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objective & motivation

Motivations:

∙ Sparse matrices arise in many applications:
∙ Optimization problems
∙ Discretized PDEs
∙ . . .

∙ Some sparse matrices are symmetric

Challenges for current and future platforms:

∙ Higher relative communication costs
∙ Lower amount of memory per core
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objective & motivation

Objective:

∙ Compute sparse A = LLT factorization
∙ A is sparse symmetric matrix
∙ A is positive definite

∙ Need to exploit symmetry

∙ L is a lower triangular matrix
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sparse matrices and elimination tree

Processor list:
p0 p1 p2 p3
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∙ Elim. tree represents
column dependences

∙ Fill in, Ω(A) ⊆ Ω(L)

∙ Supernode, same
structure below diagonal
block

A = LLT

Ω(A) is the sparsity pattern of A 4/18
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cholesky factorization

∙ Only lower triangular part of A is stored
∙ Basic algorithm:

Algorithm 1: Basic Cholesky algorithm
for column j = 1 to n do

`j,j =
√
Aj,j

for row i = j+ 1 to n do
`i,j = Ai,j/`j,j

end

 Factor column j

for column k = j+ 1 to n do
for row i = k to n do

Ai,k = Ai,k − `i,j · `k,j
end

end



Update next columns

and Aggregate updates

for row i = k to n do
tmpi = tmpi + `i,j · `k,j

end
A∗,k = A∗,k − tmp∗

end
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fan-both algorithm

∙ Three families [Ashcraft’95]:
∙ Fan-In: “fanning-in updates”
∙ Reduce aggregate vectors (updates)
∙ Factorize column
∙ Compute all updates from that column locally

∙ Fan-Out: “fanning-out factors”
∙ Factorize column
∙ Distribute the Cholesky factor
∙ Compute and apply all updates to my column.

Family determined by type of data exchanged

Fan-In, Fan-Out ⊂ Fan-Both
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fan-both algorithm

∙ Three families [Ashcraft’95]: Fan-In, Fan-Out ⊂ Fan-Both

∙ Task based algorithm:
∙ A(i): accumulation of aggregate
vectors (updates) to column i

Reduces the aggregate vectors t∗i

∙ F(j): factorization of col. j

Produces cholesky factor `∗,j

∙ U(j,i): update of col. i with col. j

Put the update in an (temporary) aggregate vector tji

F(j)

U(j, i)

U(j, h)

`∗,j

A(i)
tji

F(i)

U(i, h)

`∗,i

A(h)

tih
tjh

F(h)
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fan-both mappings

∙ How do we map tasks ?
(independently of data)

∙ Use of 2D computation mapping
gridM
∙ Mapping grid “extends” to matrix size

∙ Better if P processors on diagonal
∙ Many possible mappings

∙ F(i) on proc. M(i, i)
∙ U(j, i) onM(j, i)
∙ A(j) onM(j, j)

1D Cyclic distribution

1 2 3 4

Virtual 2D mappingM
1

2

3

4

2

1

2

1 3 3

1

2

4 4

4

3
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Fan-Out
Mi,j = mod(j,P)
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Fan-Both
Mi,j =

mod(min(i, j),P)+
Pbmod(max(i, j),P)/Pc

Three different computation maps, corresponding to
Fan-In, Fan-Out and Fan-Both
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design principles

∙ Remove synchronization points
∙ Asynchronous point to point send
∙ Group communication:
(MPI) Collectives probably not the way to go
∙ Requires too many communicators
∙ Efficient non blocking collectives needed
∙ Collective nature

∙ Asynchronous tree-based group communications
∙ Non-collectives = full asynchronicity

∙ Minimize memory operations
∙ Row-major layout

∙ Avoid making extra copies when sending data
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deadlock prevention

∙ All operations described by task Tsrc→tgt

∙ Message Msgsrc→tgt

∙ “Push” strategy natural with MPI

Asynchronous comm. becomes blocking when out of buffer

Deadlock issues
∙ Deadlock prevention is difficult:
∙ Total order in operations/messages

(Also observed by Amestoy et al.)
∙ Order by non decreasing tgt, then src:

⇒ Use of priority queue for tasks/messages

Potential over-synchronization

∙ “Pull” strategy (one sided communications)
∙ Signal data when available
∙ Receiver gets data when ready
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task scheduling in sympack

∙ Tasks Tsrc→tgt

∙ Tasks currently mapped statically
∙ Processor manages local task queue LTQ

∙ Dependency count
∙ Ready tasks are placed in RTQ

LTQ Tj,j Tg,g

RTQ

Mi,j

1
decrease dependency
count of Tj,∗
Store Mi,j

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tl,g

3 Pick a task from RTQ
and process it

Tl,g

3 Pick a task from RTQ
and process it

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

Scheduling policy ? FIFO, close to diagonal, etc.
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notification and communications in sympack

∙ UPC++ and GASNet for
communications

∙ global pointer to remote memory
∙ one-sided communications
∙ asynchronous remote functions
calls

psource

symPACK UPC++

ta
sk
T i async. call to signal(ptr,meta) on ptarget

1

po
ll progress()

ta
sk
T j

po
ll progress()

ta
sk
T k

ptarget

symPACKUPC++

ta
sk
T n

po
ll 2

progress()
3

signal(ptr,meta):
enqueue ptr si

gn
al

4

list of global ptr

for each ptr:5
get(ptr)

ptr to data for task Tm
if Tm met all deps.
enqueue task
Tm in RTQ

6

ta
sk
T p
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impact of communication strategy and scheduling

1 4 24 32 64 96 192 256 38
4

Processor count

100

101

Ti
m
e
(s
)

Run times on boneS10 for three variants of symPACK
symPACK- Push
symPACK- Pull
symPACK- Pull dynamic scheduling

n=914,898 nnz(A)=20,896,803 nnz(L)=318,019,434
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strong scaling vs. state-of-the-art

1 4 16 24 32 64 96 192 256 38
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576 784102
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20
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Processor count
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Ti
m
e
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Run times on Flan_1565
SuperLU_DIST 4.3
Pastix 5.2.2
MUMPS 5.0
symPACK

n=1,564,794 nnz(A)=57,865,083 nnz(L)=1,574,541,576
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strong scaling vs. state-of-the-art
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Run times for audikw_1_MT
SuperLU_DIST 4.3
PASTIX 5.2.2
MUMPS 5.0
symPACK
PASTIX 5.2.2 MT

n=943,695 nnz(A)=39,297,771 nnz(L)=1,221,674,796
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conclusions

∙ Reduces communication cost in theory [Ashcraft’95]
∙ Increases parallelism during updates

∙ Avoiding deadlocks is challenging (Similar to observation by
Larkar et al.)

∙ New symmetric solver symPACK
∙ implements Fan-Both
∙ Task based Cholesky requires fine / dynamic scheduling
∙ One sided approach using UPC++
∙ Asynchronous task execution model
∙ dynamic scheduling

17/18



conclusions

∙ Reduces communication cost in theory [Ashcraft’95]
∙ Increases parallelism during updates

∙ Avoiding deadlocks is challenging (Similar to observation by
Larkar et al.)

∙ New symmetric solver symPACK
∙ implements Fan-Both
∙ Task based Cholesky requires fine / dynamic scheduling
∙ One sided approach using UPC++
∙ Asynchronous task execution model
∙ dynamic scheduling

17/18



ongoing and future work

∙ 2D wrap mapping performance
∙ Hybrid parallelism (UPC++/OpenMP, UPC++ / UPC++ )
∙ Conflict with load balancing (proportional mapping) ?

∙ Tree-based group communications

∙ Data distribution (2D, block based ?)
∙ Scheduling strategies
∙ New task mapping policies

Async. model important for scalability and to tolerate variability

www.sympack.org
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