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OBJECTIVE & MOTIVATION

Motivations:

- Sparse matrices arise in many applications:

- Optimization problems
- Discretized PDEs

- Some sparse matrices are symmetric
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- Optimization problems
- Discretized PDEs

- Some sparse matrices are symmetric

Challenges for current and future platforms:

- Higher relative communication costs

- Lower amount of memory per core
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OBJECTIVE & MOTIVATION

Objective:

- Compute sparse A = LLT factorization
- A'is sparse symmetric matrix

- Ais positive definite
- Need to exploit symmetry

- Lis a lower triangular matrix
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CHOLESKY FACTORIZATION

- Only lower triangular part of A is stored

- Basic algorithm:

Algorithm 1: Basic Cholesky algorithm

for column j=1to ndo

end

Gj = /A,

forrowi=j+1tondo
| & =208,

end

for column k=j+1tondo
for row i =ktondo
A\,k = A\,k - el,j . gk,j
end

end
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CHOLESKY FACTORIZATION

- Only lower triangular part of A is stored

- Basic algorithm:

Algorithm 1: Basic Cholesky algorithm

for column j=1to ndo

end

Gj = /A,
forrowi=j+1tondo .
Factor column j
| 4= A8
end

Update next columns
and Aggregate updates
for row i =ktondo

tmp; = tmp; + £ - £y
end
Ack = Asx — tmps

for column k=j+1tondo
for row i =ktondo
A\,k = A\,k - el,j . gk,j
end

end
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fan-both ALGORITHM

- Three families [Ashcraft'95]:
- Fan-In: “fanning-in updates”
- Reduce aggregate vectors (updates)
- Factorize column
- Compute all updates from that column locally
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fan-both ALGORITHM

- Three families [Ashcraft’'95]: Fan-In, Fan-Out C Fan-Both

- Task based algorithm:

- A(i): accumulation of aggregate
vectors (updates) to column i

Reduces the aggregate vectors t
- F(j): factorization of col. j

Produces cholesky factor ¢,

- U(},i): update of col. i with col. j

Put the update in an (temporary) aggregate vector t
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fan-both MAPPINGS

How do we map tasks ? 1D Cyclic distribution

(independently of data)

- Use of 2D computation mapping Virtual 20 mapping M

grid M P e R

20244
101(3]3
4| 4

- Mapping grid “extends” to matrix size
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fan-both MAPPINGS
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- Use of 2D computation mapping Virtual 20 mapping M
grid M 77

112112
- Mapping grid “extends” to matrix size
. . 2121112
- Better if P processors on diagonal
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fan-both MAPPINGS

- How do we map tasks ? P2 | Ps

(independently of data)

- Use of 2D computation mapping
grid M
- Mapping grid “extends” to matrix size

- Better if P processors on diagonal
- Many possible mappings
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1 2 3 0 1 0 0 0 0 0 0 0 2 2 0 0
1 2 3 0 1 1 1 1 1 1 1 1 3 3 1 1
1 2 3 0 1 2 2 2 2 2 0 0 2 2 0 0
1 2 3 0 1 3 3 3 3 3 1 1 3 3 1 1
1 2 3 0 1 0 0 0 0 0 0 0 2 2 0 0
1 2 3 0 1 1 1 1 1 1 1 1 3 3 1 1
Fan-In Fan-Out Fan-Both
Mi; = mod(i, P) M= mod(.P) My = mod(minG).P)+

P[mod(max(i, ), P)/P]

Three different computation maps, corresponding to
Fan-In, Fan-Out and Fan-Both
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DESIGN PRINCIPLES

- Remove synchronization points
- Asynchronous point to point send
- Group communication:
(MPI) Collectives probably not the way to go
- Requires too many communicators
- Efficient non blocking collectives needed
- Collective nature
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- Remove synchronization points

- Asynchronous point to point send
- Group communication:
(MPI) Collectives probably not the way to go

- Requires too many communicators
- Efficient non blocking collectives needed

- Collective nature

- Asynchronous tree-based group communications
- Non-collectives = full asynchronicity

- Minimize memory operations

- Row-major layout
- Avoid making extra copies when sending data

10/18
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- All operations described by task Tsrc—tgt
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- “Push” strategy natural with MPI
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DEADLOCK PREVENTION

- All operations described by task Tsrc—tgt
- Message Msgsrc— gt
- “Push” strategy natural with MPI

Asynchronous comm. becomes blocking when out of buffer

Deadlock issues

- Deadlock prevention is difficult:
- Total order in operations/messages
(Also observed by Amestoy et al.)
- Order by non decreasing tgt, then src:
= Use of priority queue for tasks/messages
Potential over-synchronization

- “Pull” strategy (one sided communications)
- Signal data when available
- Receiver gets data when ready
11/18



TASK SCHEDULING IN sympack

- Tasks Tsreotgt

- Tasks currently mapped statically
- Processor manages local task queue LTQ

S N I I I O R N
oo | | [ [ ]

12/18



TASK SCHEDULING IN sympack

- Tasks Tsrc—>tgt

- Tasks currently mapped statically

- Processor manages local task queue LTQ
- Dependency count

S I I I I B N

decrease dependency
@ countofTj.
RTQ | | | | | Store M

12/18



TASK SCHEDULING IN sympack

- Tasks Tsrc—>tgt

- Tasks currently mapped statically

- Processor manages local task queue LTQ
- Dependency count

S N I I I O B N

decrease dependency
@ countofTj.
RTQ | | | | | Store M)

12/18



TASK SCHEDULING IN sympack

- Tasks Tsrc—>tgt

- Tasks currently mapped statically

- Processor manages local task queue LTQ
- Dependency count
- Ready tasks are placed in RTQ

S N I I O B N

decrease dependency
) @ countofTj.
RTQ | | | | ! Store M;
i T,

@ if dependency count of Tjy = 0
push Tj into RTQ

12/18



TASK SCHEDULING IN sympack

- Tasks Tsrc—>tgt

- Tasks currently mapped statically

- Processor manages local task queue LTQ
- Dependency count
- Ready tasks are placed in RTQ

S I I I I I B N

decrease dependency
) @ countofTj.
RTQ | | | | ! Store M;
\ & T,

@ if dependency count of Tjy = 0
push Tj into RTQ

12/18



TASK SCHEDULING IN sympack

- Tasks Tsrc—>tgt

- Tasks currently mapped statically

- Processor manages local task queue LTQ
- Dependency count
- Ready tasks are placed in RTQ

S I I I I I B N

decrease dependency
) @ countofTj.
RTQ | | | | ! Store M;
\x »* T,

@ if dependency count of Tjy = 0

Pick a task from RTQ .
@ push Tj into RTQ

and process it

12/18



TASK SCHEDULING IN sympack

- Tasks Tsrc—>tgt

- Tasks currently mapped statically

- Processor manages local task queue LTQ
- Dependency count
- Ready tasks are placed in RTQ

S I I I I I B N

decrease dependency
) @ countofTj.
RTQ | | | | ! Store M;
\x »* T,

@ if dependency count of Tjy = 0

Pick a task from RTQ .
@ push Tj into RTQ

and process it

12/18



TASK SCHEDULING IN sympack

- Tasks Tsrc—>tgt

- Tasks currently mapped statically

- Processor manages local task queue LTQ
- Dependency count
- Ready tasks are placed in RTQ

S I I I I O B N

decrease dependency
@ countofTj.
Store M;;

S I N N S o

@ if dependency count of Tjy = 0

Pick a task from RTQ .
@ push Tj into RTQ

and process it
Tig

@ decrease dependency count of Tg .
Wg upon task Tig
® Send Mgy to every task Ty

depending upon task T

12/18



TASK SCHEDULING IN sympack

- Tasks Tsrc—>tgt

- Tasks currently mapped statically

- Processor manages local task queue LTQ
- Dependency count
- Ready tasks are placed in RTQ

S I I I I B N

decrease dependency
@ countofTj.
Store M;;

N > [

) Pick a task from RTQ (D) i dipTe”qe:WRfrDU”t of T =0
and process it push Tj into RTQ

@ decrease dependency count of Tg .
depending upon task T g

® Send Mgy to every task Ty .
depending upon task T

12/18



TASK SCHEDULING IN sympack

- Tasks Tsrc—>tgt

- Tasks currently mapped statically

- Processor manages local task queue LTQ
- Dependency count
- Ready tasks are placed in RTQ

S I I I I B N

decrease dependency
@ countofTj.
w [ ]\ | Store M,
\ \ T,

) Pick a task from RTQ (D) i dipTenqe:WREroum of T =0
and process it push Tj into RTQ

@ decrease dependency count of Tg .
depending upon task T g

@ ® Send Mgy to every task Ty
depending upon task T

Scheduling policy ? FIFO, close to diagonal, etc. /18



NOTIFICATION AND COMMUNICATIONS IN sympack

Psource Ptarget

p‘;argel u
: ® -

to signa[(ptr,meta) on

- UPC++ and GASNet for %E?’Nog—ﬁi(:‘ progress()
Q -
communications ; : signal(ptr,meta): 20
N 0 enqueue ptr E
- global pointer to remote memory | 1 Tist of global ptr
- one-sided communications = : ® foreachptr: | |
% ! get(ptr) 3 30
- asynchronous remote functions 2R [ ;
! ptr to data for ta§k Tm
calls ; if Ty met all deps.
; I engueue task
_ [progress( | Tm in RTQ
i==u @ i
o 3 i e
[ ! ! [k
8 8
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IMPACT OF COMMUNICATION STRATEGY AND SCHEDULING

Run times on boneS10 for three variants of symPACK

@@ symPACK- Push
Y=Y symPACK- Pull
A=A symPACK- Pull dynamic scheduling

10W L

Time (s)

100

v o P CL S

Processor count

n=914,898 nnz(A)=20,896,803 nnz(L)=318,019,434 o



STRONG SCALING VS. STATE-OF-THE-ART

102 L

Time (s)

10"

Run times on Flan_1565

@=@® SuperlLU_DIST 4.3
V=V Pastix522
A=A MUMPS 5.0

<=4 symPACK

N W % Ay ©
I I AR

Processor count

n=1,564,794 nnz(A)=57,865,083 nnz(L)=1,574,541,576
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STRONG SCALING VS. STATE-OF-THE-ART

Run times for audikw_1_MT

-‘02,

Time (s)

10'F

@=@® SuperLU_DIST 4.3
V=V PASTIX5.2.2
A=A MUMPS 5.0
<= symPACK

D= PASTIX 5.2.2 MT

N W o < Y ’Q‘/b

Processor count

n=943,695 nnz(A)=39,297,771

nnz(L)=1,221,674,796
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CONCLUSIONS

- Reduces communication cost in theory [Ashcraft'95]

- Increases parallelism during updates
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CONCLUSIONS

- Reduces communication cost in theory [Ashcraft'95]

- Increases parallelism during updates

- Avoiding deadlocks is challenging (Similar to observation by
Larkar et al.)
- New symmetric solver symPACK

- implements Fan-Both

- Task based Cholesky requires fine / dynamic scheduling
- One sided approach using UPC++

- Asynchronous task execution model

- dynamic scheduling
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ONGOING AND FUTURE WORK

- 2D wrap mapping performance
- Hybrid parallelism (UPC++/OpenMP, UPC++ | UPC++ )
- Conflict with load balancing (proportional mapping) ?

- Tree-based group communications

- Data distribution (2D, block based ?)
- Scheduling strategies

- New task mapping policies
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