L/~ � �1~ .�p/. As shown in [47], the iteration matrices of both preconditioning phases
correspond to

M
.�p/
~ D

�
I~ �Ã�1~ .�p/ L

.�p/
~

�
or Ã�1~ .�p/ L

.�p/
~ D I~ �M

.�p/
~ , (19)

J
.�p/
~

�
D
�
I~ ��

�1
~ .�p/ L

.�p/
~

�
or � �1~ .�p/ L

.�p/
~ D I~ � J

.�p/
~

�
. (20)

From (19) and (20), the following relations can be easily deduced :

L.�L/~ Ã�1~ .�p/D L.�L/~

�
I~ �M

.�p/
~

� �
L
.�p/
~

��1
, (21)

L.�L/~ � �1~ .�p/D L
.�L/
~

�
I~ � J

.�p/
~

�� �
L
.�p/
~

��1
. (22)

Remark. Since all operators in Equation (21) are block diagonal in the Fourier space (see
Propositions 1 and 2, respectively), the spectrum of L.�L/~ Ã�1~ .�p/ is obtained by solving
eigenvalue problems of small dimension only (8 at most). This is inexpensive. We also remark
that the Fourier representation of L.�L/~ � �1~ .�p/ is a diagonal matrix (Proposition 1), its spectrum
is then obtained straightforwardly.

4.3.3. Fourier results.

Fine level ~ D h—Figure 3. We first analyse the spectrum of L.�L/
h
Ã�1
h
.�p/ for �L D 0 (i.e. the

Helmholtz operator) with two different preconditioners. We will consider the case of a precondi-
tioner on the basis of a two-grid method acting either on the Helmholtz operator (�p D 0) or on

a complex shifted Laplacian operator (�p D 0.5). The corresponding spectra of L.0/
h
Ã�1
h
.0/ and

L
.0/

h
Ã�1
h
.0.5/ are shown in Figure 3.

Figure 3. Spectra of L.0/
h
Ã�1
h
.�p/ for two different two-grid preconditioners (�p D 0, !h D 0.8, � D 2)

(left part) and (�p D 0.5, !h D 0.8, � D 2) (right part), with h D
1

256
for a wavenumber such as

kh D �=.5h/. Note the different scales used in both figures.
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Using the two-grid method on the Helmholtz operator leads to a spectrum with a cluster around
.1, 0/ in the complex plane with relatively a few isolated eigenvalues with both positive and nega-
tive real parts (left part of Figure 3). When the two-grid method is applied to the complex shifted
Laplacian matrix, the spectrum shown on the right part of Figure 3 is lying in the positive real part
of the complex plane only with relatively few eigenvalues close to zero (less than 0.1% of the spec-
trum is located inside the disc of radius 0.1 centred at the origin). Moreover, it has to be noticed
that the shapes of these spectra are similar to those obtained in two dimensions; see Figure 1 in
[49] for the Helmholtz matrix and Figure 7 in [12] (up to a symmetry with respect to the x-axis)
for the complex shifted Laplacian matrix, respectively. Both spectra relatively look in favour of
the convergence of a Krylov subspace method as will be confirmed by numerical experiments on a
homogeneous Helmholtz problem in Section 5.2.

Coarse level ~ D 2h—Figure 4. We now study the preconditioner properties on the coarse level
in a two-grid method acting on the Helmholtz problem. More precisely, we consider two different
preconditioners to solve the indefinite coarse problem approximately. First, two iterations (� D 2) of
damped Jacobi with !2h D 0.8 are used as a preconditioner of the coarse Helmholtz matrix (step 3
of Algorithm 1). The spectrum of L.0/

2h
� �1
2h
.0/ is shown on the left part of Figure 4. Second, a com-

plex shifted multigrid method is used to solve approximately the coarse Helmholtz problem (step
3 of Algorithm 3). The spectrum of the preconditioned coarse Helmholtz matrix L.0/

2h
Ã�1
2h
.0.5/ is

shown on the right part of Figure 4.
If we compare the two plots related to the complex shifted multigrid preconditioner (right parts of

Figures 3 and 4, respectively), we remark that both spectra have a similar curved shape. Most of the
eigenvalues have a real part located between 0. and 1.2, whereas only a few outliers have a negative
real part close to zero. A similar behaviour in terms of convergence is then expected on both fine and
coarse levels when such a preconditioner is used. On the opposite, the Jacobi coarse preconditioner
acts quite differently. No cluster appears in the spectrum shown on the left part of Figure 4 and
even worse the real part of the eigenvalues is located between 0 and 2 million with a few outliers
having a negative real part close to zero. This spread of eigenvalues in the spectrum may strongly
penalize the convergence of GMRES on the coarse level (~ D 2h). Consequently, according to both
spectra shown in Figure 4, the preconditioner based on a cycle of multigrid applied to a complex
shifted Laplacian operator seems to be a more appropriate choice to solve the coarse Helmholtz
problem approximately.

Coarse level ~ D 4h—Figure 5. We conclude this analysis by studying the properties of the Jacobi
preconditioner on the coarsest level (~ D 4h) in a complex shifted multigrid cycle (step 3 of
Algorithm 2). The spectrum of L.�L/

4h
� �1
4h
.�p/ is shown in Figure 5 for �L D �p D 0.5 with

Figure 4. Spectrum of L.0/
2h
��1
2h
.�p/ (�p D 0, !r D 0.8, � D 2) (left part) and of L.0/

2h
Ã�1
2h
.�p/

(�p D 0.5, !2h D 0.8, � D 2) (right part), with hD
1

256
for a wavenumber k2h such that k2h D 2�=.5h/.

Note the different scales used in both figures.
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Figure 5. Spectrum of L.�L/
4h

‡�1
4h
.�p/, with �L D �p D 0.5, !4h D 0.2, � D 2, h D

1

256
on a 643 grid

with k4h D 4�=.5h/.

� D 2 relaxation sweeps of damped Jacobi (!4h D 0.2) as a preconditioner. This spectrum looks in
favour of the convergence of GMRES. Indeed the preconditioned matrix L.0.5/

4h
� �1
4h
.0.5/ is actually

a positive definite complex matrix and satisfies a sufficient condition to ensure the convergence of
GMRES [50, Theorem 6.30].

4.4. Rigorous Fourier analysis for operators with variable coefficients

In this subsection, we consider only the complex shifted Laplace equation now with smoothly vari-
able coefficients on the unit cube � D Œ0, 1
3 and homogeneous Dirichlet boundary conditions on
the boundary of the domain:

�

3X
iD1

1

�xi .xi /

@

@xi

�
1

�xi .xi /

@u

@xi

�
� �2ˇuD g in �, (23)

uD 0 on @�. (24)

This model problem aims at representing the partial differential equation to be solved when using
the PML formulation. We denote by L.ˇ/~ .x/ and D.ˇ/

~ .x/ the discretized operator with variable
coefficients on the considered fine grid �~ and its diagonal part, respectively. A direct application
of rigorous Fourier analysis is not possible for PDE with variable coefficients [37,51]. The smooth-
ing factor indeed becomes x-dependent. However, the analysis can be applied to the locally frozen
operator L.ˇ/~ .xf / at a fixed grid point xf 2� of coordinates (xf1 , xf2 , xf3): it reduces to perform
the rigorous Fourier analysis on the operator with frozen coefficients. To perform such analysis, we
now assume that the finite difference stencil notation of the discretized operator L.ˇ/~ .xf / can be
written as

L
.ˇ/

~,.0/.xf /D
1

~2

24 ��2
��1 2.�1C �2C �3/� .�ˇ~/

2 ��1
��2

35
L
.ˇ/

~,.�1/.xf /D
1

~2

24 ��3

35 , L
.ˇ/

~,.1/.xf /D
1

~2

24 ��3

35
with �i 2C .i D 1, 2, 3/ defined as 1=.�2xi .xfi //. First, we extend Proposition 1 to the case of PDE
with variable coefficients.
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4.4.1. Smoothing factor.

Proposition 3
At a given point xf 2 �~ the harmonic spaces E`~ for ` 2 LD~ are invariant under the Jacobi itera-

tion matrix J .ˇ/~ .xf /D I~ �!~.D
.ˇ/
~ .xf //

�1L
.ˇ/
~ .xf / (J .ˇ/~ .xf / WE

`
~ �!E`~ , for ` 2 LD~ ). The

operator J .ˇ/~ .xf / is orthogonally equivalent to a block diagonal matrix of (at most) 8 � 8 blocks
defined as

bJ .ˇ/~ .`, xf /D I�`~ �

�
!~~

2

2.�1C �2C �3/� .�ˇ~/2

�bL.ˇ/~ .`, xf /, ` 2 LD~ , (25)

where bL.ˇ/~ .xf / denotes the representation of the complex shifted Laplacian operator L.ˇ/~ .xf /

with respect to the space E`~ at point xf and `~ the dimension of E`~ , respectively. With notation

introduced in Section 4.1, if ` 2 L~ , the representation of bL.ˇ/~ .xf / with respect to E`~ is a diagonal
matrix defined as

bL.ˇ/~ .`, xf /D diag

0BBBBBBBBBBBBBB@

4

~2

0BBBBBBBBBBB@

.�1�1C �2�2C �3�3/

.�1.1� �1/C �2.1� �2/C �3.1� �3//

.�1.1� �1/C �2�2C �3�3/

.�1�1C �2.1� �2/C �3.1� �3//

.�1�1C �2.1� �2/C �3�3/

.�1.1� �1/C �2�2C �3.1� �3//

.�1�1C �2�2C �3.1� �3//

.�1.1� �1/C �2.1� �2/C �3�3/

1CCCCCCCCCCCA

��2
ˇ

��2
ˇ

��2
ˇ

��2
ˇ

��2
ˇ

��2
ˇ

��2
ˇ

��2
ˇ

1CCCCCCCCCCCCCCA
. (26)

If one of the indices of ` equals n~=2, bL.ˇ/~ .`, xf / degenerates to a diagonal matrix of dimension
`~ . Its entries then correspond to the first `~ entries of the matrix given on the right-hand side of
relation (26).

Proof
This can be obtained by using trigonometric identities as in Proposition 1. �

The worst-case smoothing factor �wc.ˇ, ~, k~ ,!~/ is then defined as

�wc.ˇ, ~, k~ ,!~/D max
xf 2�

�.ˇ, ~, k~ ,!~ , xf /,

D max
xf 2�

max
`2LD~

j.�.bQ~.`/ .bJ .ˇ/~ .`, xf //
�/
1=�
j.

As an illustration, Figure 6 shows the smoothing factors at a selected point xf chosen in the PML
layer such as 1=�j D .1C i cos.3�=8//2, .j D 1, 2, 3/ (with a PML function selected as in [28])
for different values of ˇ on four different grids (~ D h, ~ D 2h, ~ D 4h, ~ D 8h, respectively)

with a wavenumber defined as k~ D
nh

n~

�

5h
with nh D 512. For such a choice of the �j coeffi-

cients, we note that smoothing factors less than one can be obtained on the intermediate coarse grid
~ D 4h whatever ˇ. When ˇ is set to 0.5, Table II reveals that reasonable worst-case values of the
smoothing factors can be obtained on the different grids as in Section 4.2. On the other hand, for the
considered combination of !~ , k~ and ~, it is possible to obtain worst-case values of the smoothing
factor greater than one when ˇ is equal to 0; this justifies the use of a Krylov acceleration procedure
as a smoother, as recommended in [19].
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Figure 6. Smoothing factors �.ˇ, ~, k~ ,!~ , xf / of the Jacobi method versus ˇ and !~ considering 2
relaxation sweeps (� D 2) on four different grids (~ D h, ~ D 2h, ~ D 4h, ~ D 8h) on the model problem
(23) and (24). Case of ~ D h (top left), ~ D 2h (top right), ~ D 4h (bottom left) and ~ D 8h (bottom

right). The wavenumber k~ is defined as k~ D
nh

n~

�

5h
with nh D 512. Case of 1=�j D .1C i cos.3�=8//2,

.j D 1, 2, 3/.

Table II. Computed worst-case smoothing factors
�wc.ˇ, ~, k~ ,!~/ for the model problem (23) and (24)
for two values of ˇ versus ~. The wavenumber k~ is

defined as k~ D
nh
n~

�
5h

with nh D 512.

ˇ D 0 ˇ D 0.5

~ �wc.ˇ, ~, k~ ,!~/ !~ �wc.ˇ, ~, k~ ,!~/ !~

h 0.791 0.8 0.770 0.8
2h > 1 0.8 0.914 0.8
4h > 1 0.2 0.918 0.2
8h 0.310 1 0.260 1

4.5. Conclusions

To conclude, we have selected, with the rigorous Fourier analysis, appropriate relaxation parameters
in the Jacobi method that lead to acceptable smoothing factors on all the grids of a complex shifted
multigrid method in three dimensions (Figure 3). As a new result, we have shown the suitability of
the complex shifted multigrid preconditioner on the coarse level of a combined two-grid method
(left part of Figure 4). Finally, we have also demonstrated the good preconditioning properties of
a Jacobi preconditioner on the coarsest level of a complex shifted multigrid (Figure 5). Although
rigorous Fourier analysis corresponds to a simplified analysis, numerical experiments detailed in
Section 5 will support these conclusions.
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5. NUMERICAL EXPERIMENTS ON THREE-DIMENSIONAL PROBLEMS

We investigate the performance of the various preconditioners presented in Section 3 combined with
Flexible GMRES(m) for the solution of the acoustic Helmholtz problem (2)–(4) on a homogeneous
problem and on a realistic heterogeneous velocity model.

5.1. Settings

In the two-grid cycle of Algorithm 1, we consider as a smoother the case of one cycle of GMRES(2)
preconditioned by two iterations of damped Jacobi (# D 1,ms D 2 and � D 2), a restarting parame-
ter equal tomc D 10 for the preconditioned GMRES method used on the coarse level and a maximal
number of coarse cycles equal to #c D 10. In the complex shifted multigrid cycle of Algorithm 2, we
use a shift parameter equal to ˇ D 0.5 and two iterations of damped Jacobi as a smoother (�ˇ D 2).
On the coarsest level, we consider, as an approximate solver, one cycle of GMRES(10) precondi-
tioned by two iterations of damped Jacobi (#ˇ D 1,mˇ D 10 and �ˇ D 2). The previous parameters
have also been used in Algorithm 3, exception made for #c set to 2. Finally, the relaxation coeffi-
cients considered in the Jacobi method have been determined by rigorous Fourier analysis and are
given by relation (16).

We consider a value of the restarting parameter of the outer Krylov subspace method equal to
m D 5 as in [20, 22] (see the first remark given in Section 5.3 for further comments). The unit
source is located at .s1, s2, s3/ D .h nx1=2, h nx2=2, h .nPML C 1// where,for example, nx1
denotes the number of points in the first direction. A zero initial guess x0

h
is chosen and the iter-

ative method is stopped when the Euclidean norm of the residual normalized by the Euclidean norm
of the right-hand side satisfies the following relation:

jjbh �Ahxhjj2

jjbhjj2
6 10�5. (27)

The numerical results have been obtained on Babel, an IBM Blue Gene/P computer located at IDRIS
(each node of Babel is equipped with 4 PowerPC 450 cores at 850 Mhz) using a Fortran 90 imple-
mentation with MPI [52] in complex single precision arithmetic (see [37, Chapter 6] for the practical
aspects related to the parallelization of geometric multigrid). Physical memory on a given node
(four cores) of Babel is limited to 2 GB. This code was compiled by the IBM compiler suite with
the best optimization options and linked with the vendor BLAS and LAPACK subroutines.

5.2. Homogeneous velocity field

We consider the case of a homogeneous velocity field in a reference domain Œ0, 1
3 as a first
benchmark problem. The step size of the Cartesian mesh of type n3

h
is given by h D 1=nh and

a uniform wavenumber k is imposed such that kh D �=5 as stated in relation (5). Consequently,
large wavenumbers are obtained when the step size h is small. Table III collects the number of pre-
conditioner applications (Prec), computational times (T) and maximal requested memory (M) for
the various preconditioners investigated in Section 3: a two-grid preconditioner (T ), two four-grid
complex shifted preconditioners (M4,V and M4,F ) and three variants of two-grid cycles with com-
plex shifted two-grid cycle (T2,V ) or three-grid cycles (T3,V and T3,F ) as a coarse preconditioner,
respectively. Finally the number of cores (# Cores) is selected such that the dimension of the local
problem on the finest grid is fixed for a given strategy in these numerical experiments.

The number of preconditioner applications (Prec) is found to grow almost linearly with the
wavenumber, whatever the preconditioning strategies. This behaviour has already been pointed out
in [12, 14, 15, 53] for the complex shifted preconditioner in two-dimensional and three-dimensional
applications, when addressing problems of smaller dimension, however. We note that the two-grid
cycles used as a preconditioner usually require a moderate number of preconditioner applications
(each application being however computationally expensive). As expected, using the combined
cycles (T2,V , T3,V or T3,F ) leads to a significant decrease in terms of computational times with
respect to the two-grid preconditioner (T ) initially proposed in [20]: a reduction factor of at least
1.5 is obtained even at high wavenumbers. This can be considered as a noticeable improvement.
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Table III. Preconditioned flexible methods for the solution of the Helmholtz equation for
the homogeneous velocity field. Case of a second-order discretization with 10 points per
wavelength such that kh D �=5. Case of two-grid (T ), of complex shifted multigrid cycles
(M4,V , M4,F ) and of combined cycles (T2,V , T3,V and T3,F ) applied as a preconditioner

of FGMRES(5).

Homogeneous velocity field

Grid # Cores Prec T (s) M (GB) Prec T (s) M (GB)

T T2,V

1283 1 18 455 0.3 17 309 0.3
2563 8 29 790 2.4 28 552 2.4
5123 64 49 1354 19.2 52 1047 19.5
10243 512 92 2588 154.0 100 2067 155.7
20483 4096 228 6593 1232.0 207 4447 1245.5

M4,V M4,F

1283 1 95 251 0.3 125 372 0.3
2563 8 180 505 2.0 180 573 2.0
5123 64 355 1026 16.4 339 1107 16.4
10243 512 696 2112 130.8 635 2165 130.8
20483 4096 1415 4644 1046.8 1278 4634 1046.8

T3,V T3,F

1283 1 17 250 0.3 18 289 0.3
2563 8 29 463 2.4 30 528 2.4
5123 64 54 877 19.6 56 1007 19.6
10243 512 105 1746 157.1 107 1980 157.1
20483 4096 259 4442 1256.5 247 4752 1256.5

Prec, the number of preconditioner applications; T, the total computational time in seconds;
M, the requested memory in GB.
The bold values represent the minimal computational times, which T3,V strategy always delivers.
Numerical experiments were performed on an IBM BG/P computer.

Furthermore, we notice that the numbers of preconditioner applications obtained with the combined
approaches are almost similar. Using a coarse preconditioner with a hierarchy of three grids such
as in T3,V or T3,F allows us to reduce the computational times with respect to the T2,V approach.
Concerning the complex shifted preconditioners, we remark that the M4,V strategy performs well
in terms of computational times with respect to M4,F . Indeed, on this homogeneous problem, a pre-
conditioner such as the V-cycle, with a cycling strategy visiting the coarsest level only once, seems
to be a good compromise in terms of computational times. Among the six investigated precondition-
ing strategies, T3,V always delivers the minimal computational times (see bold values in Table III).
Compared with M4,V , T3,V leads to a reduction in terms of computational times of about 20%
(10243) and of 4.5% on the largest test case (20483). Finally, we note that the maximal requested
memory (M) grows linearly with the problem size whatever the preconditioner. This is indeed the
expected behaviour, because these strategies do not rely on any (local or global) factorization of
sparse matrices. The complex shifted preconditioners M4,F and M4,V require less memory than
the combined strategies T3,V and T3,F : a factor of reduction of 20% is indeed observed. Further-
more, we point out that the numerical methods investigated in this paper on both homogeneous
or heterogeneous cases are relatively cheap in terms of memory requirements, for example, an
amount of only 157 GB at most is needed when solving a wave propagation problem with more
than one billion of unknowns (10243). This feature is especially important when addressing in a
near future the solution of multiple right-hand side problems arising in the related acoustic imaging
inverse problem.
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5.3. EAGE/SEG salt dome

The SEG/EAGE salt dome model [54] is a velocity field containing a salt dome in a sedimentary
embankment. It is defined in a parallelepiped domain of size 13.5� 13.5� 4.2 km3. The minimum
value of the velocity is 1500 m.s�1, and its maximum value is 4481 m.s�1, respectively. This test
case is considered challenging due to both the occurrence of a geometrically complex structure
(salt dome) and the large dimensions of the computational domain.

We are mostly interested in evaluating the behaviour of the different preconditioners versus the
frequency on this heterogeneous velocity field problem. We consider a set of frequencies ranging
from 2.5 Hz to 40 Hz with a step size h selected such that the stability condition (5) is satisfied.
We note that the largest frequency case (f D 40 Hz) corresponds to a linear system of approxi-
mately 15.8 billion of unknowns. In the numerical experiments, we analyse four different strategies:
a two-grid preconditioner (T ), two three-grid complex shifted preconditioners (M3,V , M3,F ) and
a two-grid cycle with a two-grid complex shifted coarse preconditioner (T2,V ), respectively. We
have considered hierarchies with at most three grids to yield a reasonable problem size per core.
As in Section 5.2, we have used relaxation parameters issued from the rigorous Fourier analysis
(relation (16)).

Table IV collects the number of preconditioner applications (Prec), computational times (T) and
maximal requested memory (M) for these variants. With respect to the two-grid cycle T , the com-
bined cycle T2,V is found to require a reduced number of preconditioner applications. Indeed, if
we consider the case of f D 20 Hz, we remark a significant reduction of preconditioner appli-
cations when comparing the two-grid preconditioner T with the combined two-grid cycle T2,V

(248 versus 73). This also leads to a dramatic reduction of computational times (3346 s versus
748 s at f D 20 Hz). The T2,V strategy always delivers the minimal computational times (see
bold values in Table IV) among the four preconditioners with a clear advantage at medium to
large frequencies. Nevertheless, we would like to stress that the shifted preconditioner presented in
Algorithm 2 is based on a combination of standard multigrid components. It is most likely that the
use of Galerkin coarse grid approximation or of operator-dependent transfer operators could be

Table IV. Preconditioned flexible methods for the solution of the Helmholtz equation for the heterogeneous
velocity field EAGE/SEG salt dome. Case of a second-order discretization with 10 points per wavelength
such that relation (5) is satisfied. Case of two-grid (T ), of complex shifted multigrid cycles (M3,V , M3,F )

and of combined cycles (T2,V ) applied as a preconditioner of FGMRES(5).

EAGE/SEG salt dome

f h Grid # Cores Prec T (s) M (GB) Prec T (s) M (GB)

T T2,V

2.5 60 231� 231� 71 4 12 146 0.6 11 98 0.6
5 30 463� 463� 143 32 25 316 4.5 16 147 4.6
10 15 927� 927� 287 256 71 927 35.9 28 270 36.6
20 7.5 1855� 1855� 575 2048 248 3346 288.1 73 748 293.8
40 3.75 3711� 3711� 1149 16384 1000� 13912 2304.1 283 3101 2349.9

M3,V M3,F

2.5 60 231� 231� 71 4 98 132 0.5 122 193 0.5
5 30 463� 463� 143 32 217 300 3.8 184 298 3.8
10 15 927� 927� 287 256 445 638 30.5 334 561 30.5
20 7.5 1855� 1855� 575 2048 2485 4102 244.8 2149 3764 244.8
40 3.75 3711� 3711� 1149 16384 8000� — 1957.8 8000� — 1957.8

Prec, the number of preconditioner applications; T, the total computational time in seconds; M, the requested
memory in GB.
The bold values represent the minimal computational times, which T2,V strategy always delivers.
Numerical experiments were performed on an IBM BG/P computer.
�A maximal number of preconditioner applications has been reached.
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beneficial to improve the properties of the preconditioner when considering heterogeneous
Helmholtz problems. Despite the simplicity of the shifted preconditioner, we remark that both M3,V

and M3,F strategies are more attractive than the two-grid preconditioner T in terms of computa-
tional times at small to medium range frequencies (2.5, 5 and 10 Hz, respectively). However, at
high frequencies (20 and 40 Hz) a significant increase in terms of preconditioning applications
is observed for both M3,V and M3,F . We also notice that a shifted preconditioner based on an
F-cycle is preferable when large frequencies are considered, that is solving approximately the coarse
problem twice in a given cycle is found to be beneficial to the outer convergence.

In Figure 7, we consider the case of f D 10 Hz and represent the Ritz and harmonic Ritz values
collected at each cycle of FGMRES(5) during convergence. As shown in [20], this computation
allows us to investigate the quality of the variable preconditioner at a cheap cost, and we refer the
reader to [55] for the definition of Ritz and harmonic Ritz values in this setting. Interestingly, the
T , M3,V and M3,F preconditioners lead to several outliers or clusters located in specific parts of
the complex plane (even in the vicinity of the origin), whereas all Ritz or harmonic Ritz values are
located in the unit disc (reasonably away from the origin) for the T2,V preconditioner. Finally, we
note that the combined cycle T2,V used as a preconditioner of FGMRES(5) is also efficient when
solving the largest frequency case (f D 40 Hz). A moderate number of preconditioner applications
(283) and a low memory requirement (about 2.3 TB) are required to solve approximately this truly
challenging case. This can be considered as a very satisfactory result and proves the usefulness of
the algorithm on this realistic test case.
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Figure 7. EAGE/SEG salt dome problem (case of f D 10 Hz, 927 � 927 � 287 grid). Ritz and harmonic
Ritz values (circles and crosses, respectively) of FGMRES(5) with four different variable preconditioners:
T (top left), T2,V (top right), M3,V (bottom left) and M3,F (bottom right) along convergence. Note that

the same scales have been used for the four plots.
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Figure 8. EAGE/SEG salt dome problem (case of f D 40 Hz, 3711 � 3711 � 1149 grid). Convergence
history of FGMRES(5) with four different variable preconditioners: M3,V (line), M3,F (dashed line), T
(square) and T2,V (triangle) versus computational times in seconds (left part). Ritz and harmonic Ritz values

(circles and crosses, respectively) of FGMRES(5) with the T2,V preconditioner (right part).

Remarks. We have also performed some numerical experiments with a larger value of the restarting
parameter m in the outer Krylov subspace method FGMRES(m) (mD 10, results not shown here).
At f D 20 Hz, a reduction of preconditioner applications is obtained for each strategy leading to
a decrease of 10% in computational times. This slight improvement comes, however, at a price of
increased memory requirements. Keeping memory consumption as low as possible is an important
issue in this application, because we target the solution of multiple right-hand side problems with
preconditioned block flexible Krylov subspace methods as discussed in [22]. Hence, we have pre-
ferred to focus on preconditioned FGMRES(5) in this section and to show the related performance
even for such moderate value of the restarting parameterm. We refer the reader to [42] for a theoret-
ical analysis of inner–outer methods when the outer and the inner methods are the same (FGMRES
and GMRES in our setting). It is notably proved that by using preconditioners, which are Krylov
methods, the global iteration is maintained within a larger Krylov subspace.

Figure 8 (left part) shows the convergence history of FGMRES(5) with four different precondi-
tioners, namely T , M3,V , M3,F and T2,V on the most challenging case (f D 40 Hz, approximately
15.8 billions of unknowns). Interestingly, we notice that the stopping criterion (27) is satisfied only
for FGMRES(5) used in combination with the new preconditioner T2,V (see right part of Figure 8
for the repartition of Ritz and harmonic Ritz values). The T , M3,V and M3,F approaches lead to a
certain residual reduction, but due to limited computing resources, we have only reported the maxi-
mal number of preconditioner applications and related elapsed computational times in Table IV. We
remark that a long-term stagnation in the convergence does appear for the shifted preconditioner.
We further plan to analyse this behaviour in the light of recent non-stagnation conditions for the
convergence of GMRES on indefinite problems [56, 57] as part of future work. Contrary to the case
of f D 20 Hz (Figure 7, top right part) Ritz and harmonic Ritz with negative real part are observed
at f D 40 Hz (Figure 8, right part) for the T2,V combined preconditioner.|| We refer the reader
to comments given in the last paragraph of this section for possible improvements related to both
preconditioner and outer Krylov subspace method.

We report numerical results in Table V related to the T and T2,V cycles, now with a different
smoothing strategy at the fine level only. A fine level smoother based on either one cycle of unpre-
conditioned GMRES(4) (# D 1, ms D 4 and � D 0) or two cycles of unpreconditioned GMRES(2)
(# D 2, ms D 2 and � D 0) is investigated (without any changes for the other parameters). This
choice leads to the same number of matrix–vector products to be performed in the smoother on the

||More precisely, 25 Ritz values with negative real part (smallest modulus equal to 0.05) and 56 harmonic Ritz values
with negative real part (smallest modulus equal to 0.29) are obtained.
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Table V. Preconditioned flexible methods for the solution of the Helmholtz equation for the heterogeneous
velocity field EAGE/SEG salt dome. Case of a second-order discretization with 10 points per wavelength

such that relation (5) is satisfied. Case of two-grid cycles applied as a preconditioner of FGMRES(5).

EAGE/SEG salt dome

f Grid # Cores Prec T (s) M (GB) Prec T (s) M (GB)

T (# D 2,ms D 2, � D 0) T (# D 1,ms D 4, � D 0)

2.5 231� 231� 71 4 11 77 0.6 11 76 0.6
5 463� 463� 143 32 24 174 4.5 24 172 4.9
10 927� 927� 287 256 54 409 35.9 54 402 39.8
20 1855� 1855� 575 2048 180 1420 288.1 178 1381 319.5
40 3711� 3711� 1149 16384 1343 11180 2304.1 1244 10169 2444.7

T2,V (# D 2,ms D 2, � D 0) T2,V (# D 1,ms D 4, � D 0)

2.5 230� 231� 71 4 11 89 0.6 11 88 0.9
5 463� 463� 143 32 16 135 4.6 16 133 6.0
10 927� 927� 287 256 28 247 36.6 27 235 43.0
20 1855� 1855� 575 2048 72 683 293.8 72 672 325.2
40 3711� 3711� 1149 16384 313 3929 2349.9 313 3885 2522.1

Prec, the number of preconditioner applications; T, the total computational time in seconds; M, the requested
memory in GB.
Numerical experiments were performed on a IBM BG/P computer. Influence of the fine level smoother.

fine level as the initial setting (# D 1, ms D 2 and � D 2). Interestingly, we note a significant
reduction in terms of preconditioner applications for medium to large frequencies for the two-grid
preconditioner T . For this approach, performing more smoothing iterations by either restarting or
increasing the degree of the polynomial smoother is then found to be beneficial on this given appli-
cation. For the combined cycle T2,V , the change of the fine level smoother does not modify the
number of preconditioner applications and leads to a reduction of at least 10% in terms of com-
putational times for frequencies up to 20 Hz (see Table IV for a comparison). At f D 40 Hz, the
cycle with preconditioned GMRES(2) (# D 1, ms D 2 and � D 2) leads to better results in terms
of preconditioner applications and computational times. Finally, we note that optimizing the sparse
matrix–vector products [58] and considering communication avoiding GMRES method [59] in both
the inner and outer Krylov subspace methods are two features that would be worth investigating to
further reduce the computational times.

We have on purpose restricted our setting to simple multigrid components to be able to perform
a rigorous Fourier analysis. Nevertheless, we are aware of possible improvements in the proposed
algorithms. Indeed, smoothers based on symmetric Gauss–Seidel preconditioned GMRES (as stud-
ied in [20]), the use of Galerkin coarse grid approximation or of complex-valued operator-dependent
transfer operators [53] might probably be beneficial to the preconditioners on heterogeneous prob-
lems. Moreover, given a certain preconditioner, considering the role of the flexible Krylov subspace
method is certainly an issue to address in a near future. Other flexible methods [60, 61] or recent
algorithms that include spectral information to improve the convergence rate—FGMRES-DR [55]
or FGCRO-DR [62]—are definitively of interest in both inner and outer parts of the solver.

6. CONCLUSIONS

We have proposed a new two-grid preconditioner for the solution of Helmholtz problems in three-
dimensional heterogeneous media. This two-grid cycle is applied directly to the Helmholtz operator
and relies on an approximate coarse grid solution. A second multigrid method applied to a com-
plex shifted Laplacian operator is then used as a preconditioner for the approximate solution of this
coarse problem. Next, we have studied the convergence properties of this preconditioner with rigor-
ous Fourier analysis and selected appropriate relaxation parameters for the smoother based on this

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:663–688
DOI: 10.1002/nla



686 H. CALANDRA ET AL.

analysis. Finally we have highlighted the efficiency of the new preconditioner on both academic and
concrete applications in geophysics requiring the solution of indefinite problems of huge dimen-
sion. Numerical results have demonstrated the usefulness of the combined algorithm on a realistic
three-dimensional application at high frequency.

As part of future research, we plan to perform a three-grid Fourier analysis of the combined cycle
to yield additional valuable insight into the preconditioning properties of this method. We will also
investigate the behaviour of the combined preconditioner on problems issued from the high-order
finite difference discretization of the acoustic or elastic Helmholtz equation [63] in both single and
multiple source situations. To conclude, we note that the framework of the combined cycle can
be extended to a fully algebraic setting by using algebraic multigrid ideas [37, Appendix A] (see
also [64] for a specific extension to complex-valued problems) to construct the different operators
involved in the two hierarchies. This may be especially useful when finite element discretizations
of the Helmholtz equation (based, e.g. on Discontinuous Galerkin methods or on hp-finite element
techniques) are considered. This is part of future research.
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Abstract. We propose a variant of the block GMRES method for the solution of linear systems
of equations with multiple right-hand sides. We investigate a deflation strategy to detect when
a linear combination of approximate solutions is already known that avoids performing expensive
computational operations with the system matrix. This is especially useful when the cost of the
preconditioner is supposed to be larger than the cost of orthogonalization in the block Arnoldi
procedure. We specifically focus on the block GMRES method incorporating deflation at the end of
each iteration proposed by Robbé and Sadkane [M. Robbé and M. Sadkane, Linear Algebra Appl.,
419 (2006), pp. 265–285]. We extend their contribution by proposing that deflation be performed also
at the beginning of each cycle. This change leads to a modified least-squares problem to be solved
at each iteration and gives rise to a different behavior especially when multiple restarts are required
to reach convergence. Additionally we investigate truncation techniques, aiming at reducing the
computational cost of the iteration. This is particularly useful when the number of right-hand sides
is large. Finally, we address the case of variable preconditioning, an important feature when iterative
methods are used as preconditioners, as investigated here. The numerical experiments performed
in a parallel environment show the relevance of the proposed variant on a challenging application
related to geophysics. A savings of up to 35% in terms of computational time—at the same memory
cost—is obtained with respect to the original method on this application.

Key words. block Krylov space method, block size reduction, deflation at each iteration, flexible
preconditioning, multiple right-hand sides
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1. Introduction. We consider block Krylov space methods for the solution of
linear systems of equations with p right-hand sides given at once of the form AX = B,
where A ∈ Cn×n is supposed to be a nonsingular non-Hermitian matrix, B ∈ Cn×p

is supposed to be full rank, and X ∈ Cn×p. Although the number of right-hand sides
p might be relatively large, we suppose here that the dimension of the problem n is
always much larger. Later, we denote by X0 ∈ Cn×p the initial block iterate, and by
R0 = B − AX0 the initial block residual. As stated in [25, 26] a block Krylov space
method for solving the p systems is an iterative method that generates approximations
Xm ∈ C

n×p with m ∈ N such that

Xm −X0 ∈ K�
m(A,R0),
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where the block Krylov space K�
m(A,R0) (in the nonpreconditioned case) is defined

as

K�
m(A,R0) =

{
m−1∑
k=0

AkR0γk ∀γk ∈ C
p×p, with k | 0 ≤ k ≤ m− 1

}
⊂ C

n×p.

We refer the reader to [25] for a recent detailed overview on block Krylov subspace
methods and note that most of the standard Krylov subspace methods have a block
counterpart (see, e.g., block GMRES [48], block BiCGStab [24], block IDR(s) [16], and
block QMR [22]). In this paper we mainly focus on restarted block Krylov subspace
methods that satisfy a minimum norm property as introduced in [42, section 6.12].

Block Krylov subspace methods are increasingly popular in many application ar-
eas in computational science and engineering (e.g., electromagnetic scattering (mono-
static radar cross section analysis) [10, 31, 44], lattice quantum chromodynamics [43],
model reduction in circuit simulation [21], stochastic finite element with uncertainty
restricted to the right-hand side [18], and sensitivity analysis of mechanical systems
[7]). To be effective in terms of computational operations it is recognized that these
methods must incorporate a strategy for detecting when a linear combination of the
systems has approximately converged [25]. This explicit block size reduction is called
deflation, as discussed in [25]. First, a simple strategy to remove useless information
from a block Krylov subspace—called initial deflation—consists of detecting possible
linear dependency in the block right-hand side B or in the initial block residual R0

[25, section 12], [31, section 3.7.2]. When a restarted block Krylov subspace method
is used, this block size reduction can be also performed at each initial computation
of the block residual, i.e., at the beginning of each cycle [25, section 14]. In addition
Arnoldi deflation [25] may be considered; it aims at detecting a near rank deficiency
occurring in the block Arnoldi procedure to later reduce the current block size. These
three strategies based on rank-revealing QR-factorizations [11] or singular value de-
compositions [23] have been notably proposed both in the Hermitian [35, 40] and
non-Hermitian [1, 4, 14, 22, 33, 36] cases for block Lanczos methods. They have been
shown to be effective with respect to standard block Krylov subspace methods. While
initial deflation or deflation at the beginning of a cycle are currently popular, block
Krylov subspace methods based on a norm minimization property incorporating de-
flation at each iteration have rarely been studied (see, e.g., [7] for a discussion on
deflated block Arnoldi methods).

In this paper we focus only on block GMRES based methods [48] and refer the
reader to [7, 22, 33, 34] for advanced block Lanczos methods with deflation. In [39]
Robbé and Sadkane introduced the notion of inexact breakdown to study block size
reduction techniques in block GMRES. Two criteria have been proposed, based either
on the numerical rank of the generated block Krylov basis (W-criterion) or on the nu-
merical rank of the block residual (R-criterion). Numerical experiments on academic
problems of small dimension with a reduced number of right-hand sides illustrated
the advantages and drawbacks of each variant versus standard block GMRES. Fur-
ther numerical experiments can be found in [29]. Another method relying on such a
strategy is the dynamic BGMRES (DBGMRES) [15], which is an extension of block
loose GMRES [5]. We also refer the reader to [7], where deflated block Arnoldi meth-
ods, in addition to Lanczos, are discussed on a real application problem in structural
mechanics. The combination of block GMRES performing deflation at each iteration
and variable preconditioning has rarely been addressed in the literature. Variable
preconditioning is often required when solving large linear systems of equations. This
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is notably the case when inexact solutions of the preconditioning system using, e.g.,
nonlinear smoothers in multigrid [37] or approximate interior solvers in domain de-
composition methods [46, section 4.3] are considered. Thus the main purpose of the
paper is to derive a flexible minimal norm block Krylov subspace method that in-
corporates block size reduction at each iteration suited to the solution of large-scale
linear systems (where expensive variable preconditioners are often used) with possi-
bly a large number of right-hand sides. This is especially useful when the cost of the
preconditioner is supposed to be larger than the cost of orthogonalization in the block
Arnoldi procedure.

The paper is organized as follows. First we will introduce in section 2 the block
GMRES method with deflation at each iteration proposed in [39], since it will consti-
tute the basis for further developments. We will notably describe how deflation at each
iteration is performed. In section 3 we first explain the main motivations for deriving
the proposed variant and analyze its main mathematical properties. Algorithmic de-
tails are then presented in section 4 together with an analysis of the computational
cost and memory requirements. Then in section 5 we demonstrate the effectiveness
of the proposed algorithm on an application related to geophysics. Finally, we draw
some conclusions in section 6.

2. Block GMRES with deflation at each iteration. In this section we
review the block GMRES method with deflation at each iteration (later denoted
BGMRES-R1) [39] for the solution of linear systems with a non-Hermitian matrix
and multiple right-hand sides given at once. We first introduce notation used in the
manuscript and then describe the main mathematical properties of BGMRES-R.

2.1. Notation. Throughout this paper we denote by ‖.‖2 the Euclidean norm,
by ‖.‖F the Frobenius norm, by Ik ∈ Ck×k the identity matrix of dimension k, and by
0i×j ∈ Ci×j the zero rectangular matrix with i rows and j columns. The superscript H

denotes the transpose conjugate operation. Given a vector d ∈ Ck with components
di, D = diag(d1, . . . , dk) is the diagonal matrix D ∈ C

k×k such that Dii = di. If
C ∈ Ck×l, we denote the singular values of C by σ1(C) ≥ · · · ≥ σmin(k,l)(C) ≥ 0.
Finally, em ∈ Cn denotes the mth canonical basis vector of Cn. In describing our
algorithms (Algorithms 1–4), we adopt notation similar to that of MATLAB. For
instance, U(i, j) denotes the Uij entry of matrix U , U(1 : m, 1 : j) refers to the
submatrix made of the first m rows and first j columns of U , and U(:, j) corresponds
to its jth column.

2.2. Overview. Next we provide a brief overview of the block GMRES method
with deflation at each iteration, introduced in [39], and specifically focus on the variant
with a block size reduction strategy based on the numerical rank of the block residual
(R-criterion [39, section 4]). More precisely we propose to analyze a given cycle of
this method in the next subsections. Throughout the paper we denote by X0 ∈ Cn×p

the current approximation of the solution, and by R0 ∈ Cn×p the corresponding true
block residual (R0 = B − AX0), both obtained at the beginning of the cycle that
we consider. D ∈ C

p×p represents a nonsingular diagonal scaling matrix defined as
D = diag(b1, . . . , bp) with bl = ||B(:, l)||2, 1 ≤ l ≤ p. Finally, we assume that the QR
factorization of R0D

−1 has been performed as

(2.1) R0D
−1 = V̂1Λ̂0,

1The suffix “R” is used to emphasize that we exclusively consider the block GMRES method
with deflation at each iteration based on the R-criterion proposed by Robbé and Sadkane in [39].
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with V̂1 ∈ Cn×p having orthonormal columns and Λ̂0 ∈ Cp×p assuming2 rank(R0D
−1)

= p. R0 (R0D
−1) is named the initial block residual (respectively, scaled initial block

residual), where the term “initial” refers to the beginning of the cycle that we consider.

2.2.1. Deflated Arnoldi relation. If K ∈ Cn×p denotes a matrix with or-
thonormal columns containing all the p new Krylov directions at iteration j − 1, the
most expensive part of the algorithm at the jth iteration lies in the p applications
of the variable preconditioner supposed to be expensive. To be effective in terms of
computational operations it is widely recognized that block Krylov subspace methods
must rely on a strategy for detecting when a linear combination of the systems has ap-
proximately converged [25, 31]. In the framework of block Krylov subspace methods
based on a norm minimization property, Robbé and Sadkane [39] have first proposed a
block GMRES algorithm that relies on deflation at each iteration of a given cycle. To
do so, they have introduced a modified version of the block Arnoldi algorithm—later
called deflated block Arnoldi—in which range(K) is judiciously decomposed into

(2.2) range(K) = range(Vj)⊕ range(Pj−1), with
[
Vj Pj−1

]H [
Vj Pj−1

]
= Ip,

where Vj ∈ Cn×kj , Pj−1 ∈ Cn×dj with kj + dj = p. In other words, kj Krylov di-
rections are effectively considered at iteration j, while dj directions are left aside (or
deflated) at the same iteration. We note that literally the “best” subspace of range(K)
of dimension kj is chosen (not just kj columns of K) defining Vj , leaving the remain-
ing subspace in range(Pj−1) (i.e., the deflated subspace is spanned by range(Pj−1)
at iteration j). Based on this decomposition, the deflated orthonormalization proce-
dure will apply preconditioning and matrix-vector products only over the chosen kj
directions of Vj . Next we briefly describe the jth iteration of the resulting method.

Defining s0 = 0, sj = sj−1 + kj and given
[Vj Pj−1

] ∈ C
n×(sj+dj) with or-

thonormal columns, the following block Arnoldi relation is assumed to hold at the
beginning of the jth iteration of the deflated block Arnoldi procedure (j > 1):

(2.3) AVj−1 =
[Vj Pj−1

]Hj−1,

with Vj−1 ∈ Cn×sj−1 , Vj ∈ Cn×sj , Pj−1 ∈ Cn×dj , and Hj−1 ∈ C(sj−1+p)×sj−1 . The

jth iteration of the deflated block Arnoldi procedure produces matrices V̂j+1 ∈ Cn×kj ,

Ĥj ∈ C(sj+p)×sj which satisfy

A
[Vj−1 Vj

]
=

[Vj Pj−1 V̂j+1

] Ĥj ,(2.4)

where Ĥj has the following block structure:

Ĥj =

[ Hj−1 Hj

0kj×sj−1 Hj+1,j

]
,

with Hj ∈ C(sj−1+p)×kj and Hj+1,j ∈ Ckj×kj (see Algorithm 1 for a complete descrip-

tion of this iteration). We assume that Ĥj is always full rank; i.e., no Arnoldi break-
down occurs. We note that Arnoldi breakdowns rarely happen in practice (see, e.g.,

2The situation of R0D−1 being rank-deficient in exact arithmetic is often referred to as initial
breakdown [25]. However, as in [39], for the sake of simplicity we consider that rank(R0D−1) = p
holds at each cycle. We refer the reader to [25] for details on how to work around initial deflation,
and we point out that this phenomenon has not been observed in our numerical experiments.
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[25, section 13]). Therefore the possibility of an Arnoldi breakdown has not been con-
sidered in this paper, as in recent contributions [13, 25, 39]. Defining V̂j+1 ∈ Cn×(sj+p)

as

V̂j+1 =
[Vj Pj−1 V̂j+1

]
,(2.5)

the block Arnoldi relation (2.4) can then be stated as

AVj = V̂j+1Ĥj .(2.6)

Next the key idea is to perform the subspace decomposition previously mentioned in
(2.2) as [Vj Vj+1 Pj

]
=

[Vj Pj−1 V̂j+1

]Fj+1,[Vj+1 Pj

]
= V̂j+1Fj+1,(2.7)

where Fj+1 ∈ C(sj+p)×(sj+p) is a unitary matrix. We address how to determine Fj+1

later in section 2.2.4. Hence we obtain

AVj = V̂j+1Fj+1FH
j+1Ĥj .

Defining Hj ∈ C(sj+p)×sj as Hj = FH
j+1Ĥj , we then deduce (since Fj+1 is unitary)

AVj =
[Vj+1 Pj

]Hj ,

which is precisely the block Arnoldi relation required at the beginning of the next
iteration (compare with relation (2.3)). This last relation can be written as

AVj =
[Vj+1 Pj

] [Lj

Gj

]
,

where Lj corresponds to the (sj + kj+1)× sj upper part of Hj , and Gj to the dj+1 ×
sj lower part of Hj . This is exactly the core relation proposed in [39, section 5,
Algorithm 2].

2.2.2. Representation of the scaled initial block residual. At the begin-
ning of the cycle the initial subspace decomposition is supposed to hold in BGMRES-
R:

(2.8) V1 = V̂1.

Consequently p Krylov directions are effectively considered at the first iteration of a
given cycle (k1 = p), while no directions are deflated at the same iteration (d1 = 0).
At iteration j of the cycle (1 ≤ j ≤ m), we define the quantity Λ̂j ∈ C(sj+p)×p as

(2.9) Λ̂j =

[
Λ̂0

0sj×p

]
.

It is then straightforward to prove that R0D
−1 can be written as

R0D
−1 = V̂j+1Λ̂j ,(2.10)

which means that Λ̂j is the reduced representation of the scaled initial block residual

in the V̂j+1 basis.

D
ow

nl
oa

de
d 

11
/0

4/
13

 to
 1

94
.1

99
.1

9.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S350 CALANDRA, GRATTON, LAGO, VASSEUR, AND CARVALHO

2.2.3. Minimization property. We denote by Yj ∈ Csj×p the solution of the
reduced minimization problem Pr considered in BGMRES-R:

Pr : Yj = argmin
Y ∈C

sj×p

||Λ̂j − ĤjY ||F ,(2.11)

with Ĥj and Λ̂j defined in (2.6) and (2.9), respectively. We also denote by R̂j ∈
C(sj+p)×p the block residual of the reduced least-squares problem Pr, i.e., R̂j = Λ̂j −
ĤjYj (1 ≤ j ≤ m), and define R̂0 ∈ C

p×p as R̂0 = Λ̂0. We recall in Proposition 2.1
the norm minimization property occurring in BGMRES-R.

Proposition 2.1. In block GMRES with deflation at each iteration (BGMRES-
R), solving the reduced minimization problem Pr of (2.11) amounts to minimizing the
Frobenius norm of the block true residual ||B−AX ||F over the space X0+range(VjY D)
at iteration j (1 ≤ j ≤ m) of a given cycle, i.e.,

argmin
Y ∈C

sj×p

||Λ̂j − ĤjY ||F = argmin
Y ∈C

sj×p

||R0D
−1 −AVjY ||F

= argmin
Y ∈C

sj×p

||B −A(X0 + VjY D)||F ,(2.12)

with Ĥj and Λ̂j defined in (2.6) and (2.9), respectively.
Proof. Due to relations (2.4) and (2.10), ||R0D

−1 −AVjY ||F can be written as

||R0D
−1 −AVjY ||F = ‖V̂j+1(Λ̂j −HjY )‖F .

Since Vj+1 has orthonormal columns and since the Frobenius norm is unitarily invari-
ant, the last equality becomes

||R0D
−1 −AVjY ||F = ‖Λ̂j − ĤjY ‖F .

D being a diagonal matrix, the relation (2.12) is then due to elementary properties
of the Frobenius norm; namely, the squared Frobenius norm of a matrix is the sum
of the squares of the Euclidean norms of its columns.

2.2.4. Subspace decomposition based on a singular value decomposi-
tion. We next address the question of subspace decomposition; i.e., given V̂j+1 =[Vj

[
Pj−1 V̂j+1

]]
obtained after the jth iteration of the deflated block Arnoldi pro-

cedure, we want to determine kj+1, dj+1, and the unitary matrix Fj+1 ∈ C(sj+p)×(sj+p)

such that the decomposition (2.7) holds. To limit the computational cost related to
the construction of Vj+1, we consider the splitting Vj+1 =

[Vj Vj+1

]
with Vj ∈ C

n×sj

obtained at the previous iteration and Vj+1 ∈ Cn×kj+1 to be determined. Thus the
decomposition (2.7) can be written as

(2.13)
[Vj

[
Vj+1 Pj

]]
=

[Vj

[
Pj−1 V̂j+1

]]Fj+1,

with Pj ∈ Cn×dj+1 and kj+1 + dj+1 = p. Given the block form for Fj+1,

Fj+1 =

[
F11 F12

F21 F22

]
,

where F11 ∈ Csj×sj , F12 ∈ Csj×p, F21 ∈ Cp×sj , and F22 ∈ Cp×p, the relation (2.13)
becomes[Vj

[
Vj+1 Pj

]]
=

[VjF11 +
[
Pj−1 V̂j+1

]
F21 VjF12 +

[
Pj−1 V̂j+1

]
F22

]
.
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Since VH
j

[
Pj−1 V̂j+1

]
= 0sj×p we deduce the following matrix structure:

(2.14) Fj+1 =

[
Isj 0sj×p

0p×sj Fj

]
,

where the unitary matrix Fj ∈ Cp×p remains to be determined. The criterion proposed
in [39] to deduce Fj , kj+1, and dj+1 aims at finding a possible linear combination of
the columns of RjD

−1 that are approximately dependent (with respect to a certain
threshold) to determine the set of directions that we do not want to consider when
defining Vj+1 in Vj+1 =

[Vj Vj+1

]
. Since RjD

−1 = V̂j+1R̂j , we instead perform

this analysis based on the singular value decomposition of R̂j as R̂j = UΣWH . We

note that the thin singular value decomposition of R̂j is rather inexpensive since

R̂j does not depend on the problem size n. Heuristically, tol being the convergence
threshold used in the stopping criterion of BGMRES-R, we first choose a relative
positive deflation threshold εd and then determine kj+1 according to the following
condition:

σl(R̂j) > εd tol ∀ l such that 1 ≤ l ≤ kj+1.(2.15)

Since dj+1 = p−kj+1, the following decomposition of R̂j at iteration j is then obtained

with R̂sj ∈ Csj×p and R̂p ∈ Cp×p :

(2.16) R̂j =

[R̂sj

R̂p

]
=

[
U+
sj

U+
p

]
Σ+W

H
+ +

[
U−
sj

U−
p

]
Σ−WH

− ,

with U+ ∈ C(sj+p)×kj+1 , U− ∈ C(sj+p)×dj+1 , Σ+ ∈ Ckj+1×kj+1 , Σ− ∈ Cdj+1×dj+1 ,
W+ ∈ Cp×kj+1 , and W− ∈ Cp×dj+1 . Based on this splitting, Robbé and Sadkane have
then proposed performing such a subspace decomposition at iteration j:

range((In − VjVH
j )RjD

−1) = range(Vj+1)⊕ range(Pj),

where

range(Vj+1) = range((In − VjVH
j )RjD

−1W+),

range(Pj) = range((In − VjVH
j )RjD

−1W−),

that is, the kj+1 directions associated with (In−VjVH
j )RjD

−1W+ (the kept ones) lie

in Vj+1, while the dj+1 directions associated with (In−VjVH
j )RjD

−1W− (the deflated
ones, i.e., postponed and reintroduced later in next iterations if necessary) lie in Pj .
Due to (2.16), this decomposition is also equivalent to

range(Vj+1) = range
( [

Pj−1 V̂j+1

] [
U+
p

]
Σ+

)
,

range(Pj) = range
( [

Pj−1 V̂j+1

] [
U−
p

]
Σ−

)
.

Since
[
Vj+1 Pj

]
=

[
Pj−1 V̂j+1

]
Fj , the unitary matrix Fj is then simply obtained

as the orthogonal factor of the QR decomposition of the p × p matrix
[
U+
p U−

p

]
.

This decomposition is summarized later in section 4, Algorithm 2.
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3. Modified block flexible GMRES with deflation at each iteration. In
this section we present a modified block GMRES method with deflation at each itera-
tion, which allows variable preconditioning and truncation, two features of significant
interest when targeting the solution of large-scale non-Hermitian linear systems with
possibly many right-hand sides. We first briefly introduce the motivations for these
novelties and then describe the main mathematical properties of the resulting method,
named BFGMRES-S.3

3.1. Motivations. As discussed in section 2.2.2, BGMRES-R relies on the sub-
space decomposition V1 = V̂1 (relation (2.8)). At the first iteration of each cycle,
k1 = p directions are effectively considered in the block orthonormalization proce-
dure, including preconditioning and matrix-vector product phases. In BGMRES-R
the norm minimization property induces a nonincreasing behavior of the number of
selected directions kj in a given cycle, as shown later in Proposition 3.3. However,
performing no deflation at restart (k1 = p, d1 = 0) leads to a nonmonotone behavior
of kj along cycles (see the top-right panel of Figure 5.1 for an illustration), which
may induce a significant additional computational overhead if the method is often
restarted. The situation with possibly multiple cycles is precisely of interest in real
life applications since a moderate restart size m is usually selected to limit the mem-
ory requirements when large-scale problems are considered and/or when the number
of right-hand sides p is large. To circumvent this difficulty, we propose to incorpo-
rate the subspace decomposition at the beginning of each cycle of the block Krylov
subspace method, leading to

(3.1)
[V1 P0

]
= V̂1F1,

with k1 + d1 = p, V1 ∈ C
n×k1 , P0 ∈ C

n×d1 , F1 ∈ C
p×p with d1 	= 0 in general. The

purpose of this whole section is to analyze the properties of the resulting modified
block flexible GMRES with deflation at each iteration. First, we will show in sec-
tion 3.4 that performing this subspace decomposition at the beginning of each cycle
will ensure a nonincreasing behavior for kj , the number of selected directions along
cycles, which is a desirable property. This is a major difference between BFGMRES-S
and BGMRES-R. Second, it turns out that this modification allows us to easily incor-
porate truncation in the block Krylov subspace method, as shown later in section 3.6.
This is particularly useful when the number of right-hand sides is large. Third, we
extend the block Krylov subspace method to the case of variable preconditioning,
a mandatory feature when, e.g., iterative methods are used as preconditioners, as
investigated later in section 5. This last property is described next.

3.2. Flexible deflated Arnoldi relation. In a given cycle of the modified
block Krylov subspace method, we assume that the preconditioning operation at
iteration j (1 ≤ j ≤ m) can be represented as Zj = M−1

j Vj , where Zj ∈ Cn×kj ,

Vj ∈ Cn×kj , and Mj ∈ Cn×n is supposed to be nonsingular. In this setting, the block
orthonormalization procedure then leads to the following relation:

(3.2) AZj = V̂j+1Ĥj ,

where Zj ∈ C
n×sj (see Algorithm 1 for further details). Equation (3.2)—later called

the flexible deflated Arnoldi relation—can be stated as

AZj =
[Vj+1 Pj

]Hj ,

3The suffix “S” is used to emphasize that the method is based on a subspace selection at each
iteration, in both the standard and truncated cases.
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where
[Vj+1 Pj

]
is defined as in (2.7) and Hj = FH

j+1Ĥj . Based on this flexible
deflated Arnoldi relation, the block Krylov subspace method will minimize ||B−AX ||F
over the space X0 + range(ZjY D) with Y ∈ Csj×p.

3.3. Representation of the scaled initial block residual. At iteration j
of a given cycle of BFGMRES-S (1 ≤ j ≤ m), we recursively define the quantity
Λ̂j ∈ C(sj+p)×p as

(3.3) Λ̂j =

[FH
j Λ̂j−1

0kj×p

]
.

In the next lemma we derive the representation of the scaled initial block residual
R0D

−1 with respect to the V̂j+1 basis.
Lemma 3.1. In the modified block flexible GMRES with deflation at each iteration

(BFGMRES-S), the scaled initial block residual R0D
−1 can be expressed in the V̂j+1

basis as

R0D
−1 = V̂j+1Λ̂j ,(3.4)

with Λ̂j defined as in (3.3).
Proof. We prove this lemma by induction. Let Aj denote the assumption

R0D
−1 = V̂j+1Λ̂j at index j. We note that A0 holds by construction (see relation

(2.1)). We suppose that Aj−1 is satisfied and want to prove that Aj−1 implies Aj .

Due to (2.7) and the unitary character of Fj , the quantity V̂jΛ̂j−1 can be expressed
as

V̂jΛ̂j−1 =
[Vj Pj−1

]FH
j Λ̂j−1,

which can be written as

V̂jΛ̂j−1 =
[Vj Pj−1 V̂j+1

] [FH
j Λ̂j−1

0kj×p

]

= V̂j+1Λ̂j,

due to (2.5) and (3.3), respectively. Since V̂jΛ̂j−1 = R0D
−1, Aj is then satis-

fied.
Due to the initial subspace decomposition (3.1), we remark that the representation

of the scaled initial block residual in the V̂j+1 basis in BFGMRES-S involves the
matrices Fl (1 ≤ l ≤ j). In BGMRES-R this representation differs (compare relations
(2.9) and (3.3), respectively).

3.4. Minimization property. We denote by Yj ∈ Csj×p the solution of the
reduced minimization problem Ps considered in BFGMRES-S:

Ps : Yj = argmin
Y ∈C

sj×p

||Λ̂j − ĤjY ||F ,(3.5)

with Ĥj and Λ̂j defined in (3.2) and (3.3), respectively. We denote by R̂j ∈ C(sj+p)×p

the block residual of the reduced least-squares problem Ps, i.e., R̂j = Λ̂j − ĤjYj

(1 ≤ j ≤ m), and define R̂0 ∈ Cp×p as R̂0 = Λ̂0. We analyze in Proposition 3.2 the
norm minimization property occurring in BFGMRES-S.
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Proposition 3.2. In the modified version of the block Krylov subspace method
with deflation at each iteration (BFGMRES-S), solving the reduced minimization prob-
lem Ps of (3.5) amounts to minimizing the Frobenius norm of the block true residual
||B −AX ||F over the space X0 + range(ZjY D) at iteration j (1 ≤ j ≤ m) of a given
cycle, i.e.,

argmin
Y ∈C

sj×p

||Λ̂j − ĤjY ||F = argmin
Y ∈C

sj×p

||R0D
−1 −AZjY ||F(3.6)

= argmin
Y ∈C

sj×p

||B −A(X0 + ZjY D)||F ,(3.7)

with Ĥj and Λ̂j defined in (3.2) and (3.3) respectively.
Proof. The proof follows the same lines as that of Proposition 2.1, now using

relation (3.4) and the flexible deflated Arnoldi relation (3.2).

3.5. Behavior of the number of selected kj directions along conver-
gence. We prove the important property that the number of new directions to con-
sider in BFGMRES-S enjoys a nonincreasing behavior along convergence, as stated
in Proposition 3.3.

Proposition 3.3. Denote by kj,c the number of Krylov directions effectively
considered as best directions to keep at the jth iteration of the cth cycle of BFGMRES-
S (1 ≤ j ≤ m and c ≥ 1), and assume that Zj is of full column rank at iteration j of
cycle c. Then the following relations are satisfied:

∀c, kj+1,c ≤ kj,c,(3.8)

∀c, k1,c+1 = km+1,c.(3.9)

Proof. BFGMRES-S is based on a standard norm minimization procedure, as
recalled in Proposition 3.2. Hence at iteration j of cycle c, RjD

−1 can be expressed
as

RjD
−1 = (In −WjWH

j )Rj−1D
−1,

where Wj ∈ Cn×sj denotes a matrix whose columns form an orthonormal basis of
range(AZj); see, e.g., [17, section 3.1]. From [28, Theorem 3.3.16] we conclude that
the singular values of the scaled block true residual are monotonically decreasing; i.e.,

(3.10) ∀ i | 1 ≤ i ≤ p, σi(RjD
−1) ≤ σi(Rj−1D

−1).

As stated in section 2.2.4 (relation (2.15)), the determination of kj+1,c is directly
related to the singular values of RjD

−1 in the cycle c. Hence from the inequality
(3.10) we immediately deduce the relation (3.8). Finally the equality (3.9) is just due
to the initial subspace decomposition (3.1) performed at the beginning of the (c+1)th
cycle in BFGMRES-S.

We deduce from Proposition 3.3 that we ensure a monotonically nonincreasing
behavior for the number of kj selected directions along convergence (as depicted later
in the bottom-left panel of Figure 5.1) in BFGMRES-S. This is a major difference
from BGMRES-R, where a nonincreasing behavior of kj is guaranteed only inside a
cycle and not along cycles. Indeed the equality (3.9) is not satisfied in BGMRES-R
due to the initial subspace decomposition (2.8). Hence BFGMRES-S is not equivalent
to BGMRES-R if deflation at the beginning of a cycle occurs.
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3.6. Incorporating truncation. We first detail the subspace selection in
BFGMRES-S when truncation in operations is performed, and then discuss conse-
quences for the convergence properties. Truncation in BFGMRES-S corresponds to
imposing an upper bound on the number of directions that we keep in the set of ac-
tive directions. This constraint is imposed both in the initial subspace decomposition
(k1 ≤ pf , where 1 ≤ pf ≤ p) and at each iteration of the current cycle (kj+1 ≤ pf ,
1 ≤ j ≤ m). This mainly aims to reduce the computational cost of the cycle. Trun-
cation implies just a modified selection of kj+1 and dj+1, whereas Fj+1 is obtained
similarly as in section 2.2.4. More precisely, using the notation of section 2.2.4, we
first choose the relative deflation threshold εd and define pd ∈ N according to

σl(R̂j) > εd tol ∀ l such that 1 ≤ l ≤ pd.(3.11)

Truncation then consists of defining kj+1 as kj+1 = min(pd, pf ) and setting dj+1 as

dj+1 = p− kj+1. When pd > pf we note that the inequality σl(R̂j) ≤ εd tol does not
hold for pf < l ≤ pd. Hence the combination of residuals that have not approximately
converged are indeed deflated. As in the nontruncated case, the corresponding direc-
tions are kept and later introduced if needed. We remark that both Propositions 3.2
and 3.3 hold in the truncated case (see the bottom-right panel of Figure 5.1 for an
illustration). We stress the fact that no directions are discarded; this is the major
difference with BFGMREST(m), a flexible variant of BFGMRES(m) based on defla-
tion and truncation performed at restart only [13, section 3.2.1 and Algorithm 4].4

Nevertheless, due to truncation, BFGMRES-S may require more iterations to con-
verge than does its nontruncated version. However, this drawback has to be weighed
against the reduced computational cost of the iterations when pd > pf . The subspace
selection based on truncation is summarized later in section 4, Algorithm 2. Finally,
we remark that performing truncation along cycles is made possible only because of
the initial subspace decomposition (3.1) realized at the beginning of each cycle in
BFGMRES-S.

4. Algorithmic details, computational cost, and memory requirements.
We next present the algorithmic details of the methods introduced so far in sections 2
and 3. We conclude this section by analyzing the computational cost and memory
requirements of BFGMRES-S.

4.1. Deflated block Arnoldi. Algorithm 1 introduces the jth iteration of the
deflated block Arnoldi procedure with block modified Gram–Schmidt, assuming that
deflation has occurred at the previous iteration (dj 	= 0). If not, this algorithm then
reduces to the standard flexible block Arnoldi procedure that is described in, e.g., [13,
Algorithm 1]. As in standard block Arnoldi, Algorithm 1 proceeds by orthonormal-
izing AZj against all the previous preconditioned Krylov directions, but additionally,
orthonormalization against Pj−1 is performed (lines 10 and 11 of Algorithm 1). The
block modified Gram–Schmidt version is presented in Algorithm 1, but a version of
block Arnoldi due to Ruhe [40] or block Householder orthonormalization [3, 45] could
be used as well.

4.2. Subspace decomposition. The subspace decomposition at the heart of
the deflation at each iteration is described in Algorithm 2 and includes the possibility

4In addition, we note that BFGMRES-S can use truncation at each iteration, whereas
BFGMREST(m) can use truncation only at the beginning of each cycle.
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Algorithm 1. jth iteration of flexible deflated block Arnoldi with block mod-
ified Gram–Schmidt: Computation of V̂j+1, Zj , and sj ∈ N with Vi ∈ C

n×ki

such that V H
i Vi = Iki (1 ≤ i ≤ j), p = kj + dj , Pj−1 ∈ Cn×dj , and

[V1, . . . , Vj , Pj−1]
H [V1, . . . , Vj , Pj−1] = Isj−1+p.

1: Define sj−1 =
∑j−1

l=1 kl (s0 = 0).
2: # Choose preconditioning operator M−1

j .

3: Zj = M−1
j Vj

4: S = AZj

5: # Orthogonalization of S with respect to [V1, . . . , Vj , Pj−1]
6: for i = 1, . . . , j do
7: Hi,j = V H

i S
8: S = S − ViHi,j

9: end for
10: Hp = PH

j−1S
11: S = S − Pj−1Hp

12: Define Hj ∈ C(sj−1+p)×kj as HT
j = [H1,j , . . . , Hj,j, Hp]

T .

13: Compute the QR decomposition of S as S = QT , Q ∈ Cn×kj , and T ∈ Ckj×kj .
14: Set V̂j+1 = Q, Hj+1,j = T .
15: Define sj = sj−1 + kj .
16: Define Zj ∈ Cn×sj as Zj = [Z1, . . . , Zj], Vj ∈ Cn×sj as Vj = [V1, . . . , Vj ], and

V̂j+1 ∈ Cn×(sj+p) as V̂j+1 =
[Vj Pj−1 V̂j+1

]
such that AZj = V̂j+1

[
Hj

Hj+1,j

]
.

Algorithm 2. Determination of kj+1, dj+1, and Fj+1 (0 ≤ j ≤ m).

1: Choose a relative deflation threshold εd and the upper bound pf (1 ≤ pf ≤ p).

2: Compute the SVD of R̂j as R̂j = UΣWH with U ∈ C(sj+p)×p, Σ ∈ Cp×p, and
W ∈ Cp×p.

3: Select pd singular values of R̂j such that σl(R̂j) > εd tol for all l such that
1 ≤ l ≤ pd.

4: Set kj+1 = min(pd, pf ) and dj+1 = p− kj+1.
5: Define Up ∈ C

p×p as Up = U(sj + 1 : sj + p, 1 : p).
6: Compute the QR decomposition of Up as Up = FjTj, with Fj ∈ Cp×p, FH

j Fj = Ip.

7: Define Fj+1 ∈ C(sj+p)×(sj+p) as Fj+1 =
[

Isj 0sj×p

0p×sj
Fj

]
.

of truncation. The deflation threshold εd is usually fixed and does not depend on the
cycle. The nontruncated variant of the algorithm introduced in section 2.2.4 is simply
recovered by setting pf = p. In practice, we point out that only the p× p Fj matrix
has to be stored in memory.

4.3. Algorithm of modified block flexible GMRES with deflation at
each iteration. Algorithm 3 introduces the modified block flexible GMRES method
with deflation at each iteration. This algorithm is later named BFGMRES-S(m, pf ),
where m denotes the maximal number of iterations performed in a given cycle and
pf the upper bound on the number of directions to consider at iteration j of a given
cycle when performing truncation (1 ≤ pf ≤ p). The nontruncated variant is sim-
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Algorithm 3. BFGMRES-S(m, pf).

1: Choose a convergence threshold tol, a relative deflation threshold εd, the size of
the restart m, the maximum number of cycles cyclemax, and maximal number of
directions to keep pf .

2: Choose an initial guess X0 ∈ Cn×p.
3: Compute the initial block residual R0 = B −AX0.
4: Define the scaling diagonal matrix D ∈ C

p×p as D = diag(b1, . . . , bp) with bl =
||B(:, l)||2 for l such that 1 ≤ l ≤ p.

5: Set s0 = 0.
6: for cycle = 1, cyclemax do
7: Compute the QR decomposition of R0D

−1 as R0D
−1 = V̂1Λ̂0 with V̂1 ∈ Cn×p

and Λ̂0 ∈ Cp×p.
8: Determine deflation unitary matrix F1 ∈ Cp×p and k1, d1 such that k1+ d1 = p

(see Algorithm 2), and set s1 = k1.
9: Define

[V1 P0

]
= V̂1F1, with V1 ∈ C

n×s1 (P0 ∈ C
n×d1) as the first s1 (last

d1) columns of V̂1F1, and define V1 = V1.
10: for j = 1,m do
11: Completion of V̂j+1, Zj, and Ĥj: Apply Algorithm 1 to obtain Zj ∈ Cn×sj ,

V̂j+1 ∈ C
n×(sj+p), and Ĥj ∈ C

(sj+p)×sj such that

AZj = V̂j+1 Ĥj with V̂j+1 =
[
V1, V2, . . . , Vj , Pj−1, V̂j+1

]
.

12: Set Λ̂j ∈ C(sj+p)×p as Λ̂j =
[
FH

j Λ̂j−1

0kj×p

]
.

13: Solve the minimization problem Ps: Yj = argminY ∈C
sj×p ||Λ̂j − ĤjY ||F .

14: Compute R̂j = Λ̂j − ĤjYj .

15: if ||R̂j(:, l)||2 ≤ tol, ∀ l | 1 ≤ l ≤ p, then
16: Compute Xj = X0 + ZjYjD; stop;
17: end if
18: Determine deflation unitary matrix Fj+1 ∈ C(sj+p)×(sj+p) and kj+1, dj+1

such that kj+1 + dj+1 = p (see Algorithm 2).
19: Set sj+1 = sj + kj+1.

20: Define
[Vj+1 Pj

]
= V̂j+1Fj+1, with Vj+1 ∈ Cn×sj+1 (or Pj ∈ Cn×dj+1) as

the first sj+1 (or last dj+1) columns of V̂j+1Fj+1.

21: Define Hj = FH
j+1Ĥj , with Hj ∈ C(sj+p)×sj .

22: end for
23: Xm = X0 + ZmYmD
24: Rm = B −AXm

25: Set R0 = Rm and X0 = Xm.
26: end for

ply recovered if pf = p is satisfied. In such a case, the algorithm is simply named
BFGMRES-S(m).

A comparison of BFGMRES-R due to Robbé and Sadkane [39] (Algorithm 4,
given in the appendix for convenience) with BFGMRES-S (Algorithm 3) reveals
the three main differences discussed in section 3: the initial subspace decomposi-
tion (performed at lines 8 and 9), the modified representation of the reduced right-
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hand side (line 12), and the resulting different minimization problem to be solved
(line 13).

4.4. Computational cost and memory requirements. The question of the
total computational cost of BFGMRES-S is now addressed. For that purpose we sum-
marize in Table 4.1 the costs occurring during a given cycle of BFGMRES-S(m, pf )
(considering Algorithms 1, 2, and 3), excluding matrix-vector products and precondi-
tioning operations which are problem-dependent. We have included the costs propor-
tional to both the size of the original problem n and the number of right-hand sides p,
assuming a QR-factorization based on modified Gram–Schmidt and a Golub–Reinsch
SVD;5 see, e.g, [23, section 5.4.5] and [27, Appendix C] for further details on operation
counts. The total cost of a given cycle is then found to grow as C1np

2+C2p
3+C3np,

and we note that this cost is always nonincreasing along convergence due to Proposi-
tion 3.3.

Compared to BGMRES-R, additional operations are related to the computations
of F1 and Λ̂j, operations that behave as p3. The computation of

[Vj+1 Pj

]
is in

practice the most expensive one in a given iteration of BFGMRES-S(m, pf ). Con-
cerning the truncated variant, the computational cost of a cycle will be reduced only
if pd > pf , since the upper bound on kj+1 will then be active. This situation occurs
at the beginning of the convergence due to the nonincreasing behavior of the singular
values of R̂j shown in Proposition 3.3.

Table 4.1

Computational cost of a cycle of BFGMRES-S(m, pf ) (Algorithm 3). This excludes the cost of
matrix-vector operations and preconditioning operations.

Step Computational cost

Computation of R0D−1 np
QR factorization of R0D−1 2np2 + np
Computation of F1 14p3

Computation of
[V1 P0

]
2np2

Block Arnoldi procedure6 Cj

Computation of Λ̂j 2(sj−1 + p)2p
Computation of Yj 2s3j + 3ps2j
Computation of R̂j (2sj + 1)(sj + p)p
Computation of Fj+1 4sjp

2 + 14p3

Computation of
[Vj+1 Pj

]
2np2

Computation of Hj 2p3

Computation of Xm np+ (2n + 1)smp

Concerning storage proportional to the problem size n, BFGMRES-S(m, pf) re-
quires Rm, X0, Xm, Vm+1, and Zm leading to a memory requirement of 2nsm + 4np
at the end of a given cycle. Since sm varies from cycle to cycle, an upper bound of
the memory requirement can be given as n(2m + 1)p + 3np when p linear systems
have to be considered at the beginning of a given cycle. We note that the storage
is monotonically decreasing along convergence, a feature than can be, for instance,
exploited if dynamic memory allocation is used.

5The Golub–Reinsch SVD decomposition R = UΣV H with R ∈ Cm×n requires 4mn2 + 8n3

operations when only Σ and V have to be computed.
6Algorithm 1: The block Arnoldi method based on modified Gram–Schmidt requires

∑m
j=1∑j

i=1(4nkikj + nkj + 4ndjkj) operations (lines 6 to 11) plus
∑m

j=1 2nk
2
j operations for the QR

decomposition of S (line 13). Thus Cj =
∑m

j=1(
∑j

i=1(4nkikj + nkj + 4ndjkj) + 2nk2j ).
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5. Numerical experiments. We investigate the numerical behavior of block
flexible Krylov subspace methods including deflation at each iteration on a chal-
lenging application in geophysics where the situation of multiple right-hand sides is
common. The source terms correspond to Dirac sources in this example. Thus the
block right-hand side B ∈ C

n×p is extremely sparse (only one nonzero element per col-
umn), and the initial block residual corresponds to a full rank matrix. We compare
both BFGMRES-R(m) and BFGMRES-S(m) with various preconditioned iterative
methods based on flexible (block) GMRES(m) with a zero initial guess (X0) and a
moderate value of the restart parameter m. The iterative procedures are stopped
when the following condition is satisfied:

||B(:, l)−AX(:, l)||2
||B(:, l)||2 ≤ tol ∀ l = 1, . . . , p.

A primary concern will be to evaluate whether BFGMRES-S(m) can be efficient
when solving problems with multiple right-hand sides both in terms of preconditioner
applications and total computational cost. Finally, the tolerance is set to tol = 10−5

in the numerical experiments, and we fix the parameter εd of Algorithm 2 to 1.

5.1. Acoustic full waveform inversion. We focus on a specific application in
geophysics related to the simulation of wave propagation phenomena on Earth [47].
Given a three-dimensional physical domain Ωp, the propagation of a wave field in
a heterogeneous medium can be modeled by the Helmholtz equation written in the
frequency domain:

−∂2u

∂x2
− ∂2u

∂y2
− ∂2u

∂z2
− (2πf)2

c2(x, y, z)
u = gs(x), x = (x, y, z) ∈ Ωp.(5.1)

u represents the pressure field in the frequency domain, c the variable acoustic-wave
velocity in ms−1, and f the frequency in Hertz. The source term gs(x) = δ(x − xs)
represents a harmonic point source located at (xs, ys, zs). A popular approach—the
perfectly matched layer formulation (PML) [8, 9]—has been used in order to ob-
tain a satisfactory near-boundary solution, without many artificial reflections. As
in [13], we consider a second-order finite difference discretization of the Helmholtz
equation (5.1) on a uniform equidistant Cartesian grid of size nx × ny × nz. The
same stability condition (12 points per wavelength) relating f , the frequency, to h,
the mesh grid size, and c(x, y, z), the heterogeneous velocity field, has been consid-
ered (12fh = min(x,y,z)∈Ωh

c(x, y, z)). In consequence, A is a sparse complex matrix
which is non-Hermitian and nonsymmetric due to the PML formulation that leads
to complex-valued variable coefficients in the partial differential equation [37, Ap-
pendix A]. The resulting linear systems are known to be challenging for iterative
methods [19, 20]. We consider the same approximate geometric two-level precondi-
tioner presented in [13], which has been shown to be relatively efficient for the solution
of three-dimensional heterogeneous Helmholtz problems in geophysics. We refer the
reader to [13, Algorithm 5] for a complete description of the geometric preconditioner,
and to [37] for additional theoretical properties in relation to Krylov subspace meth-
ods. In this section we consider this variable two-grid preconditioner in the multiple
right-hand-side case and next investigate the performance of the block flexible Krylov
methods on this challenging real-life application. The numerical results have been ob-
tained on Babel, a Blue Gene/P computer located at IDRIS (PowerPC 450, 850 MHz,
with 512 MB of memory on each core), using a Fortran 90 implementation with MPI
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in single precision arithmetic. This code was compiled by the IBM compiler suite
with standard compiling options and linked with the vendor BLAS and LAPACK
subroutines.

As in [13], we consider the velocity field issued from the public domain SEG/EAGE
Overthrust model [2] and analyze the performance of the numerical methods at a given
frequency f = 3.64 Hz. Both the problem dimension (about 23 million unknowns)
and the maximal number of right-hand sides to be considered (128) correspond to a
task that geophysicists typically must face on a daily basis. Thus efficient numeri-
cal methods must be developed for that purpose. In [13] we have considered block
flexible Krylov subspace methods including deflation at restart only for this appli-
cation with a reduced number of right-hand sides (from 4 to 16). We continue this
detailed analysis and investigate the performance of both BFGMRES-S(m, pf) and
BFGMRES-R(m) with a larger number of right-hand sides. In addition, we con-
sider the standard block flexible GMRES method (BFGMRES(m)), the block flexible
GMRES(m) with deflation performed at restart only (BFGMRESD(m) [13, Algo-
rithm 3]), and the block flexible GMRES(m) with deflation and truncation performed
at restart only (BFGMREST(m, pf ) [13, Algorithm 4]). We also investigate a com-
bination of BFGMRES-S and BFGMRESD. This method, later named Combined(m,
ps), corresponds to BFGMRES-S(m) at the beginning of the convergence history.
Then as soon as the number of Krylov directions effectively considered at iteration j
(kj) reaches a given prescribed value (ps), the method switches to BFGMRESD(m)
at the next restart. This mainly aims at reducing the computational cost in the next
cycles by performing deflation only at the restart instead of at each iteration. Finally
the number of cores is set to 8p, ranging from 32 for p = 4 to 1024 for p = 128.
This aims at imposing the same memory constraint on each core for all numerical
experiments, as in [13]. The maximal memory requested is about 488 Gb for p = 128.

Table 5.1 collects, in addition to iterations (It)7 and preconditioner applications
on a single vector (Pr),8 the computational times in seconds (T ). Among the different
strategies, BFGMRES-S(5) most often delivers the minimal number of preconditioner
applications and computational times (see italic and bold values, respectively, in Ta-
ble 5.1). This clearly highlights the value of performing deflation at each iteration,
both in terms of preconditioner applications and computational operations on this
given application. The improvement over BFGMRES-R(5) ranges from 10% for p = 4
to 35% for p = 128, which is very satisfactory behavior. BFGMRES-S(5) is also found
to be competitive with respect to methods incorporating deflation at restart only (a
gain of up to 15% in terms of computational time is obtained, for instance, for p = 8)
as well as BFGMRES-S(5,p/2) (maximal gain of 21% (for p = 32) when compared
to BFGMREST(5,p/2)). This is a satisfactory improvement, since methods including
deflation at restart only are already quite efficient in this application, as shown in [13].
We also note that the improvement over the classical block flexible GMRES method
is quite large as expected (a maximal gain of about 60% is obtained for p = 64).

We have also considered the solution of the p linear systems given now in se-
quence with the FGMRES Krylov subspace method [41]. In Table 5.1, FGMRES(5p)
consists of solving the p linear systems in sequence (starting with a zero initial guess),

7A complete cycle of BFGMRES(m), BFGMRES-R(m), or BFGMRES-S(m) always corresponds
to m iterations, whereas a complete cycle of FGMRES(mp) involves mp iterations.

8A complete cycle of BFGMRES(m) corresponds to mp preconditioner applications, whereas a
complete cycle of either BFGMRES-R(m) or BFGMRES-S(m) corresponds to

∑m
j=1 kj,c precondi-

tioner applications. A complete cycle of FGMRES(mp) requires mp preconditioner applications.
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Table 5.1

Acoustic full waveform inversion (SEG/EAGE Overthrust model). Case of f = 3.64 Hz (h =
50 m), with p = 4 to p = 128 right-hand sides given at once. It denotes the number of iterations,
Pr the number of preconditioner applications on a single vector, and T the total computational time
in seconds. The number of cores is set to 8p.

Acoustic full waveform inversion - Grid : 433× 433× 126

p = 4 p = 8 p = 16

Method It Pr T It Pr T It Pr T
FGMRES(5p) 56 56 624 112 112 629 224 224 665
BFGMRES(5) 14 56 622 14 112 631 14 224 668
BFGMRESD(5) 14 43 489 15 70 401 15 120 371
BFGMRES-R(5) 16 44 503 16 74 431 16 134 417
BFGMRES-S(5) 16 39 452 16 57 339 18 102 328
BFGMREST(5,p/2) 24 48 542 23 80 447 20 140 410
BFGMRES-S(5,p/2) 16 40 459 15 68 392 17 124 384
Combined(5,p/2) 15 41 471 15 62 359 15 103 323
Combined(5,p/4) 18 41 474 15 59 346 15 102 320

p = 32 p = 64 p = 128

Method It Pr T It Pr T It Pr T
FGMRES(5p) 434 434 670 1152 1152 925 2531 2531 1187
BFGMRES(5) 14 448 713 18 1152 962 19 2432 1187
BFGMRESD(5) 15 225 371 20 490 422 25 1015 509
BFGMRES-R(5) 18 283 466 25 618 537 28 1489 762
BFGMRES-S(5) 19 181 316 25 413 375 28 915 497
BFGMREST(5,p/2) 20 255 396 25 550 444 28 1125 524
BFGMRES-S(5,p/2) 16 189 310 24 444 396 29 976 523
Combined(5,p/2) 15 184 305 20 409 348 25 899 442
Combined(5,p/4) 20 191 320 20 398 342 25 898 448

the Euclidean norm of each residual being minimized over a subspace of maximal
dimension 5p. The maximal number of iterations performed to reach the stopping
criterion (5.1) on a single linear system is found to be equal to 14 (p ranging from 4
to 32), 18 (p = 64), and 22 (p = 128), respectively. These results lead to two impor-
tant comments. First, whatever the number of right-hand sides considered, no restart
occurs in the Krylov subspace method applied in a single right-hand side situation:
FGMRES(5p) thus corresponds to a preconditioned full flexible GMRES method in
such a case. This is thus ideal for FGMRES(5p), since no restart procedure that might
have hampered the convergence of the method is involved. Second, we remark that the
maximal number of iterations performed does depend on the number of cores. This
behavior can be explained as follows. An analysis of the FGMRES Krylov subspace
method with the variable two-grid preconditioner on three-dimensional heterogeneous
Helmholtz problems has shown that the numerical method satisfies a strong scalabil-
ity property up to a given number of cores [37]. The loss of scalability is indeed due
to the symmetric Gauss-Seidel preconditioner used both in the smoother and in the
approximate solution of the coarse problem. This preconditioner is based on a subdo-
main decoupling and thus becomes inherently less efficient when the number of cores is
increasing [6]. We refer the reader to [37] and [13, section 4.2.2] for related numerical
experiments and additional comments. Finally, we remark that the improvement due
to block methods using deflation at each iteration over the flexible GMRES method
applied on the sequence of linear systems is noticeable on this application; a maximal
gain of about 62% is obtained for p = 128.
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Table 5.2

Acoustic full waveform inversion (SEG/EAGE Overthrust model). Case of f = 3.64 Hz (h =
50 m), with p = 4 to p = 128 right-hand sides given at once. Detailed timings (in seconds) related
to orthogonalization (Torth) and to preconditioning and matrix-vector products (Tpmvp). Here σ =
Tpmvp/T represents the percentage of time spent in the preconditioning and matrix-vector product
phases with respect to the total computational times (T ) given in Table 5.1. The number of cores is
set to 8p.

Acoustic full waveform inversion - Grid : 433× 433× 126

p = 4 p = 8 p = 16

Method Torth Tpmvp σ Torth Tpmvp σ Torth Tpmvp σ
FGMRES(5p) 10 607 0.97 8 609 0.97 5 646 0.97
BFGMRES(5) 13 605 0.97 17 608 0.96 29 631 0.94
BFGMRESD(5) 14 470 0.96 11 384 0.96 16 348 0.94
BFGMRES-R(5) 15 480 0.95 14 408 0.95 18 386 0.93
BFGMRES-S(5) 16 428 0.95 12 317 0.94 15 299 0.91
BFGMREST(5,p/2) 16 519 0.96 10 425 0.95 11 391 0.95
BFGMRES-S(5,p/2) 15 436 0.95 10 373 0.95 15 357 0.93
Combined(5,p/2) 16 449 0.95 10 343 0.96 14 301 0.93
Combined(5,p/4) 16 449 0.95 12 328 0.95 13 298 0.93

p = 32 p = 64 p = 128

Method Torth Tpmvp σ Torth Tpmvp σ Torth Tpmvp σ
FGMRES(5p) 9 614 0.92 15 862 0.93 25 1141 0.96
BFGMRES(5) 51 649 0.91 116 818 0.85 223 906 0.76
BFGMRESD(5) 25 334 0.90 45 354 0.84 74 385 0.76
BFGMRES-R(5) 27 417 0.89 30 428 0.80 98 565 0.74
BFGMRES-S(5) 19 275 0.87 31 300 0.80 56 348 0.70
BFGMREST(5,p/2) 16 368 0.93 29 389 0.88 50 423 0.81
BFGMRES-S(5,p/2) 17 276 0.89 31 320 0.81 58 371 0.71
Combined(5,p/2) 17 276 0.90 28 297 0.85 50 342 0.77
Combined(5,p/4) 18 286 0.89 27 288 0.84 51 341 0.76

Detailed computational timings spent in the orthogonalization phase (Torth) and
in both preconditioning and outer matrix-vector product phases (Tpmvp) are provided
in Table 5.2. In addition the percentages (σ) of time spent in the preconditioning
and matrix-vector product phases with respect to the total computational times are
given. The analysis of σ clearly highlights that the dominant cost in all the methods is
related to the preconditioning phase, which is in agreement with the main assumption
of the paper. In the application, the approximate solution of the coarse linear system
obtained with a symmetric Gauss–Seidel preconditioned restarted GMRES method
represents the most computationally expensive part of the two-grid cycle used as a
preconditioner. We refer the reader to [37] for further details on the preconditioner.

Figure 5.1 shows the evolution of kj along convergence for the various block
subspace methods in the case of p = 32. Regarding BFGMRESD(5) and BFGM-
REST(5,p/2) deflation is performed only at the beginning of each cycle; thus kj is
found to be constant in a given cycle. Variations at each iteration can happen only
in BFGMRES-R(5) or in BFGMRES-S(5). As expected, BFGMRES-S(5) enjoys a
nonincreasing behavior for kj along convergence, while peaks occur for BFGMRES-
R(5) at the beginning of each cycle (see Proposition 3.3). In this example the use of
truncation within BFGMRES-S(5, p/2) tends to delay the beginning of the decreasing
behavior of kj . After a certain phase deflation is nevertheless active and proves to be
useful.

We also remark that the use of truncation techniques in BFGMRES-S(m, pf )
leads to an efficient method. In certain cases BFGMRES-S(5, p/2) is as efficient as
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Fig. 5.1. Acoustic full waveform inversion (SEG/EAGE Overthrust model). Case of
p = 32. Evolution of kj versus iterations for p = 32 in BFGMRES(5) and BFGMRESD(5)
(top-left), BFGMRES-R(5) (top-right), BFGMRES-S(5) (bottom-left), and truncated variants
(BFGMREST(5,p/2) and BFGMRES-S(5,p/2)) (bottom-right).

BFGMRES-S(5) in terms of computational times (see, e.g., the case p = 32 in Ta-
ble 5.1). This feature is really important in the given application due to the large size
of the linear systems. Furthermore BFGMRES-S(5, p/2) usually requires fewer pre-
conditioner applications than does BFGMREST(5, p/2). This satisfactory behavior
has a definite reason: due to Proposition 3.2, we guarantee that the truncated variant
of BFGMRES-S(m, pf) minimizes the whole residual at each iteration (regardless of
the value of pf ), whereas BFGMREST(m) chooses just a set of linear independent
columns of the block residual to be minimized at each cycle. We consider that this
is indeed a critical feature of the truncated variant of BFGMRES-S(m, pf). Further-
more, as shown in Table 5.1, the Combined(5, ps) method (with ps = p/2 or ps = p/4)
leads to further reductions in computational times and is especially appropriate when
the number of right-hand sides becomes large on this given application.

Finally, in [12, section 6.1] and [30, section 3.9.3] the first five strategies (FGMRES
(mp), BFGMRES(m), BFGMRESD(m), BFGMRES-R(m), and BFGMRES-S(m))
have been evaluated on an academic test case related to a two-dimensional partial
differential equation (complex-valued advection-diffusion reaction problem) with a
number of right-hand sides ranging from 4 to 32. A cycle of GMRES(m) has been
used as a variable preconditioner in all methods. Whatever the value of the restart
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parameter m (two values have been considered, m = 5 and m = 10), it was found that
BFGMRES-S(m) always led to the minimal number of preconditioner applications
and delivered the best efficiency in terms of computational operations. This is thus
behavior similar to the proposed application in geophysics. We also refer the reader
to [30, section 3.9] for additional numerical experiments on academic problems related
to partial differential equations showing a similar trend.

6. Conclusion. We have proposed a block restarted GMRES method for the
solution of non-Hermitian linear systems with multiple right-hand sides that allows
both the use of deflation at each iteration and variable preconditioning. This method
uses a subspace decomposition based on the singular value decomposition of the block
residual of the reduced least-squares problem. This decomposition aims at selecting
a set of kj new Krylov directions at iteration j, while dj directions are deflated (i.e.,
kept and reintroduced later if needed) at the same iteration. The new method ensures
a nonincreasing behavior of kj along convergence, which leads to possibly considerable
computational savings with respect to the existing reference method [39]. We have also
proposed a variant based on truncation. All these features are particularly of interest
when tackling the solution of large-scale linear systems with many right-hand sides.
BFGMRES-S has proved to be efficient in terms of both preconditioner applications
and computational operations on an application related to geophysics. Often, but not
always, it has been found superior to recent block flexible methods including deflation
at restart only. We would like to emphasize that, when large restart sizes m or large
numbers of right-hand sides p are considered, the cost of orthogonalization can become
significant. In consequence this may potentially decrease the value of performing
deflation at each iteration. Nevertheless, in this paper, satisfactory behavior has been
observed on an industrial simulation, where large linear systems with multiple right-
hand sides have been successfully solved in a parallel distributed memory environment.
Further reductions in terms of computational times have been obtained by combining
methods including deflation at each iteration and deflation at restart only in a second
phase.

It is worth noting that the theoretical properties of BFGMRES-S hold for any
unitary matrix Fj+1. Hence different subspace decompositions could be investigated.
We also note that the analysis proposed in this paper can be extended as well to
other block Krylov subspace methods based on a norm minimization property, such
as block FOM [38], block GCRO [49], and block simpler GMRES [32]. All these
methods do rely on block orthogonalizations that require global communications.
These latter operations usually become a bottleneck on massively parallel platforms,
and we plan in the near future to investigate algorithmic variants, where these global
communications can be overlapped with calculations or local communications. This
is especially interesting for large-scale problems.

To give a broader picture of the performance of the block Krylov subspace meth-
ods investigated here, we finally mention that a comparison with flexible variants of
block Lanczos algorithms including deflation at each iteration should be performed.
This is the topic of a forthcoming study.

Appendix. Algorithm 4 shows the restarted block GMRES method with defla-
tion at each iteration in the case of variable preconditioning that is considered in
section 5. This algorithm is named BFGMRES-R(m). We note that the original
algorithm [39, Algorithm 2] is simply recovered if each preconditioning operator Mj

is chosen as the identity operator In in Algorithm 1.
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Algorithm 4. BFGMRES-R(m) [39].

1: Choose a convergence threshold tol, a relative deflation threshold εd, the size of
the restart m, and the maximum number of cycles cyclemax.

2: Choose an initial guess X0 ∈ Cn×p.
3: Compute the initial block residual R0 = B −AX0.
4: Define the scaling diagonal matrix D ∈ Cp×p as D = diag(b1, . . . , bp) with bl =

||B(:, l)||2 for l such that 1 ≤ l ≤ p.
5: Set s0 = 0.
6: for cycle = 1, cyclemax do
7: Compute the QR decomposition of R0D

−1 as R0D
−1 = V̂1Λ̂0 with V̂1 ∈ Cn×p

and Λ̂0 ∈ Cp×p.
8: Set k1 = p, d1 = 0, and s1 = k1.
9: Define9

[V1 P0

]
= V̂1, with V1 ∈ Cn×s1 (P0 ∈ Cn×d1) as the first s1 (last d1)

columns of V̂1, and define V1 = V1.
10: for j = 1,m do
11: Completion of V̂j+1, Zj, and Ĥj: Apply Algorithm 1 to obtain Zj ∈ C

n×sj ,

V̂j+1 ∈ Cn×(sj+p), and Ĥj ∈ C(sj+p)×sj such that

AZj = V̂j+1 Ĥj with V̂j+1 =
[
V1, V2, . . . , Vj , Pj−1, V̂j+1

]
.

12: Set Λ̂j ∈ C(sj+p)×p as Λ̂j =
[

Λ̂0

0sj×p

]
.

13: Solve the minimization problem Pr: Yj = argminY ∈C
sj×p ||Λ̂j − ĤjY ||F .

14: Compute R̂j = Λ̂j − ĤjYj .

15: if ||R̂j(:, l)||2 ≤ tol ∀ l | 1 ≤ l ≤ p, then
16: Compute Xj = X0 + ZjYjD; stop;
17: end if
18: Determine deflation unitary matrix Fj+1 ∈ C(sj+p)×(sj+p) and kj+1, dj+1

such that kj+1 + dj+1 = p (see Algorithm 2 with pf = p).
19: Set sj+1 = sj + kj+1.

20: Define
[Vj+1 Pj

]
= V̂j+1Fj+1, with Vj+1 ∈ Cn×sj+1 (or Pj ∈ Cn×dj+1) as

the first sj+1 (or last dj+1) columns of V̂j+1Fj+1.

21: Define Hj = FH
j+1Ĥj , with Hj ∈ C(sj+p)×sj .

22: end for
23: Xm = X0 + ZmYmD
24: Rm = B −AXm

25: Set R0 = Rm and X0 = Xm.
26: end for
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9We have made the abuse of notation
[V1 P0

]
= V̂1 to allow an easy-to-read comparison with

line 9 of Algorithm 3. In BFGMRES-R(m) we have V1 = V̂1 and P0 = [ ] in practice.

D
ow

nl
oa

de
d 

11
/0

4/
13

 to
 1

94
.1

99
.1

9.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S366 CALANDRA, GRATTON, LAGO, VASSEUR, AND CARVALHO

REFERENCES

[1] J. I. Aliaga, D. L. Boley, R. W. Freund, and V. Hernández, A Lanczos-type method for
multiple starting vectors, Math. Comput., 69 (2000), pp. 1577–1601.

[2] F. Aminzadeh, J. Brac, and T. Kunz, 3D Salt and Overthrust Models, Society of Exploration
Geophysicists, Tulsa, OK, 1997.

[3] J. Baglama, Augmented block Householder Arnoldi method, Linear Algebra Appl., 429 (2008),
pp. 2315–2334.

[4] Z. Bai, D. Day, and Q. Ye, ABLE: An adaptive block Lanczos for non-Hermitian eigenvalue
problems, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 1060–1082.

[5] A. H. Baker, J. M. Dennis, and E. R. Jessup, On improving linear solver performance: A
block variant of GMRES, SIAM J. Sci. Comput., 27 (2006), pp. 1608–1626.

[6] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, Multigrid smoothers for
ultraparallel computing, SIAM J. Sci. Comput., 33 (2011), pp. 2864–2887.

[7] G. Barbella, F. Perotti, and V. Simoncini, Block Krylov subspace methods for the com-
putation of structural response to turbulent wind, Comput. Methods Appl. Mech. Engrg.,
200 (2011), pp. 2067–2082.

[8] J.-P. Berenger, A perfectly matched layer for absorption of electromagnetic waves, J. Comput.
Phys., 114 (1994), pp. 185–200.

[9] J.-P. Berenger, Three-dimensional perfectly matched layer for absorption of electromagnetic
waves, J. Comput. Phys., 127 (1996), pp. 363–379.

[10] W. E. Boyse and A. A. Seidl, A block QMR method for computing multiple simultaneous
solutions to complex symmetric systems, SIAM J. Sci. Comput., 17 (1996), pp. 263–274.

[11] P. A. Businger and G. Golub, Linear least squares solutions by Householder transformations,
Numer. Math., 7 (1965), pp. 269–276.

[12] H. Calandra, S. Gratton, R. Lago, and X. Vasseur, A Deflated Minimal Block Residual
Method for the Solution of non-Hermitian Linear Systems with Multiple Right-Hand Sides,
Technical Report TR/PA/12/45, CERFACS, Toulouse, France, 2012.

[13] H. Calandra, S. Gratton, J. Langou, X. Pinel, and X. Vasseur, Flexible variants of
block restarted GMRES methods with application to geophysics, SIAM J. Sci. Comput., 34
(2012), pp. A714–A736.

[14] J. Cullum and T. Zhang, Two-sided Arnoldi and nonsymmetric Lanczos algorithms, SIAM
J. Matrix Anal. Appl., 24 (2002), pp. 303–319.

[15] R. D. da Cunha and D. Becker, Dynamic block GMRES: An iterative method for block linear
systems, Adv. Comput. Math., 27 (2007), pp. 423–448.

[16] L. Du, T. Sogabe, B. Yu, Y. Yamamoto, and S.-L. Zhang, A block IDR(s) method for
nonsymmetric linear systems with multiple right-hand sides, J. Comput. Appl. Math., 235
(2011), pp. 4095–4106.

[17] M. Eiermann and O. Ernst, Geometric aspects of the theory of Krylov subspace methods,
Acta Numer., 10 (2001), pp. 251–312.

[18] H. Elman, O. Ernst, D. O’Leary, and M. Stewart, Efficient iterative algorithms for the
stochastic finite element method with application to acoustic scattering, Comput. Methods
Appl. Mech. Engrg., 194 (2005), pp. 1037–1055.

[19] Y. A. Erlangga, Advances in iterative methods and preconditioners for the Helmholtz equa-
tion, Arch. Comput. Methods Engrg., 15 (2008), pp. 37–66.

[20] O. Ernst and M. J. Gander, Why it is difficult to solve Helmholtz problems with classical
iterative methods, in Numerical Analysis of Multiscale Problems, O. Lakkis, I. Graham,
T. Hou, and R. Scheichl, eds., Springer, New York, 2011, pp. 325–361.

[21] R. W. Freund, Krylov-subspace methods for reduced-order modeling in circuit simulation, J.
Comput. Appl. Math., 123 (2000), pp. 395–421.

[22] R. W. Freund and M. Malhotra, A block QMR algorithm for non-Hermitian linear systems
with multiple right-hand sides, Linear Algebra Appl., 254 (1997), pp. 119–157.

[23] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, 1996.

[24] A. El Guennouni, K. Jbilou, and H. Sadok, A block version of BICGSTAB for linear systems
with multiple right-hand sides, Electron. Trans. Numer. Anal., 16 (2003), pp. 129–142.

[25] M. H. Gutknecht, Block Krylov space methods for linear systems with multiple right-hand
sides: An introduction, in Modern Mathematical Models, Methods and Algorithms for Real
World Systems, A. H. Siddiqi, I. S. Duff, and O. Christensen, eds., Anamaya Publishers,
New Delhi, India, 2006, pp. 420–447.

[26] M. H. Gutknecht and T. Schmelzer, The block grade of a block Krylov space, Linear Algebra
Appl., 430 (2009), pp. 174–185.

D
ow

nl
oa

de
d 

11
/0

4/
13

 to
 1

94
.1

99
.1

9.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A BLOCK FLEXIBLE GMRES METHOD WITH DEFLATION S367

[27] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008.
[28] R. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cam-

bridge, UK, 1991.
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Rennes, France, 1990.

[49] R. Yu, E. de Sturler, and D. D. Johnson, A Block Iterative Solver for Complex Non-
Hermitian Systems Applied to Large-Scale Electronic-Structure Calculations, Technical
Report UIUCDCS-R-2002-2299, Department of Computer Science, University of Illinois at
Urbana-Champaign, Champaign, IL, 2002.

D
ow

nl
oa

de
d 

11
/0

4/
13

 to
 1

94
.1

99
.1

9.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Bibliography

[1] J. A. Acebrón, A. Rodriguez-Rozas, and R. Spigler. “Domain decomposition
solution of nonlinear two-dimensional parabolic problems by random trees”. In:
J. Comp. Phys. 228 (2009), pp. 5574–5591 (cit. on p. 111).

[2] J. A. Acebrón, A. Rodriguez-Rozas, and R. Spigler. “Efficient parallel solution
of nonlinear parabolic partial differential equations by a probabilistic domain
decomposition”. In: J. Sci. Comput. 43.2 (2009), pp. 135–157 (cit. on p. 111).

[3] J. A. Acebrón, M. Busico, P. Lanucara, and R. Spigler. “Domain decomposition
solution of elliptic boundary-value problems via Monte Carlo and Quasi-Monte
Carlo methods”. In: SIAM J. Sci. Comput. 27.2 (2005), pp. 135–157 (cit. on
p. 111).

[4] M. Adams. “A low memory, highly concurrent multigrid algorithm”. In: ArXiv
e-prints (2012). arXiv: 1207.6720 [math.NA] (cit. on p. 110).

[5] M. Adams, J. Brown, M. Knepley, and R. Samtaney. “Segmental refinement:
a multigrid technique for data locality”. In: SIAM J. Sci. Comput. (2015 (ac-
cepted)). arXiv:1406.7808 (cit. on p. 110).

[6] B. Aksoylu and H. Klie. “A family of physics-based preconditioners for solv-
ing elliptic equations on highly heterogeneous media”. In: Appl. Num. Math. 59
(2009), pp. 1159–1186 (cit. on p. 66).

[7] P. R. Amestoy, I. S. Duff, and J. Y. L’Excellent. “Multifrontal parallel distributed
symmetric and unsymmetric solvers”. In: Comput. Methods Appl. Mech. Engrg.
184 (2000), pp. 501–520 (cit. on p. 9).

[8] P. R. Amestoy, I. S. Duff, J. Koster, and J. Y. L’Excellent. “A fully asynchronous
multifrontal solver using distributed dynamic scheduling”. In: SIAM J. Matrix
Anal. Appl. 23 (1) (2001), pp. 15–41 (cit. on p. 9).

[9] P. R. Amestoy, A. Guermouche, J. Y. L’Excellent, and S. Pralet. “Hybrid schedul-
ing for the parallel solution of linear systems”. In: Parallel Comput. 32(2) (2006),
pp. 136–156 (cit. on p. 9).

273

http://arxiv.org/abs/1207.6720


Bibliography

[10] P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and C.
Weisbecker. “Improving multifrontal methods by means of Block Low-Rank rep-
resentations”. In: SIAM J. Sci. Comput. 37.3 (2015), A1451–A1474 (cit. on p. 9).

[11] F. Aminzadeh, J. Brac, and T. Kunz. 3D Salt and Overthrust Models. SEG/EAGE
modeling series I. Society of Exploration Geophysicists, 1997 (cit. on p. 25).

[12] B. Andersson, U. Falk, I. Babuška, and T. von Petersdorff. “Reliable stress and
fracture mechanics analysis of complex aircraft components using a hp–version
FEM”. In: Int. J. Numer. Meth. Eng. 38.13 (1995), pp. 2135–2163 (cit. on pp. 36,
41).

[13] M. Arioli. “A stopping criterion for the conjugate gradient algorithm in a finite
element framework”. In: Numer. Math. 97 (2004), pp. 1–24 (cit. on p. 110).

[14] M. Arioli, D. Loghin, and A. Wathen. “Stopping criteria for iterations in finite
element methods”. In: Numer. Math. 99 (2005), pp. 381–410 (cit. on p. 110).

[15] O. Axelsson. Iterative Solution Methods. Cambridge University Press, Cam-
bridge, 1994 (cit. on pp. 1, 3, 71).

[16] O. Axelsson and P. S. Vassilevski. “Algebraic multilevel preconditioning meth-
ods. I”. In: Numer. Math. 56 (1989), pp. 157–177 (cit. on p. 91).

[17] I. Babuška and B. Guo. “Approximation properties of the hp–version of the finite
element method”. In: Comput. Methods Appl. Mech. Engrg. 133 (1996), pp. 319–
346 (cit. on pp. 33, 36, 41).

[18] S. Badia, A. F. Martin, and J. Principe. “A highly scalable parallel implementa-
tion of balancing domain decomposition by constraints”. In: SIAM J. Sci. Com-
put. (2014), pp. C190–C218 (cit. on p. 96).

[19] S. Badia, A. F. Martin, and J. Principe. “Multilevel balancing domain decom-
position at extreme scales”. In: SIAM J. Sci. Comput. 38-1 (2016), pp. C22–C52
(cit. on p. 96).

[20] S. Badia, A. F. Martin, and J. Principe. “On the scalability of inexact balancing
domain decomposition by constraints with overlapped coarse/fine corrections”.
In: Parallel Comput. 50 (2015), pp. 1–24 (cit. on p. 96).

[21] J. Baglama. “Augmented block Householder Arnoldi method”. In: Linear Algebra
Appl. 429 (2008), pp. 2315–2334 (cit. on p. 78).

274



Bibliography

[22] A. H. Baker, J. M. Dennis, and E. R. Jessup. “An efficient block variant of
GMRES”. In: SIAM J. Sci. Comput. 27 (2006), pp. 1608–1626 (cit. on p. 76).

[23] A. H. Baker, E. R. Jessup, and T. Manteuffel. “A technique for accelerating the
convergence of restarted GMRES”. In: SIAM J. Matrix Anal. Appl. 26.4 (2005),
pp. 962–984 (cit. on p. 71).

[24] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. Philadel-
phia, PA: SIAM, 1994 (cit. on p. 1).

[25] A. Bayliss, C. I. Goldstein, and E. Turkel. “An iterative method for the Helmholtz
equation”. In: J. Comp. Phys. 49 (1983), pp. 443–457 (cit. on pp. 10, 13).

[26] A. Bellen and M. Zennaro. “Parallel algorithms for initial-value problems for
difference and differential equations”. In: J. Comput. Appl. Math. 25.3 (1989),
pp. 341–350 (cit. on p. 107).

[27] M. Benzi. “Preconditioning techniques for large linear systems: a survey”. In: J.
Comp. Phys. 182 (2002), pp. 418–477 (cit. on p. 2).

[28] M. Benzi, G. H. Golub, and J. Liesen. “Numerical solution of saddle point prob-
lems”. In: Acta Numer. 14.1 (2005), pp. 1–137 (cit. on p. 100).

[29] M. Benzi, A. Frommer, R. Nabben, and D. Szyld. “Algebraic theory of multi-
plicative Schwarz methods”. In: Numer. Math. 89 (2001), pp. 605–639 (cit. on
p. 3).

[30] J.-P. Berenger. “A perfectly matched layer for absorption of electromagnetic
waves”. In: J. Comp. Phys. 114 (1994), pp. 185–200 (cit. on p. 11).

[31] J.-P. Berenger. “Three-dimensional perfectly matched layer for absorption of
electromagnetic waves”. In: J. Comp. Phys. 127 (1996), pp. 363–379 (cit. on
pp. 11, 13).

[32] I. Bermejo-Moreno, J. Bodart, and J. Larsson. “Scaling compressible flow solvers
on the IBM Blue Gene/Q platform on up to 1.97 million cores”. In: Center for
Turbulence Research, Annual Research Briefs n/a (2013), pp. 343–358 (cit. on
p. 106).

[33] I. Bermejo-Moreno, J. Bodart, J. Larsson, B. Barney, J. W. Nichols, and S. Jones.
“Solving the Compressible Navier-Stokes Equations on Up to 1.97 Million Cores
and 4.1 Trillion Grid Points”. In: Proceedings of the International Conference

275



Bibliography

on High Performance Computing, Networking, Storage and Analysis. SC ’13.
Denver, Colorado: ACM, 2013, 62:1–62:10 (cit. on p. 106).

[34] F. Bernal and J. A. Acebrón. “A multigrid-like algorithm for Probabilistic Do-
main Decomposition”. In: ArXiv e-prints (). arXiv: 1512.02818 [math.NA] (cit.
on p. 111).

[35] C. Bernardi and Y. Maday. “Spectral methods”. In: Handbook of Numerical Anal-
ysis, Vol. V, Part 2. Amsterdam: North-Holland, 1997, pp. 209–485 (cit. on
p. 36).

[36] R. Blaheta. “A multilevel method with correction by aggregation for solving
discrete elliptic problems”. In: Appl. Math. 31.5 (1986), pp. 365–378 (cit. on
pp. 90, 91).

[37] M. Bollhöfer, M. J. Grote, and O. Schenk. “Algebraic multilevel preconditioner
for the solution of the Helmholtz equation in heterogeneous media”. In: SIAM J.
Sci. Comput. 31 (2009), pp. 3781–3805 (cit. on pp. 10, 15).

[38] D. Braess. “Towards algebraic multigrid for elliptic problems of second order”.
In: Computing 55.4 (1995), pp. 379–393 (cit. on pp. 90, 91).

[39] A. Brandt. “A multi-level adaptative solution to boundary-value problems”. In:
Math. Comp. 31 (1977), pp. 333–390 (cit. on pp. 3, 8, 105, 110).

[40] A. Brandt and O. E. Livne. Multigrid Techniques: 1984 Guide with Applications
to Fluid Dynamics. Revised Edition. SIAM, Philadelphia, 2011 (cit. on pp. 3,
110).

[41] A. Brandt and I. Livshits. “Wave-ray multigrid method for standing wave equa-
tions”. In: Electron. Trans. Numer. Anal. 6 (1997), pp. 162–181 (cit. on p. 10).

[42] A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic multigrid (AMG) for
automatic multigrid solutions with application to geodetic computations. Techni-
cal Report. Institute for Computational Studies, Fort Collins, CO, 1982 (cit. on
pp. 89, 90).

[43] A. Brandt and S. Ta’asan. “Multigrid method for nearly singular and slightly
indefinite problems”. In: Multigrid Methods II. Ed. by W. Hackbusch and U.
Trottenberg. Springer-Verlag, 1986, pp. 99–121 (cit. on p. 10).

[44] M. Brezina, R. D. Falgout, S. P. McLachlan, T.A. Manteuffel, S. F. McCormick,
and J. W. Ruge. “Adaptive smoothed aggregation (αSA)”. In: SIAM J. Sci.
Comput. 25.6 (2004), pp. 1896–1920 (cit. on p. 91).

276

http://arxiv.org/abs/1512.02818


Bibliography

[45] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. SIAM,
2000 (cit. on p. 3).

[46] P. N. Brown and H. F. Walker. “GMRES on (nearly) singular systems”. In: SIAM
J. Matrix Anal. Appl. 18 (1997), pp. 37–51 (cit. on p. 69).

[47] C. G. Broyden. “A class of methods for solving nonlinear simultaneous equa-
tions”. In: Math. Comp. 19 (1965), pp. 577–593 (cit. on p. 103).

[48] C. G. Broyden. “A new method of solving nonlinear simultaneous equations”. In:
The Computer Journal 12.1 (1969), pp. 94–99 (cit. on p. 103).

[49] B. V. Budaev and D. B. Bogy. “Novel solutions of the Helmholtz equation and
their application to diffraction”. In: Proceedings of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences 463.2080 (2007), pp. 1005–
1027 (cit. on p. 111).

[50] B. V. Budaev and D. B. Bogy. “Probabilistic solutions of the Helmholtz equa-
tion”. In: The Journal of the Acoustical Society of America 109.5 (2001), pp. 2260–
2262 (cit. on p. 111).

[51] V. Bulgakov. “Multi-level iterative technique and aggregation concept with semi-
analytical preconditioning for solving boundary-value problems”. In: Comm. Nu-
mer. Methods Engrng. 9 (1993), pp. 649–657 (cit. on p. 90).

[52] P. A. Businger and G. Golub. “Linear least squares solutions by Householder
transformations”. In: Numer. Math. 7 (1965), pp. 269–276 (cit. on p. 81).

[53] E. J. Bylaska, J. Q. Weare, and J. H. Weare. “Extending molecular simula-
tion time scales: Parallel in time integrations for high-level quantum chemistry
and complex force representations”. In: The Journal of Chemical Physics 139.7
(2013), p. 074114 (cit. on p. 106).

[54] R. Byrd, J. Nocedal, and R. Schnabel. “Representations of quasi-Newton matri-
ces and their use in limited memory methods”. In: Mathematical Programming
63 (1994), pp. 129–156 (cit. on p. 105).

[55] X.-C. Cai and D. E. Keyes. “Nonlinearly preconditioned inexact Newton algo-
rithms”. In: SIAM J. Sci. Comput. 24 (2002), pp. 183–200 (cit. on p. 105).

[56] X.-C. Cai and M. Sarkis. “A restricted additive Schwarz preconditioner for gen-
eral sparse linear systems”. In: SIAM J. Sci. Comput. 21 (1999), pp. 792–797
(cit. on p. 97).

277



Bibliography

[57] H. Calandra, S. Gratton, R. Lago, X. Vasseur, and L. M. Carvalho. “A modified
block flexible GMRES method with deflation at each iteration for the solution of
non-Hermitian linear systems with multiple right-hand sides”. In: SIAM J. Sci.
Comput. 35.5 (2013), S345–S367 (cit. on pp. 59, 84–86).

[58] H. Calandra, S. Gratton, X. Pinel, and X. Vasseur. “An improved two-grid pre-
conditioner for the solution of three-dimensional Helmholtz problems in hetero-
geneous media”. In: Numer. Linear Algebra Appl. 20 (2013), pp. 663–688 (cit. on
pp. 7, 16, 20, 23–28, 32).

[59] H. Calandra, S. Gratton, J. Langou, X. Pinel, and X. Vasseur. “Flexible variants
of block restarted GMRES methods with application to geophysics”. In: SIAM
J. Sci. Comput. 34.2 (2012), A714–A736 (cit. on pp. 25, 59, 78, 80, 82, 84–86).

[60] H. Calandra, S. Gratton, R. Lago, X. Pinel, and X. Vasseur. “Two-level precondi-
tioned Krylov subspace methods for the solution of three-dimensional heteroge-
neous Helmholtz problems in seismics”. In: Numerical Analysis and Applications
5.2 (2012), pp. 175–181 (cit. on p. 86).

[61] L. M. Carvalho, S. Gratton, R. Lago, and X. Vasseur. “A flexible Generalized
Conjugate Residual method with inner orthogonalization and deflated restart-
ing”. In: SIAM J. Matrix Anal. Appl. 32.4 (2011), pp. 1212–1235 (cit. on pp. 59,
73, 74, 86, 97).

[62] P. Castillo, R. Rieben, and D. White. “FEMSTER: An object-oriented class
library of high-order discrete differential forms”. In: ACM Trans. Math. Softw.
31.4 (2005), pp. 425–457 (cit. on p. 55).

[63] A. Chapman and Y. Saad. “Deflated and augmented Krylov subspace tech-
niques”. In: Numer. Linear Algebra Appl. 4.1 (1997), pp. 43–66 (cit. on pp. 62,
63).

[64] P. Chartier and B. Philippe. “A parallel shooting technique for solving dissipative
ODE’s”. In: Computing 51.3-4 (1993), pp. 209–236 (cit. on p. 108).

[65] Z. Chen, D. Cheng, and T. Wu. “A dispersion minimizing finite difference scheme
and preconditioned solver for the 3D Helmholtz equation”. In: J. Comp. Phys.
231 (2012), pp. 8152–8175 (cit. on pp. 12, 13, 15, 30).

[66] G. Cohen. Higher-order Numerical Methods for Transient Wave Equations. Springer
Verlag, Heidelberg, 2002 (cit. on p. 12).

278



Bibliography

[67] L. Conen, V. Dolean, R. Krause, and F. Nataf. “A coarse space for heteroge-
neous Helmholtz problems based on the Dirichlet-to-Neumann operator”. In: J.
Comput. Appl. Math. 271 (2014), pp. 83–99 (cit. on p. 97).

[68] L. Conen, V. Dolean, R. Krause, and F. Nataf. “Addendum to A coarse space
for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann oper-
ator”. In: J. Comput. Appl. Math. 290 (2015), pp. 670–674 (cit. on p. 97).

[69] S. F. Mc Cormick and D. Quinlan. “Asynchronous multilevel adaptive methods
for solving partial differential equations on multiprocessors: Performance results”.
In: Parallel Comput. 12 (1989), pp. 145–156 (cit. on p. 110).

[70] R. Croce, D. Ruprecht, and R. Krause. “Parallel-in-Space-and-Time simulation
of the three-dimensional, unsteady Navier-Stokes equations for incompressible
flow”. In: Modeling, Simulation and Optimization of Complex Processes – HPSC
2012. Ed. by Hans Georg Bock, Xuan Phu Hoang, Rolf Rannacher, and Johannes
P. Schlöder. Springer International Publishing, 2014, pp. 13–23 (cit. on p. 108).

[71] T. Cui, J. Xu, and C.-S. Zhang. “An error-resilient redundant subspace correction
method”. In: ArXiv e-prints (2013). arXiv: 1309.0212 [math.NA] (cit. on p. 110).

[72] D. Darnell, R. B. Morgan, and W. Wilcox. “Deflation of eigenvalues for itera-
tive methods in lattice QCD”. In: Nuclear Physics B - Proceedings Supplements
129-130 (2004), pp. 856–858 (cit. on p. 66).

[73] T. A. Davis. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia,
2006 (cit. on pp. 9, 76).

[74] F. Delbaen, J. Qiu, and S. Tang. “Forward-backward stochastic differential sys-
tems associated to Navier-Stokes equations in the whole space”. In: Stochastic
Processes and their Applications 125.7 (2015), pp. 2516 –2561 (cit. on p. 111).

[75] R. S. Dembo, S.C. Eisenstat, and T. Steihaug. “Inexact Newton methods”. In:
SIAM J. Numer. Anal. 19 (1982), pp. 400–402 (cit. on p. 105).

[76] G. B. Deng, J. Piquet, X. Vasseur, and M. Visonneau. “A new fully coupled
method for computing turbulent flows”. In: Comput. Fluids 30.4 (2001), pp. 445–
472 (cit. on p. 8).

[77] Y. Diouane. “Globally Convergent Evolution Strategies with Application to
an Earth Imaging Problem in Geophysics”. PhD thesis. CERFACS, Toulouse,
France, 2014 (cit. on p. 32).

279

http://arxiv.org/abs/1309.0212


Bibliography

[78] Y. Diouane, S. Gratton, X. Vasseur, L. N. Vicente, and H. Calandra. “A parallel
evolution strategy for an Earth imaging problem in geophysics”. In: Optimization
and Engineering 17.1 (2016), pp. 3–26 (cit. on p. 32).

[79] C. Dohrmann. “A preconditioner for substructuring based on constrained energy
minimization”. In: SIAM J. Sci. Comput. 25 (2003), pp. 246–258 (cit. on p. 96).

[80] V. Dolean, P. Jolivet, and F. Nataf. An Introduction to Domain Decomposition
Methods: Algorithms, Theory and Parallel Implementation. SIAM, 2015 (cit. on
pp. 3, 55, 95).

[81] M. Dryja, M. V. Sarkis, and O. B. Widlund. “Multilevel Schwarz methods for
elliptic problems with discontinuous coefficients in three dimensions”. In: Numer.
Math. 72.3 (1996), pp. 313–348 (cit. on pp. 38, 53).

[82] M. Dryja and O. B. Widlund. “Schwarz methods of Neumann-Neumann type for
three-dimensional elliptic finite element problems”. In: Comm. Pure Appl. Math.
48.2 (1995), pp. 121–155 (cit. on pp. 38, 53).

[83] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, 1989 (cit. on p. 76).

[84] I. S. Duff and J. K. Reid. “The multifrontal solution of unsymmetric sets of
linear systems”. In: SIAM J. Sci. Comput. 5 (1984), pp. 633–641 (cit. on p. 9).

[85] W. Edwards, L. Tuckerman, R. Friesner, and D. Sorensen. “Krylov methods
for the incompressible Navier-Stokes equations”. In: J. Comp. Phys. 110 (1994),
pp. 82–102 (cit. on p. 109).

[86] M. Eiermann and O. G. Ernst. “Geometric aspects of the theory of Krylov sub-
space methods”. In: Acta Numer. 10 (2001), pp. 251–312 (cit. on p. 59).

[87] M. Eiermann, O. G. Ernst, and O. Schneider. “Analysis of acceleration strategies
for restarted minimal residual methods.” In: J. Comput. Appl. Math. 123 (2000),
pp. 261–292 (cit. on pp. 59, 71, 72).

[88] T. Eirola and O. Nevanlinna. “Accelerating with rank-one updates”. In: Linear
Algebra Appl. 121 (1989), pp. 511–520 (cit. on p. 103).

[89] S. C. Eisenstat, H. C. Elman, and M. H. Schultz. “Variational iterative methods
for nonsymmetric systems of linear equations”. In: SIAM J. Numer. Anal. 20.2
(1983), pp. 345–357 (cit. on pp. 71, 104).

280



Bibliography

[90] H. Elman, D. Silvester, and A. Wathen. Finite Elements and Fast Iterative
Solvers: with applications in incompressible fluid dynamics. Second edition. Ox-
ford University Press, 2014 (cit. on pp. 1, 95).

[91] H. Elman, O. Ernst, D. O’Leary, and M. Stewart. “Efficient iterative algorithms
for the stochastic finite element method with application to acoustic scattering”.
In: Comput. Methods Appl. Mech. Engrg. 194.1 (2005), pp. 1037–1055 (cit. on
p. 77).

[92] H. C. Elman, O. G. Ernst, and D. P. O’Leary. “A multigrid method enhanced
by Krylov subspace iteration for discrete Helmholtz equations”. In: SIAM J. Sci.
Comput. 23 (2001), pp. 1291–1315 (cit. on p. 16).

[93] B. Engquist and L. Ying. “Sweeping preconditioner for the Helmholtz equa-
tion: hierarchical matrix representation”. In: Comm. Pure Appl. Math. 64 (2011),
pp. 697–735 (cit. on p. 15).

[94] B. Engquist and L. Ying. “Sweeping preconditioner for the Helmholtz equa-
tion: moving perfectly matched layers”. In: Multiscale Modeling and Simulation
9 (2011), pp. 686–710 (cit. on p. 15).

[95] Y. A. Erlangga. “A Robust and Efficient Iterative Method for the Numerical
Solution of the Helmholtz Equation”. PhD thesis. Delft University of Technology,
The Netherlands, 2005 (cit. on p. 10).

[96] Y. A. Erlangga. “Advances in iterative methods and preconditioners for the
Helmholtz equation”. In: Archives of Computational Methods in Engineering 15
(2008), pp. 37–66 (cit. on pp. 7, 9, 15).

[97] Y. A. Erlangga and R. Nabben. “Deflation and balancing preconditioners for
Krylov subspace methods applied to nonsymmetric matrices”. In: SIAM J. Ma-
trix Anal. Appl. 30.2 (2008), pp. 684–699 (cit. on pp. 10, 70, 71).

[98] Y. A. Erlangga, C. W. Oosterlee, and C. Vuik. “A novel multigrid based precon-
ditioner for heterogeneous Helmholtz problems”. In: SIAM J. Sci. Comput. 27
(2006), pp. 1471–1492 (cit. on pp. 10, 13, 15, 22).

[99] Y. A. Erlangga, C. Vuik, and C. W. Oosterlee. “On a class of preconditioners for
solving the Helmholtz equation”. In: Appl. Num. Math. 50 (2004), pp. 409–425
(cit. on pp. 10, 13, 14).

[100] O. G. Ernst and M. J. Gander. “Why it is difficult to solve Helmholtz problems
with classical iterative methods”. In: Numerical Analysis of Multiscale Problems.
Ed. by I. Graham, T. Hou, O. Lakkis, and R. Scheichl. Vol. 83. Lecture Notes

281



Bibliography

in Computational Science and Engineering. Berlin Heidelberg: Springer-Verlag,
2012, pp. 325–361 (cit. on pp. 4, 7, 9, 15).

[101] C. Farhat, A. Macedo, and M. Lesoinne. “A two-level domain decomposition
method for the iterative solution of high frequency exterior Helmholtz problems”.
In: Numer. Math. 85 (2000), pp. 283–308 (cit. on p. 9).

[102] C. Farhat, K. Pierson, and M. Lesoinne. “The second generation FETI methods
and their application to the parallel solution of large-scale linear and geometri-
cally non-linear structural analysis problems”. In: Comput. Methods Appl. Mech.
Engrg. 184 (2000), pp. 333–374 (cit. on p. 96).

[103] C. Farhat and F.-X. Roux. “A method of finite element tearing and intercon-
necting and its parallel solution algorithm”. In: Int J. Numerical Methods in
Engineering 32 (1991), pp. 1205–1227 (cit. on pp. 9, 34, 43).

[104] C. Farhat and F.-X. Roux. “Implicit parallel processing in structural mechanics”.
In: Computational Mechanics Advances. Ed. by J. Tinsley Oden. Vol. 2 (1).
North-Holland, 1994, pp. 1–124 (cit. on p. 43).

[105] C. Farhat, M. Lesoinne, P. Le Tallec, K. Pierson, and D. Rixen. “FETI-DP: a
dual-primal unified FETI method. I. A faster alternative to the two-level FETI
method”. In: Internat. J. Numer. Methods Engrg. 50.7 (2001), pp. 1523–1544
(cit. on p. 55).

[106] P. F. Fischer, F. Hecht, and Y. Maday. “A parareal in time semi-implicit approx-
imation of the Navier-Stokes equations”. In: Domain Decomposition Methods in
Science and Engineering. Ed. by Ralf Kornhuber and et al. Vol. 40. Lecture Notes
in Computational Science and Engineering. Berlin: Springer, 2005, pp. 433–440
(cit. on p. 108).

[107] D. Fokkema. “Subspace Methods for Linear, Nonlinear and Eigen Problems”.
PhD thesis. University of Utrecht, The Netherlands, 1996 (cit. on p. 72).

[108] R. W. Freund and M. Malhotra. “A block QMR algorithm for non-Hermitian lin-
ear systems with multiple right-hand sides”. In: Linear Algebra Appl. 254 (1997),
pp. 119–157 (cit. on p. 77).

[109] R. Friesner, L. Tuckerman, B. Dornblaser, and T. Russo. “A method for expo-
nential propagation of large systems of stiff nonlinear differential equations”. In:
J. Sci. Comput. 4 (1989), pp. 327–354 (cit. on p. 109).

282



Bibliography

[110] A. Frommer, A. Nobile, and P. Zingler. Deflation and Flexible SAP Precondi-
tioning of GMRES in Lattice QCD Simulation. Technical Report BUW-IMACM
12/11. Department of Mathematics: University of Wuppertal, 2012 (cit. on p. 66).

[111] A. Frommer and D. Szyld. “An algebraic convergence theory for restricted ad-
ditive Schwarz methods using weighted max norms”. In: SIAM J. Numer. Anal.
39.2 (2001), pp. 463–479 (cit. on p. 3).

[112] A. Frommer and D. Szyld. “On asynchronous iterations”. In: J. Comput. Appl.
Math. 123 (2000), pp. 201–216 (cit. on p. 110).

[113] A. Frommer and D. Szyld. “Weighted max norms, splittings, and overlapping
additive Schwarz iterations”. In: Numer. Math. 83 (1999), pp. 259–278 (cit. on
p. 3).

[114] M. Gander, I. G. Graham, and E. A. Spence. “Applying GMRES to the Helmholtz
equation with shifted Laplacian preconditioning: What is the largest shift for
which wavenumber-independent convergence is guaranteed?” In: Numer. Math.
131 (2015), pp. 567–614 (cit. on p. 15).

[115] M. J. Gander. “50 years of time parallel time integration”. In: Multiple Shooting
and Time Domain Decomposition. Springer Verlag, 2015, pp. 69–114 (cit. on
pp. 106, 108).

[116] M. J. Gander and S. Güttel. “ParaExp: A parallel integrator for linear initial-
value problems”. In: SIAM J. Sci. Comput. 35.2 (2013), pp. C123–C142 (cit. on
pp. 108, 109).

[117] M. J. Gander, F. Magoulès, and F. Nataf. “Optimized Schwarz methods without
overlap for the Helmholtz equation”. In: SIAM J. Sci. Comput. 24 (2002), pp. 38–
60 (cit. on p. 10).

[118] I. Garrido, M. S. Espedal, and G. E. Fladmark. “A convergent algorithm for
time parallelization applied to reservoir simulation”. In: Domain Decomposition
Methods in Science and Engineering. Ed. by Timothy J. Barth and al. Vol. 40.
Lecture Notes in Computational Science and Engineering. Springer Berlin Hei-
delberg, 2005, pp. 469–476 (cit. on p. 108).

[119] A. Gaul. “Recycling Krylov Subspace Methods for Sequences of Linear Systems”.
PhD Thesis. Technische Universität Berlin, Germany, 2014 (cit. on pp. 87, 97,
103, 104).

283



Bibliography

[120] A. Gaul and N. Schlömer. “Preconditioned recycling Krylov subspace methods
for self-adjoint problems”. In: Electron. Trans. Numer. Anal. 44 (2015), pp. 522–
547 (cit. on pp. 97, 103).

[121] A. Gaul, M. Gutknecht, J. Liesen, and R. Nabben. “A framework for deflated
and augmented Krylov subspace methods”. In: SIAM J. Matrix Anal. Appl. 34
(2013), pp. 495–518 (cit. on pp. 67, 104).

[122] A. Gaul, M. Gutknecht, J. Liesen, and R. Nabben. Deflated and augmented
Krylov subspace methods: Basic facts and a breakdown-free deflated MINRES.
Preprint Preprint 759. TU Berlin: DFG Research Center MATHEON, 2011 (cit.
on pp. 67, 69).

[123] M. B. van Gijzen, Y. A. Erlangga, and C. Vuik. “Spectral analysis of the discrete
Helmholtz operator preconditioned with a shifted Laplacian”. In: SIAM J. Sci.
Comput. 29 (2007), pp. 1942–1958 (cit. on pp. 10, 15).

[124] L. Giraud, S. Gratton, X. Pinel, and X. Vasseur. “Flexible GMRES with deflated
restarting”. In: SIAM J. Sci. Comput. 32.4 (2010), pp. 1858–1878 (cit. on pp. 59,
64–66, 86).

[125] B. Gmeiner, U. Rüde, H. Stengel, C. Waluga, and B. Wohlmuth. “Performance
and scalability of hierarchical hybrid multigrid solvers for Stokes systems”. In:
SIAM J. Sci. Comput. 37.2 (2015), pp. C143–C168 (cit. on p. 110).

[126] B. Gmeiner, U. Rüde, H. Stengel, C. Waluga, and B. Wohlmuth. “Towards text-
book efficiency for parallel multigrid”. In: Numerical Mathematics: Theory, Meth-
ods and Applications 8.01 (2015), pp. 22–46 (cit. on p. 110).

[127] G. H. Golub and C. F. Van Loan. Matrix Computations. Third edition. The
Johns Hopkins University Press, 1996 (cit. on pp. 79, 81).

[128] S. Gratton, A. Sartenaer, and J. Tshimanga. “On a class of limited memory
preconditioners for large scale linear systems with multiple right-hand sides”. In:
SIAM J. Opt. 21.3 (2011), pp. 912–935 (cit. on p. 98).

[129] S. Gratton, D. Titley-Peloquin, P. Toint, and J. Tshimanga Ilunga. “Differen-
tiating the method of conjugate gradients”. In: SIAM J. Matrix Anal. Appl. 35
(2014), pp. 110–126 (cit. on p. 104).

[130] S. Gratton, S. Mercier, N. Tardieu, and X. Vasseur. Limited memory precondi-
tioners for symmetric indefinite problems with application to structural mechan-
ics. Technical Report TR/PA/15/48. CERFACS, Toulouse, France, 2015 (cit. on
pp. 98–102).

284



Bibliography

[131] S. Gratton, P. Hénon, P. Jiránek, and X. Vasseur. Reducing complexity of al-
gebraic multigrid by aggregation. Technical Report TR/PA/14/18. CERFACS,
Toulouse, France, 2014 (cit. on p. 95).

[132] S. Gratton, P. Hénon, P. Jiránek, and X. Vasseur. “Reducing complexity of
algebraic multigrid by aggregation”. In: Numer. Linear Algebra Appl. 23 (2016),
pp. 501–518 (cit. on pp. 92–94).

[133] A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, Philadel-
phia, 1997 (cit. on pp. 1, 3).

[134] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming
with the Message-Passing Interface. MIT Press, 1999 (cit. on p. 26).

[135] A. El Guennouni, K. Jbilou, and H. Sadok. “A block version of BICGSTAB for
linear systems with multiple right-hand sides”. In: Electron. Trans. Numer. Anal.
16 (2003), pp. 129–142 (cit. on p. 77).

[136] M. H. Gutknecht. “Block Krylov space methods for linear systems with multiple
right-hand sides: an introduction”. In: Modern Mathematical Models, Methods
and Algorithms for Real World Systems. Ed. by A.H. Siddiqi, I.S. Duff, and O.
Christensen. New Delhi, India: Anamaya Publishers, 2006, pp. 420–447 (cit. on
pp. 58, 76, 77, 79, 81).

[137] M. H. Gutknecht. “Deflated and augmented Krylov subspace methods: A frame-
work for deflated BiCG and related solvers”. In: SIAM J. Matrix Anal. Appl. 35
(2014), pp. 1444–1466 (cit. on p. 104).

[138] M. H. Gutknecht. “Spectral deflation in Krylov solvers: A theory of coordinate
space based methods”. In: Electron. Trans. Numer. Anal. 39 (2012), pp. 156–185
(cit. on pp. 67–70).

[139] M. H. Gutknecht and T. Schmelzer. “The block grade of a block Krylov space”.
In: Linear Algebra Appl. 430.1 (2009), pp. 174–185 (cit. on p. 76).

[140] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations. Vol. 95.
Applied mathematical sciences. New York, NY: Springer, 1994 (cit. on p. 1).

[141] W. Hackbusch. Multi-Grid methods and Applications. Second edition. Springer,
2003 (cit. on p. 3).

[142] G. Hager, J. Treibig, J. Habich, and G. Wellein. “Exploring performance and
power properties of modern multicore chips via simple machine models”. In:
Concurrency Computat.: Pract. Exper. 28 (2016), pp. 189–210 (cit. on p. 110).

285



Bibliography

[143] I. Harari and E. Turkel. “Accurate finite difference methods for time-harmonic
wave propagation”. In: J. Comp. Phys. 119 (1995), pp. 252–270 (cit. on pp. 13,
29).

[144] L. Hart and S. F. Mc Cormick. “Asynchronous multilevel adaptive methods for
solving partial differential equations on multiprocessors: Basic ideas”. In: Parallel
Comput. 12 (1989), pp. 131–144 (cit. on p. 110).

[145] V. E. Henson and U. M Yang. “BoomerAMG: A parallel algebraic multigrid
solver and preconditioner”. In: Appl. Numer. Math. 41 (2002), pp. 155–177 (cit.
on p. 92).

[146] J. Hicken and D. Zingg. “A simplified and flexible variant of GCROT for solving
nonsymmetric linear systems”. In: SIAM J. Sci. Comput. 32.3 (2010), pp. 1672–
1694 (cit. on p. 74).

[147] N. J. Higham. Functions of Matrices: Theory and Computation. Philadelphia,
PA, USA: SIAM, 2008 (cit. on pp. 79, 98, 109).

[148] Y. P. Hong and C. T. Pan. “Rank revealing QR factorizations and the singular
value decomposition”. In: Math. Comp. 58 (1992), pp. 213–232 (cit. on p. 81).

[149] M. Huber, B. Gmeiner, U. Rüde, and B. Wohlmuth. “Resilience for multigrid
software at the extreme scale”. In: ArXiv e-prints (2015). arXiv: 1506.06185
[cs.MS] (cit. on p. 110).

[150] P. Jolivet. “Méthodes de décomposition de domaine. Application au calcul haute
performance.” PhD thesis. Université de Grenoble, France, 2014 (cit. on p. 97).

[151] D. Kalchev, C. Ketelsen, and P. S. Vassilevski. “Two-level adaptive algebraic
multigrid for a sequence of problems with slowly varying random coefficients”.
In: SIAM J. Sci. Comput. 35.6 (2015), B1215–B1234 (cit. on p. 95).

[152] G. E. Karniadakis and S. Sherwin. Spectral/hp Element Methods for CFD. Ox-
ford University Press, 1999 (cit. on pp. 33, 34).

[153] R. Kirby. “From functional analysis to iterative methods”. In: SIAM Rev. 52.2
(2010), pp. 269–293 (cit. on p. 1).

[154] A. Klawonn. “Block-triangular preconditioners for saddle point problems with a
penalty term”. In: SIAM J. Sci. Comput. 19.1 (1998), pp. 172–184 (cit. on p. 95).

286

http://arxiv.org/abs/1506.06185
http://arxiv.org/abs/1506.06185


Bibliography

[155] A. Klawonn, L. Pavarino, and O. Rheinbach. “Spectral element FETI-DP and
BDDC preconditioners with multi-element subdomains”. In: Comput. Methods
Appl. Mech. Engrg. 198 (2008), pp. 511–523 (cit. on p. 55).

[156] A. Klawonn and O. Rheinbach. “Deflation, projector preconditioning, and bal-
ancing in iterative substructuring methods: connections and new results”. In:
SIAM J. Sci. Comput. 34.1 (2012), A459–A484 (cit. on p. 34).

[157] A. Klawonn and O. Rheinbach. “Highly scalable parallel domain decomposition
methods with an application to biomechanics”. en. In: ZAMM Zeitschrift für
Angewandte Mathematik und Mechanik 90.1 (2010), pp. 5–32 (cit. on p. 96).

[158] A. Klawonn and O. B. Widlund. “FETI and Neumann-Neumann iterative sub-
structuring methods: connections and new results”. In: Comm. Pure Appl. Math.
54.1 (2001), pp. 57–90 (cit. on pp. 43–47).

[159] A. Klawonn, O. B. Widlund, and M. Dryja. “Dual-Primal FETI methods for
three-dimensional elliptic problems with heterogeneous coefficients”. In: SIAM
J. Numer. Anal. 40.1 (2002), pp. 159–179 (cit. on p. 55).

[160] H. Klie, M.F. Wheeler, T. Clees, and K. Stüben. Deflation AMG Solvers for
Highly Ill-Conditioned Reservoir Simulation Problems. Paper SPE 105820 pre-
sented at the 2007 SPE Reservoir Simulation Symposium, Houston, TX, Feb.
28-30 2007. 2007 (cit. on p. 66).

[161] G. L. Kooij, M. A. Botchev, and B. J. Geurts. “A block Krylov subspace imple-
mentation of the time-parallel Paraexp method and its extension for nonlinear
partial differential equations”. arXiv:1509.04567 [math.NA]. 2015 (cit. on p. 109).

[162] R. Lago. “A Study on Block Flexible Iterative Solvers with Application to Earth
Imaging Problem in Geophysics”. PhD thesis. CERFACS, Toulouse, France, 2013
(cit. on p. 32).

[163] A. L. Laird and M. B. Giles. Preconditioned iterative solution of the 2D Helmholtz
equation. Technical Report Report NA-02/12. Oxford University Computing
Laboratory, 2002 (cit. on p. 10).

[164] J. Langou. “Iterative Methods for Solving Linear Systems with Multiple Right-
Hand Sides”. PhD thesis. CERFACS, Toulouse, France, 2003 (cit. on pp. 76,
81).

[165] A. Lecerf. Approche multisimulation pour l’amélioration des performances d’un
solveur, analyse d’un algorithme autorisant la parallélisation en temps. Master
thesis report, ENSEEIHT, Toulouse. 2014 (cit. on p. 109).

287



Bibliography

[166] J. Liesen and Z. Strakoš. Krylov Subspace Methods - Principles and Analysis.
Oxford University Press, 2013 (cit. on p. 3).

[167] J.-L. Lions, Y. Maday, and G. Turinici. “A parareal in time discretization of
PDE’s”. In: Comptes Rendus de l’Académie des Sciences - Series I - Mathematics
332 (2001), pp. 661–668 (cit. on p. 106).

[168] F. Liu and L. Ying. “Additive sweeping preconditioner for the Helmholtz equa-
tion”. In: ArXiv e-prints (2015). arXiv: 1504.04058 [math.NA] (cit. on pp. 11,
31).

[169] F. Liu and L. Ying. “Recursive sweeping preconditioner for the 3D Helmholtz
equation”. In: ArXiv e-prints (2015). arXiv: 1502.07266 [math.NA] (cit. on
pp. 11, 31).

[170] M. Magolu Monga Made, R. Beauwens, and G. Warzee. “Preconditioning of dis-
crete Helmholtz operators perturbed by a diagonal complex matrix”. In: Com-
mun. Numer. Method Eng. 11 (2000), pp. 801–817 (cit. on p. 10).

[171] J. Málek and Z. Strakoš. Preconditioning and the Conjugate Gradient Method in
the Context of Solving PDEs. SIAM, 2015 (cit. on pp. 1, 110).

[172] J. Mandel and M. Brezina. “Balancing Domain Decomposition for problems with
large jumps in coefficients”. In: Math. Comp. 65 (1996), pp. 1387–1401 (cit. on
pp. 34, 37, 38, 53).

[173] J. Mandel and B. Sousedik. “BDDC and FETI-DP under minimalist assump-
tions”. In: Computing 81 (2007), pp. 269–280 (cit. on p. 96).

[174] J. Mandel, B. Sousedik, and C. Dohrmann. “Multispace and multilevel BDDC”.
In: Computing 83.2 (2008), pp. 55–85 (cit. on p. 96).

[175] J. Mandel and R. Tezaur. “Convergence of a substructuring method with La-
grange multipliers”. In: Numer. Math. 73 (1996), pp. 473–487 (cit. on p. 43).

[176] K. Mardal and R. Winther. “Preconditioning discretizations of systems of partial
differential equations”. In: Numer. Linear Algebra Appl. 18 (2011), pp. 1–40 (cit.
on p. 1).

[177] S. F. McCormick. Multigrid Methods. SIAM, Philadelphia, 1987 (cit. on p. 3).

[178] J. M. Melenk and C. Schwab. “hp–FEM for reaction–diffusion equations. I: Ro-
bust exponential convergence”. In: SIAM J. Numer. Anal. 35 (1998), pp. 1520–
1557 (cit. on p. 36).

288

http://arxiv.org/abs/1504.04058
http://arxiv.org/abs/1502.07266


Bibliography

[179] S. Mercier. “Fast Nonlinear Solvers in Structural Mechanics”. PhD thesis. Uni-
versity Paul Sabatier, Toulouse, France, 2015 (cit. on pp. 100, 103).

[180] G. Meurant. Computer Solution of Large Linear Systems. North-Holland, 1999
(cit. on p. 1).

[181] A. Moiola and E. Spence. “Is the Helmholtz equation really sign-indefinite ?” In:
SIAM Rev. 56 (2014), pp. 274–312 (cit. on p. 9).

[182] J. L. Morales and J. Nocedal. “Automatic preconditioning by limited memory
Quasi-Newton updating”. In: SIAM J. Opt. 10.4 (2000), pp. 1079–1096 (cit. on
pp. 98, 105, 108).

[183] R. B. Morgan. “A restarted GMRES method augmented with eigenvectors”. In:
SIAM J. Matrix Anal. Appl. 16 (1995), pp. 1154–1171 (cit. on pp. 63, 66).

[184] R. B. Morgan. “GMRES with deflated restarting”. In: SIAM J. Sci. Comput.
24.1 (2002), pp. 20–37 (cit. on pp. 63, 66).

[185] R. B. Morgan. “Implicitly restarted GMRES and Arnoldi methods for non-
symmetric systems of equations”. In: SIAM J. Matrix Anal. Appl. 21.4 (2000),
pp. 1112–1135 (cit. on p. 63).

[186] O. Mula. “Some Contributions Towards the Parallel Simulation of Time Depen-
dent Neutron Transport and the Integration of Observed Data in Real Time”.
PhD thesis. University Pierre et Marie Curie, Paris VI, France, 2014 (cit. on
pp. 106, 108).

[187] A. Muresan and Y. Notay. “Analysis of aggregation-based multigrid”. In: SIAM
J. Sci. Comput. 30.2 (2008), pp. 1082–1103 (cit. on p. 91).

[188] F. Nataf, H. Xiang, V. Dolean, and N. Spillane. “A coarse space construction
based on local Dirichlet-to-Neumann maps”. In: SIAM J. Sci. Comput. 33.4
(2011), pp. 1623–1642 (cit. on p. 97).

[189] J. Nečas and I. Hlavácek. Mathematical Theory of Elastic and Elastoplastic Bod-
ies. Elsevier, 1980 (cit. on p. 100).

[190] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Ser. Oper. Res.,
Springer-Verlag, Berlin, 1999 (cit. on pp. 98, 105).

[191] Y. Notay. “An aggregation-based multigrid method”. In: Electron. Trans. Numer.
Anal. 37 (2010), pp. 123–146 (cit. on pp. 90, 91).

289



Bibliography

[192] Y. Notay and A. Napov. “A massively parallel solver for discrete Poisson-like
problems”. In: J. Comp. Phys. 281 (2015), pp. 237–250 (cit. on p. 90).

[193] Y. Notay and P. S. Vassilevski. “Recursive Krylov-based multigrid cycles”. In:
Numer. Linear Algebra Appl. 15 (2008), pp. 473–487 (cit. on pp. 18, 91).

[194] M. Olshankii and E. Tyrtyshnikov. Iterative Methods for Linear Systems - The-
ory and Applications. Philadelphia, PA, USA: SIAM, 2014 (cit. on pp. 1, 3).

[195] S. Operto, J. Virieux, P. R. Amestoy, J.-Y. L’Excellent, L. Giraud, and H. Ben
Hadj Ali. “3D finite-difference frequency-domain modeling of visco-acoustic wave
propagation using a massively parallel direct solver: A feasibility study”. In:
Geophysics 72-5 (2007), pp. 195–211 (cit. on p. 12).

[196] C. C. Paige, B. N. Parlett, and H. A. van der Vorst. “Approximate solutions and
eigenvalue bounds from Krylov subspaces”. In: Numer. Linear Algebra Appl. 2
(1995), pp. 115–134 (cit. on p. 63).

[197] M. Parks, E. de Sturler, G. Mc Key, D. D. Johnson, and S. Maiti. “Recycling
Krylov subspaces for sequences of linear systems”. In: SIAM J. Sci. Comput.
28.5 (2006), pp. 1651–1674 (cit. on pp. 72, 87, 97).

[198] L. F. Pavarino. “Neumann-Neumann algorithms for spectral elements in three
dimensions”. In: RAIRO Mathematical Modelling and Numerical Analysis 31
(1997), pp. 471–493 (cit. on pp. 34, 38, 39, 53, 54).

[199] J. Pestana and A. Wathen. “Natural preconditioning and iterative methods for
saddle point systems”. In: SIAM Rev. 57 (2015), pp. 71–91 (cit. on p. 1).

[200] X. Pinel. “A Perturbed Two-level Preconditioner for the Solution of Three-
dimensional Heterogeneous Helmholtz Problems with Applications to Geophysics”.
PhD thesis. CERFACS, Toulouse, France, 2010 (cit. on pp. 12–14, 16, 17, 24,
25, 32).

[201] J. Piquet and X. Vasseur. “A non-standard multigrid method with flexible mul-
tiple semi-coarsening for the numerical solution of the pressure equation in a
Navier-Stokes solver”. In: Numer. Algorithms 4 (2000), pp. 333–355 (cit. on p. 8).

[202] J. Piquet and X. Vasseur. “Multigrid preconditioned Krylov subspace methods
for three-dimensional numerical solutions of the incompressible Navier-Stokes
equations”. In: Numer. Algorithms 1-2 (1998), pp. 1–32 (cit. on p. 8).

290



Bibliography

[203] J. Poulson, B. Engquist, S. Li, and L. Ying. “A parallel sweeping preconditioner
for heterogeneous 3D Helmholtz equations”. In: SIAM J. Sci. Comput. 35 (2013),
pp. C194–C212 (cit. on p. 9).

[204] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differ-
ential Equations. Oxford Science Publications, 1999 (cit. on p. 3).

[205] T. Rees and C. Greif. “A preconditioner for linear systems arising from interior
point optimization methods”. In: SIAM J. Sci. Comput. 29.5 (2007), pp. 1992–
2007 (cit. on p. 101).

[206] O. Rheinbach. “Parallel iterative substructuring in structural mechanics”. en.
In: Archives of Computational Methods in Engineering 16.4 (2009), pp. 425–463
(cit. on p. 96).

[207] C. D. Riyanti, A. Kononov, Y. A. Erlangga, R.-E. Plessix, W. A. Mulder, C.
Vuik, and C. W. Oosterlee. “A parallel multigrid-based preconditioner for the
3D heterogeneous high-frequency Helmholtz equation”. In: J. Comp. Phys. 224
(2007), pp. 431–448 (cit. on pp. 10, 15).

[208] C. Rodrigo, F. Gaspar, C. W. Oosterlee, and I. Yavneh. “Accuracy measures and
Fourier analysis for the full multigrid algorithm”. In: SIAM J. Sci. Comput. 32
(2010), pp. 3108–3129 (cit. on p. 3).

[209] A. Rodriguez-Rozas. “Highly Efficient Probabilistic-Based Numerical Algorithms
for Solving Partial Differential Equations on Massively Parallel Computers”. PhD
thesis. Instituto Superior Tecnico (Lisbon), Portugal, 2012 (cit. on p. 111).

[210] S. Röllin and W. Fichtner. “Improving the accuracy of GMRes with deflated
restarting”. In: SIAM J. Sci. Comput. 30.1 (2007), pp. 232–245 (cit. on p. 66).

[211] U. Rüde. “New mathematics for extreme-scale computational science ?” In:
SIAM News 48.5 (2015), pp. 7–8 (cit. on p. 110).

[212] J. W. Ruge and K. Stüben. “Algebraic Multigrid”. In: Multigrid Methods. Ed. by
S. F. McCormick. SIAM: Philadelphia, PA, 1987, pp. 73–130 (cit. on pp. 89, 90).

[213] A. Ruhe. “Implementation aspects of band Lanczos algorithms for computa-
tion of eigenvalues of large sparse symmetric matrices”. In: Math. Comp. 33.146
(1979), pp. 680–687 (cit. on p. 78).

[214] M. J. Ruijter and C. W. Oosterlee. “A Fourier cosine method for an efficient
computation of solutions to BSDE”. In: SIAM J. Sci. Comput. 37.2 (2015), A859
–A889 (cit. on p. 111).

291



Bibliography

[215] Y. Saad. “A flexible inner-outer preconditioned GMRES algorithm”. In: SIAM
J. Sci. Statist. Comput. 14.2 (1993), pp. 461–469 (cit. on pp. 60, 63).

[216] Y. Saad. “Analysis of augmented Krylov subspace methods”. In: SIAM J. Matrix
Anal. Appl. 18 (1997), pp. 435–449 (cit. on p. 63).

[217] Y. Saad. Iterative Methods for Sparse Linear Systems. Second edition. SIAM,
Philadelphia, 2003 (cit. on pp. 1, 3, 59, 60, 76, 78).

[218] Y. Saad and M. H. Schultz. “GMRES: a generalized minimal residual algorithm
for solving nonsymmetric linear systems.” In: SIAM J. Sci. Statist. Comput. 7
(1986), pp. 856–869 (cit. on p. 16).

[219] M. V. Sarkis. “Schwarz Preconditioners for Elliptic Problems with Discontinu-
ous Coefficients Using Conforming and Non-Conforming Elements”. PhD thesis.
Courant Institute of Mathematical Sciences, Department of Mathematics, 1994
(cit. on pp. 38, 53).

[220] C. Schwab. p– and hp– Finite Element Methods. Oxford Science Publications,
1998 (cit. on pp. 33, 34, 36).

[221] C. Schwab and M. Suri. “The p and hp version of the finite element method
for problems with boundary layers”. In: Math. Comp. 65 (1996), pp. 1403–1429
(cit. on p. 36).

[222] A. H. Sheikh, D. Lahaye, and C. Vuik. “On the convergence of shifted Laplace
preconditioner combined with multilevel deflation”. In: Numer. Linear Algebra
Appl. 20 (2013), pp. 645–662 (cit. on pp. 10, 15).

[223] V. Simoncini and D. B. Szyld. “Flexible inner-outer Krylov subspace methods”.
In: SIAM J. Numer. Anal. 40 (2003), pp. 2219–2239 (cit. on p. 18).

[224] V. Simoncini and D. B. Szyld. “Recent computational developments in Krylov
subspace methods for linear systems”. In: Numer. Linear Algebra Appl. 14 (2007),
pp. 1–59 (cit. on pp. 3, 18, 57, 59).

[225] G. L. G. Sleijpen and H. A. Van der Vorst. “A Jacobi–Davidson iteration method
for linear eigenvalue problems”. In: SIAM J. Matrix Anal. Appl. 17.2 (1996),
pp. 401–425 (cit. on p. 63).

[226] B. F. Smith, P. E. Bjørstad, and W. D. Gropp. Domain Decomposition: Par-
allel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge
University Press, 1996 (cit. on pp. 2, 3, 34, 39, 40, 42, 48, 53–55, 57).

292



Bibliography

[227] P. Solin, K. Segeth, and I. Dolezel. Higher-Order Finite Element methods. Chap-
man & Hall/CRC Press, 2003 (cit. on p. 34).

[228] F. Sourbier, S. Operto, J. Virieux, P. Amestoy, and J. Y. L’ Excellent. “FWT2D
: a massively parallel program for frequency-domain Full-Waveform Tomography
of wide-aperture seismic data - Part 1: algorithm”. In: Computer & Geosciences
35 (2009), pp. 487–495 (cit. on p. 13).

[229] F. Sourbier, S. Operto, J. Virieux, P. Amestoy, and J. Y. L’ Excellent. “FWT2D
: a massively parallel program for frequency-domain Full-Waveform Tomogra-
phy of wide-aperture seismic data - Part 2: numerical examples and scalability
analysis”. In: Computer & Geosciences 35 (2009), pp. 496–514 (cit. on p. 13).

[230] N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl. “Ab-
stract robust coarse spaces for systems of PDEs via Gereralized Eigenproblems
in the Overlap”. In: Numer. Math. 126.4 (2014), pp. 741–770 (cit. on p. 97).

[231] J. Steiner, D. Ruprecht, R. Speck, and R. Krause. “Convergence of Parareal for
the Navier-Stokes equations depending on the Reynolds number”. In: Numeri-
cal Mathematics and Advanced Applications - ENUMATH 2013. Ed. by Assyr
Abdulle, Simone Deparis, Daniel Kressner, Fabio Nobile, and Marco Picasso.
Vol. 103. Lecture Notes in Computational Science and Engineering. Springer
International Publishing, 2015, pp. 195–202 (cit. on p. 108).

[232] C. Stolk. “A rapidly converging domain decomposition method for the Helmholtz
equation”. In: J. Comp. Phys. 241 (2013), pp. 240–252 (cit. on p. 10).

[233] C. Stolk, M. Ahmed, and S. K. Bhowmik. “A multigrid method for the Helmholtz
equation with optimized coarse grid correction”. In: SIAM J. Sci. Comput. 36
(2014), A2819–A2841 (cit. on pp. 12, 13, 15).

[234] K. Stüben and U. Trottenberg. “Multigrid methods: fundamental algorithms,
model problem analysis and applications”. In: Multigrid methods, Koeln-Porz,
1981, Lecture Notes in Mathematics, volume 960. Ed. by W. Hackbusch and U.
Trottenberg. Springer-Verlag, 1982 (cit. on pp. 3, 8, 14, 19, 23).

[235] E. de Sturler. “Nested Krylov methods based on GCR”. In: J. Comput. Appl.
Math. 67.1 (1996), pp. 15–41 (cit. on pp. 71, 72).

[236] E. de Sturler. “Truncation strategies for optimal Krylov subspace methods”. In:
SIAM J. Numer. Anal. 36.3 (1999), pp. 864–889 (cit. on pp. 71, 72).

[237] X. Sun and C. Bischof. “A basis-kernel representation of orthogonal matrices”.
In: SIAM J. Matrix Anal. Appl. 16 (1995), pp. 1184–1196 (cit. on p. 78).

293



Bibliography

[238] A. Tarantola. Inverse Problem Theory and Methods for Model Parameter Esti-
mation. SIAM, Philadelphia, 2005 (cit. on p. 11).

[239] C. A. Thole and U. Trottenberg. “Basic smoothing procedures for the multigrid
treatment of elliptic 3D operators”. In: Appl. Math. Comput. 19 (1986), pp. 333–
345 (cit. on p. 19).

[240] A. Toselli and X. Vasseur. “A numerical study on Neumann-Neumann and
FETI methods for hp-approximations on geometrically refined boundary layer
meshes in two dimensions”. In: Comput. Methods Appl. Mech. Engrg. 192 (2003),
pp. 4551–4579 (cit. on pp. 43, 47–50).

[241] A. Toselli and X. Vasseur. “A numerical study on Neumann-Neumann methods
for hp approximations on geometrically refined boundary layer meshes II: Three-
dimensional problems”. In: M2AN 40.1 (2006), pp. 99–122 (cit. on pp. 41, 42,
55).

[242] A. Toselli and X. Vasseur. Domain decomposition methods of Neumann-Neumann
type for hp-approximations on geometrically refined boundary layer meshes in
two dimensions. Tech. rep. 02–15. Seminar für Angewandte Mathematik, ETH
Zürich, Switzerland, 2002 (cit. on pp. 36, 39, 46, 54).

[243] A. Toselli and X. Vasseur. “Domain decomposition preconditioners of Neumann-
Neumann type for hp-approximations on boundary layer meshes in three dimen-
sions”. In: IMA J. Numer. Anal. 24.1 (2004), pp. 123–156 (cit. on pp. 36, 38, 39,
43, 44, 46, 50, 54).

[244] A. Toselli and X. Vasseur. “Dual-primal FETI algorithms for edge element ap-
proximations: two-dimensional h and p finite elements on shape-regular meshes”.
In: SIAM J. Numer. Anal. 42.6 (2005), pp. 2590–2611 (cit. on p. 34).

[245] A. Toselli and X. Vasseur. “Robust and efficient FETI domain decomposition
algorithms for edge element approximations”. In: COMPEL 24.2 (2005), pp. 396–
407 (cit. on pp. 34, 55).

[246] A. Toselli and O. Widlund. Domain Decomposition methods - Algorithms and
Theory. Springer, Berlin, 2005 (cit. on pp. 2, 3, 9, 34, 39, 48, 53–55, 57, 95, 96).

[247] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press
Inc., London, 2001 (cit. on pp. 3, 8, 21, 23, 24, 26, 89–92).

[248] E. Turkel, D. Gordon, R. Gordon, and S. Tsynkov. “Compact 2D and 3D sixth
order schemes for the Helmholtz equation with variable wavenumber”. In: J.
Comp. Phys. 232 (2013), pp. 272–287 (cit. on p. 12).

294



Bibliography

[249] N. Umetani, S. P. McLachlan, and C. W. Oosterlee. “A multigrid-based shifted
Laplacian preconditioner for fourth-order Helmholtz discretization”. In: Numer.
Linear Algebra Appl. 16 (2009), pp. 603–626 (cit. on p. 13).

[250] W. Vanroose, B. Reps, and H. bin Zubair. A polynomial multigrid smoother for
the iterative solution of the heterogeneous Helmholtz problem. Technical Report.
http://arxiv.org/abs/1012.5379. University of Antwerp, Belgium, 2010 (cit. on
p. 16).

[251] X. Vasseur. A FMG-FAS procedure for the fully coupled resolution of the Navier-
Stokes equations on cell-centered colocated grids. Talk given at the 1997 Copper
Mountain Conference on Multigrid Methods, Copper Mountain, Colorado, USA.
1997 (cit. on p. 8).

[252] X. Vasseur. “Etude numérique de techniques d’accélération de convergence lors
de la résolution des équations de Navier-Stokes en formulation découplée ou
fortement couplée”. PhD thesis. Université de Nantes, France, 1998 (cit. on pp. 8,
105).

[253] P. S. Vassilevski. Multilevel Block Factorization Preconditioners, Matrix-based
Analysis and Algorithms for Solving Finite Element Equations. Springer, New
York, 2008 (cit. on pp. 1, 18).

[254] A. Vion and C. Geuzaine. “Double sweep preconditioner for optimized Schwarz
methods applied to the Helmholtz problem”. In: J. Comp. Phys. 266 (2014),
pp. 171–190 (cit. on p. 10).

[255] J. Virieux, S. Operto, H. Ben Hadj Ali, R. Brossier, V. Etienne, F. Sourbier,
L. Giraud, and A. Haidar. “Seismic wave modeling for seismic imaging”. In: The
Leading Edge 25.8 (2009), pp. 538–544 (cit. on p. 15).

[256] B. Vital. “Etude de quelques méthodes de résolution de problème linéaire de
grande taille sur multiprocesseur”. PhD thesis. Université de Rennes, France,
1990 (cit. on pp. 77, 78).

[257] H. A. van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cam-
bridge University Press, Cambridge, 2003 (cit. on pp. 1, 3, 59).

[258] H. A. van der Vorst and C. Vuik. “GMRESR: A family of nested GMRES meth-
ods”. In: Numer. Linear Algebra Appl. 1 (1994), pp. 369–386 (cit. on p. 71).

[259] S. Wang, M. V. de Hoop, and J. Xia. “Acoustic inverse scattering via Helmholtz
operator factorization and optimization”. In: J. Comp. Phys. 229 (2010), pp. 8445–
8462 (cit. on pp. 9, 13).

295



Bibliography

[260] S. Wang, M. V. de Hoop, and J. Xia. “On 3D modeling of seismic wave prop-
agation via a structured parallel multifrontal direct Helmholtz solver”. In: Geo-
physical Prospecting 59 (2011), pp. 857–873 (cit. on pp. 9, 13).

[261] T. Washio and C. W. Oosterlee. “Krylov subspace acceleration for nonlinear
multigrid schemes”. In: Electron. Trans. Numer. Anal. 6 (1997), pp. 271–290
(cit. on p. 105).

[262] A. Wathen. “Preconditioning”. In: Acta Numer. 24 (2015), pp. 329–376 (cit. on
p. 2).

[263] C. Weisbecker. “Improving Multifrontal Solvers by Means of Algebraic Block
Low-Rank Representations”. PhD thesis. Institut National Polytechnique de Toulouse,
France, 2013 (cit. on p. 9).

[264] R. Wienands and C. W. Oosterlee. “On three-grid Fourier analysis for multigrid”.
In: SIAM J. Sci. Comput. 223.2 (2001), pp. 651–671 (cit. on p. 91).

[265] R. Wienands, C. W. Oosterlee, and T. Washio. “Fourier analysis of GMRES(m)
preconditioned by multigrid”. In: SIAM J. Sci. Comput. 22 (2000), pp. 582–603
(cit. on p. 23).

[266] S. Williams, A. Waterman, and D. Patterson. “Roofline: an insightful visual
performance model for multicore architectures”. In: Communications ACM 55.6
(2012), pp. 121–130 (cit. on p. 110).

[267] J. Xu. “Iterative methods by space decomposition and subspace correction”. In:
SIAM J. Sci. Comput. 34 (1992), pp. 581–613 (cit. on p. 3).

[268] J. Xu and L. Zikatanov. “On an energy minimizing basis for algebraic multigrid
methods”. In: Comput. Visual. Sci. 7 (2004), pp. 121–127 (cit. on p. 91).

[269] P. M. De Zeeuw. “Matrix-dependent prolongations and restrictions in a blackbox
multigrid solver”. In: J. Comput. Appl. Math. 33 (1990), pp. 1–27 (cit. on p. 15).

[270] L. Zepeda-Núñez and L. Demanet. “The method of polarized traces for the 2D
Helmholtz equation”. In: J. Comp. Phys. 308 (2016), pp. 347 –388 (cit. on pp. 11,
31).

296



Bibliography

297



Résumé

Résumé Les méthodes multigrille et de décomposition de domaine constituent des
méthodes efficaces pour la résolution numérique des problèmes issus de la discrétisation
de certaines équations aux dérivées partielles intervenant dans de multiples applications
en sciences de l’ingénieur. Ce manuscrit couvre quelques aspects récents à propos de ces
méthodes itératives destinées à la résolution de tels problèmes conduisant généralement
à des systèmes linéaires ou non-linéaires de très grande taille. Plus spécifiquement,
nous abordons le cas des méthodes multigrille géométriques, des méthodes de décom-
position de domaine sans recouvrement et des méthodes de Krylov en insistant sur
leur combinaison. Dans une première partie, la combinaison de méthodes multigrille
et de méthodes de Krylov est ainsi illustrée autour de la résolution d’une équation aux
dérivées partielles dite d’Helmholtz modélisant les phénomènes de propagation d’ondes
dans un milieu hétérogène. Dans une deuxième partie, nous nous concentrons sur une
classe de méthodes de décomposition de domaine dans le cadre d’une discrétisation
éléments finis de type hp, où le raffinement est autorisé en diminuant le pas de mail-
lage h ou en augmentant le degré polynômial d’approximation p sur chaque élément.
Des résultats théoriques décrivant le comportement des nombres de conditionnement
de l’opérateur préconditionné sont donnés et illustrés sur des problèmes académiques.
Dans une troisième partie, nous passons en revue des avancées récentes concernant
les méthodes de Krylov autorisant l’emploi de préconditionnements variables. Nous
détaillons notamment les méthodes de Krylov flexibles munies d’augmentation ou de
déflation, où la déflation vise à capturer de l’information de type sous-espace invariant
approché. Ensuite, nous présentons des méthodes de Krylov flexibles pour la résolution
de systèmes à multiples seconds membres donnés simultanément. L’efficacité des méth-
odes proposées est illustrée sur des applications frontières en géophysique, nécessitant
la résolution de systèmes linéaires de très grande taille sur calculateurs massivement
parallèles. Enfin, ce manuscrit se conclut par une évocation des pistes de recherche du
candidat dans un futur proche à propos de l’analyse et du développement de méthodes
efficaces pour la résolution numérique des équations aux dérivées partielles sur machines
massivement parallèles.

Mots-clés Balancing Neumann-Neumann (BNN); Calcul à haute performance; Défla-
tion spectrale; Equations aux dérivées partielles; Equation d’Helmholtz; Equations de
Navier-Stokes; Full Approximation Scheme (FAS); Finite Element Tearing and Inter-
connecting (FETI); Full Multigrid (FMG); Méthode de décomposition de domaine sans
recouvrement; Méthode de Krylov; Méthode de Krylov par bloc; Méthode de sous-
structuration; Méthode éléments finis de type hp; Méthode itératives; Méthode multi-
grille; Préconditionnement; Préconditionnement variable; Systèmes linéaires avec mul-
tiples seconds membres.
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