SCHEDULING SPARSE SYMMETRIC FAN-BOTH CHOLESKY FACTORIZATION

Mathias Jacquelin mjacquelinalbl.gov Esmond Ng, Kathy Yelick and Yili Zheng egng|kayelick|yzhengalbl.gov July 1 2016

Scalable Solvers Group Computational Research Department Lawrence Berkeley National Laboratory

Background and motivation

Fan-In, Fan-Out and Fan-Both factorizations

Parallel distributed memory implementation, a.k.a. symPACK

Numerical experiments

OBJECTIVE & MOTIVATION

Motivations:

- · Sparse matrices arise in many applications:
 - · Optimization problems
 - · Discretized PDEs
 - ...
- · Some sparse matrices are symmetric

OBJECTIVE & MOTIVATION

Motivations:

- · Sparse matrices arise in many applications:
 - · Optimization problems
 - · Discretized PDEs
 - . . .
- · Some sparse matrices are symmetric

Challenges for current and future platforms:

- · Higher relative communication costs
- · Lower amount of memory per core

Objective:

- · Compute sparse $A = LL^T$ factorization
- \cdot A is sparse symmetric matrix
- · A is positive definite
- · Need to exploit symmetry
- \cdot L is a lower triangular matrix

 $\Omega(A)$ is the sparsity pattern of A

 $\Omega(A)$ is the sparsity pattern of A

· Fill in,
$$\Omega(A) \subseteq \Omega(L)$$

 $\label{eq:A} A = L L^T$ $\Omega(A) \mbox{ is the sparsity pattern of } A$

• Elim. tree represents column dependences

· Fill in,
$$\Omega(A) \subseteq \Omega(L)$$

 Supernode, same structure below diagonal block

 $\label{eq:A} A = LL^T$ $\Omega(A) \mbox{ is the sparsity pattern of } A$

- $\cdot\,$ Only lower triangular part of A is stored
- · Basic algorithm:

```
Algorithm 1: Basic Cholesky algorithm
for column j = 1 to n do
     \ell_{j,j} = \sqrt{A_{j,j}}
    for row i = j + 1 to n do
      \ell_{i,i} = A_{i,i}/\ell_{i,i}
    end
     for column k = j + 1 to n do
         for row i = k to n do
            A_{i,k} = A_{i,k} - \ell_{i,j} \cdot \ell_{k,j}
         end
    end
end
```

- $\cdot\,$ Only lower triangular part of A is stored
- · Basic algorithm:

```
Algorithm 1: Basic Cholesky algorithm
for column j = 1 to n do
    \begin{split} \ell_{j,j} &= \sqrt{A_{j,j}} \\ \text{for row } i &= j+1 \text{ to n do} \\ \big| \quad \ell_{i,j} &= A_{i,j}/\ell_{j,j} \end{split}
                                                                      Factor column j
       for column k = j + 1 to n do
             for row i = k to n do
               \begin{vmatrix} A_{i,k} = A_{i,k} - \ell_{i,j} \cdot \ell_{k,j} \\ \text{end} \end{vmatrix}
             end
       end
end
```

- $\cdot\,$ Only lower triangular part of A is stored
- · Basic algorithm:

```
Algorithm 1: Basic Cholesky algorithm
for column j = 1 to n do
     \begin{split} \ell_{j,j} &= \sqrt{A_{j,j}} \\ \text{for row } i &= j+1 \text{ to n do} \\ \mid \quad \ell_{i,j} &= A_{i,j}/\ell_{j,j} \end{split}
                                                               Factor column j
      end
                                                                Update next columns
       for column k = j + 1 to n do
            for row i = k to n do
              \mathsf{A}_{i,k} = \mathsf{A}_{i,k} - \ell_{i,j} \cdot \ell_{k,j} and
           end
      end
end
```

- $\cdot\,$ Only lower triangular part of A is stored
- · Basic algorithm:

```
Algorithm 1: Basic Cholesky algorithm
for column j = 1 to n do
      \begin{split} \ell_{j,j} &= \sqrt{A_{j,j}} \\ \text{for row } i &= j+1 \text{ to n do} \\ \mid \quad \ell_{i,j} &= A_{i,j}/\ell_{j,j} \end{split}
                                                                    Factor column j
      end
                                                                      Update next columns
       for column k = j + 1 to n do
            for row i = k to n do

\begin{vmatrix} A_{i,k} = A_{i,k} - \ell_{i,j} \cdot \ell_{k,j} \\ end \end{vmatrix}
                                                                   and Aggregate updates
      end
end
```

- $\cdot\,$ Only lower triangular part of A is stored
- · Basic algorithm:

```
Algorithm 1: Basic Cholesky algorithm
for column j = 1 to n do
        \left. \begin{array}{l} \ell_{j,j} = \sqrt{A_{j,j}} \\ \text{for row } i = j + 1 \text{ to n do} \\ \mid \ell_{i,j} = A_{i,j} / \ell_{j,j} \\ \text{end} \end{array} \right\} \text{ Factor column } j
        \left| \begin{array}{c} \text{for column } k = j+1 \text{ to n } \text{do} \\ | \quad A_{i,k} = A_{i,k} - \ell_{i,j} \cdot \ell_{k,j} \\ \text{end} \end{array} \right| \left| \begin{array}{c} \text{and } \text{Aggregate updates} \\ \text{for row } i = k \text{ to n } \text{do} \\ | \quad \text{tmp}_i = \text{tmp}_i + \ell_{i,j} \cdot \ell_{k,j} \\ \text{end} \\ \text{A}_{*,k} = \text{A}_{*,k} - \text{tmp}_{*} \end{array} \right| 
end
```

- Three families [Ashcraft'95]:
 - · Fan-In: "fanning-in updates"
 - Reduce aggregate vectors (updates)
 - Factorize column
 - $\cdot\,$ Compute all updates from that column locally

- Three families [Ashcraft'95]:
 - · Fan-In: "fanning-in updates"
 - Reduce aggregate vectors (updates)
 - Factorize column
 - · Compute all updates from that column locally
 - · Fan-Out: "fanning-out factors"
 - Factorize column
 - Distribute the Cholesky factor
 - · Compute and apply all updates to my column.

- Three families [Ashcraft'95]:
 - · Fan-In: "fanning-in updates"
 - Reduce aggregate vectors (updates)
 - Factorize column
 - · Compute all updates from that column locally
 - · Fan-Out: "fanning-out factors"
 - Factorize column
 - Distribute the Cholesky factor
 - · Compute and apply all updates to my column.

Family determined by type of data exchanged

- Three families [Ashcraft'95]:
 - · Fan-In: "fanning-in updates"
 - Reduce aggregate vectors (updates)
 - Factorize column
 - · Compute all updates from that column locally
 - · Fan-Out: "fanning-out factors"
 - Factorize column
 - Distribute the Cholesky factor
 - · Compute and apply all updates to my column.

Family determined by type of data exchanged

Fan-In, Fan-Out ⊂ Fan-Both

- \cdot Three families [Ashcraft'95]: Fan-In, Fan-Out \subset Fan-Both
- · Task based algorithm:
 - A(i): accumulation of **aggregate vectors** (updates) to column i

Reduces the aggregate vectors t_i*

• F(j): factorization of col. j

Produces cholesky factor $\ell_{*,j}$

· U(j,i): update of col. i with col. j

Put the update in an (temporary) aggregate vector t_i^j

- \cdot Three families [Ashcraft'95]: Fan-In, Fan-Out \subset Fan-Both
- · Task based algorithm:
 - A(i): accumulation of **aggregate vectors** (updates) to column i

Reduces the aggregate vectors t_i*

• F(j): factorization of col. j

Produces cholesky factor $\ell_{*,j}$

· U(j,i): update of col. i with col. j

Put the update in an (temporary) aggregate vector t_i^j

- \cdot Three families [Ashcraft'95]: Fan-In, Fan-Out \subset Fan-Both
- · Task based algorithm:
 - A(i): accumulation of **aggregate vectors** (updates) to column i

Reduces the aggregate vectors t_i*

• F(j): factorization of col. j

Produces cholesky factor $\ell_{*,j}$

· U(j,i): update of col. i with col. j

Put the update in an (temporary) **aggregate vector** t_i^j

- How do we map tasks ? (independently of data)
- \cdot Use of 2D computation mapping grid ${\cal M}$
 - · Mapping grid "extends" to matrix size

- How do we map tasks ? (independently of data)
- \cdot Use of 2D computation mapping grid ${\cal M}$
 - · Mapping grid "extends" to matrix size
 - · Better if P processors on diagonal

- How do we map tasks ? (independently of data)
- \cdot Use of 2D computation mapping grid ${\cal M}$
 - · Mapping grid "extends" to matrix size
 - · Better if P processors on diagonal
 - · Many possible mappings

- How do we map tasks ? (independently of data)
- \cdot Use of 2D computation mapping grid ${\cal M}$
 - · Mapping grid "extends" to matrix size
 - · Better if P processors on diagonal
 - · Many possible mappings

- How do we map tasks ? (independently of data)
- \cdot Use of 2D computation mapping grid ${\cal M}$
 - · Mapping grid "extends" to matrix size
 - · Better if P processors on diagonal
 - \cdot Many possible mappings

- How do we map tasks ? (independently of data)
- \cdot Use of 2D computation mapping grid ${\cal M}$
 - · Mapping grid "extends" to matrix size
 - · Better if P processors on diagonal
 - \cdot Many possible mappings

P_1	P ₂	P_3	P ₄	P ₁	P ₂	P ₃
P ₁	P ₁	P_3	P ₃	P ₁	P_1	P ₃
P_1	P ₂	P_4	P4	P_2	P_2	P4
P_3	P ₄	P ₃	P ₃	P ₁	P_1	P ₃
P ₃	P ₄	P ₃	P ₄	P ₂	P_2	P ₄
P ₁	P ₂	D	D			
1.1	' 2	Ρ1	P ₂	P ₁	P ₁	P ₃
P ₁	P ₂	P ₁ P ₁	P ₂ P ₂	P ₁ P ₁	P ₁ P ₂	P ₃ P ₄
P ₁ P ₃	P ₂ P ₄	P ₁ P ₁ P ₃	P ₂ P ₂ P ₄	P ₁ P ₁ P ₃	P ₁ P ₂ P ₄	P ₃ P ₄ P ₃

- How do we map tasks ? (independently of data)
- \cdot Use of 2D computation mapping grid ${\cal M}$
 - · Mapping grid "extends" to matrix size
 - · Better if P processors on diagonal
 - · Many possible mappings
 - \cdot F(i) on proc. $\mathcal{M}(i,i)$

	P_1	P ₂	P ₃	P ₄	P ₁	P ₂	P ₃	
E	1	P_1	P_3	P_3	P_1	P_1	P_3	
	P_1	P_2	P ₄	P ₄	P_2	P_2	P ₄	
	P_3	P_4	P ₃	P_3	P_1	P_1	P_3	
	P_3	P ₄	P_3	P_4	P_2	P_2	P_4	
	P_1	P_2	P ₁	P_2	P_1	P_1	P_3	
	P_1	P_2	P_1	P_2	P_1	P_2	P_4	
	P_3	P_4	P_3	P_4	P_3	P ₄	P_3	

- How do we map tasks ? (independently of data)
- \cdot Use of 2D computation mapping grid ${\cal M}$
 - · Mapping grid "extends" to matrix size
 - · Better if P processors on diagonal
 - · Many possible mappings
 - \cdot F(i) on proc. $\mathcal{M}(i,i)$

	P ₁	P ₂	P_3	P ₄	P ₁	P_2	P ₃	
E		P_1	P_3	P_3	P_1	P_1	P_3	
	P_1	P ₂	P_4	Ρ4	P_2	P_2	Ρ4	
	P_3	P_4	P_3	P_3	P_1	P_1	P_3	
	R	P ₄	P_3	P_4	P_2	P_2	P_4	
		P_2	P_1	P_2	P_1	P_1	P_3	
		P ₂	P_1	P_2	P_1	P_2	P_4	
		P_4	P_3	P_4	P_3	P ₄	P_3	

- How do we map tasks ? (independently of data)
- \cdot Use of 2D computation mapping grid ${\cal M}$
 - · Mapping grid "extends" to matrix size
 - · Better if P processors on diagonal
 - · Many possible mappings
 - \cdot F(i) on proc. $\mathcal{M}(i,i)$
 - $\cdot \ \, \text{U(j,i)} \text{ on } \mathcal{M}(j,i)$

	P_1	P ₂	P_3	P ₄	P ₁	P ₂	P_3	
P		P_1	P_3	P_3	P_1	P_1	P_3	
	P_1	P ₂	P_4	Ρ4	P_2	P_2	Ρ4	
	P_3	P_4	P_3	P_3	P_1	P_1	P_3	
C	3	P ₄	P_3	P_4	P_2	P_2	P_4	
C	2	P_2	P_1	P_2	P_1	P_1	P_3	
P		P_2	P_1	P_2	P_1	P_2	P_4	
C	3	P_4	P_3	P_4	P_3	P ₄	P_3	

- How do we map tasks ? (independently of data)
- \cdot Use of 2D computation mapping grid ${\cal M}$
 - · Mapping grid "extends" to matrix size
 - · Better if P processors on diagonal
 - · Many possible mappings
 - \cdot F(i) on proc. $\mathcal{M}(i,i)$
 - $\cdot \ \, \text{U(j,i)} \text{ on } \mathcal{M}(j,i)$

	P_1	P ₂	P ₃	P ₄	P ₁	P ₂	P ₃	
5	P)	P_1	P_3	P_3	P_1	P_1	P_3	
:[P_1	P ₂	Ρ4	Ρ4	P_2	P_2	Ρ4	
	P_3	P_4	P ₃	P_3	P_1	P_1	P_3	
×(P3	P ₄	P_3	P_4	P_2	P_2	P_4	
7	Þ)	P_2	P ₁	P_2	P_1	P_1	P_3	
(Þ)	P ₂	P_1	P_2	P_1	P_2	P_4	
(P3	P ₄	P_3	P_4	P_3	P ₄	P_3	

- How do we map tasks ? (independently of data)
- \cdot Use of 2D computation mapping grid ${\cal M}$
 - · Mapping grid "extends" to matrix size
 - · Better if P processors on diagonal
 - · Many possible mappings
 - \cdot F(i) on proc. $\mathcal{M}(i,i)$
 - $\cdot \ \, \text{U(j,i)} \text{ on } \mathcal{M}(j,i)$

	P_1	P ₂	P_3	P ₄	P ₁	P_2	P ₃	
F		P_1	P_3	P_3	P_1	P_1	P_3	
	P	2	P4	P ₄		P_2	P ₄	
	P_3	P_4	P_3	P_3	P_1	P_1	P_3	
P	3		P_3	P_4	P_2	P_2	P_4	
F	2	P_2	P_1	P_2	P_1	P_1	P_3	
F			P_1	P_2	P_1	P_2	P_4	
P	3	P_4	P_3	P_4	P_3	P ₄	P_3	

- How do we map tasks ? (independently of data)
- \cdot Use of 2D computation mapping grid ${\cal M}$
 - · Mapping grid "extends" to matrix size
 - · Better if P processors on diagonal
 - · Many possible mappings
 - \cdot F(i) on proc. $\mathcal{M}(i,i)$
 - $\cdot \ \, \text{U(j,i)} \text{ on } \mathcal{M}(j,i)$

	P_1	P ₂	P_3	P ₄	P ₁	P_2	P ₃	
P		P_1	P_3	P_3	P_1	P_1	P_3	
	P	2	P ₄	P ₄		P_2	P ₄	
	(³	P_4	P_3	P_3	P_1	P_1	P_3	
P	30	4	P_3	P_4	P_2	P_2	P_4	
C	<u>)</u>	P_2	P_1	P_2	P_1	P_1	P_3	
P	DE	2	P_1	P_2	P_1	P_2	P_4	
P	3	P_4	P_3	P_4	P_3	P ₄	P_3	

- How do we map tasks ? (independently of data)
- \cdot Use of 2D computation mapping grid ${\cal M}$
 - · Mapping grid "extends" to matrix size
 - · Better if P processors on diagonal
 - · Many possible mappings
 - \cdot F(i) on proc. $\mathcal{M}(i,i)$
 - $\cdot \ \, \text{U(j,i)} \text{ on } \mathcal{M}(j,i)$

	P_1	P ₂	P_3	P ₄	P ₁	P ₂	P ₃	
C		P_1	P_3	P_3	P_1	P_1	P_3	
	P	2	P4	P ₄		P_2	P ₄	
	P_3	P	3	P_3	P_1	P_1	P_3	
C	30	4		P_4	P_2	P_2	P_4	
P		P_2		P_2	P_1	P_1	P_3	
P	DC	2	P_1	P_2	P_1	P_2	P_4	
P	3	P_4	P_3	P_4	P_3	P ₄	P_3	

- How do we map tasks ? (independently of data)
- \cdot Use of 2D computation mapping grid ${\cal M}$
 - · Mapping grid "extends" to matrix size
 - · Better if P processors on diagonal
 - · Many possible mappings
 - \cdot F(i) on proc. $\mathcal{M}(i,i)$
 - $\cdot \ \, \text{U(j,i)} \text{ on } \mathcal{M}(j,i)$

	P_1	P ₂	P ₃	P ₄	P ₁	P_2	P ₃	
C		P_1	P_3	P_3	P_1	P_1	P_3	
	P	2	P ₄	P ₄		P_2	P ₄	
	P_3	P		P_3	P_1	P_1	P_3	
C	30	4 C	3	P_4	P_2	P_2	P_4	
P	2	Ř		P_2	P_1	P_1	P_3	
P	DE	2	P_1	P_2	P_1	P_2	P_4	
P	3	P_4	P_3	P_4	P_3	P ₄	P_3	

- How do we map tasks ? (independently of data)
- \cdot Use of 2D computation mapping grid ${\cal M}$
 - · Mapping grid "extends" to matrix size
 - · Better if P processors on diagonal
 - · Many possible mappings
 - \cdot F(i) on proc. $\mathcal{M}(i,i)$
 - \cdot U(j,i) on $\mathcal{M}(j,i)$
 - · A(j) on $\mathcal{M}(j,j)$

	P_1	P ₂	P ₃	P ₄	P ₁	P ₂	P ₃	
P		P_1	P_3	P_3	P_1	P_1	P_3	
	P	2	P ₄	P ₄	P_2	P_2	P ₄	
	P_3	P	3	P_3	P_1	P_1	P_3	
P) (\mathcal{P}		4 4	P_2	P_2	P_4	
P		P		P_2	P_1	P_1	P_3	
P	DC	2	P_1	P_2	P_1	P_2	P_4	
P	3	P_4	P_3	P_4	P_3	P ₄	P_3	

- How do we map tasks ? (independently of data)
- \cdot Use of 2D computation mapping grid ${\cal M}$
 - · Mapping grid "extends" to matrix size
 - · Better if P processors on diagonal
 - · Many possible mappings
 - \cdot F(i) on proc. $\mathcal{M}(i,i)$
 - \cdot U(j,i) on $\mathcal{M}(j,i)$
 - · A(j) on $\mathcal{M}(j,j)$

	P_1	P ₂	P_3	P ₄	P ₁	P ₂	P_3	
P		P_1	P_3	P_3	P_1	P_1	P_3	
	P	2	P4	P ₄	P_2	P_2	P ₄	
	P ₂	₽€		P_3	P_1	P_1	P_3	
C	3 C) (P	3 (P	4 4	P_2	P_2	P_4	
C		P		P_2	P_1	P_1	P_3	
P	\mathbf{D}	2	P_1	P_2	P_1	P_2	P_4	
C	3	P_4	P_3	P_4	P_3	P ₄	P_3	

- How do we map tasks ? (independently of data)
- \cdot Use of 2D computation mapping grid ${\cal M}$
 - · Mapping grid "extends" to matrix size
 - · Better if P processors on diagonal
 - · Many possible mappings
 - \cdot F(i) on proc. $\mathcal{M}(i,i)$
 - \cdot U(j,i) on $\mathcal{M}(j,i)$
 - · A(j) on $\mathcal{M}(j,j)$

	P_1	P ₂	P ₃	P ₄	P ₁	P ₂	P_3	
P		P_1	P_3	P_3	P_1	P_1	P_3	
	P	2	P ₄	P ₄		P_2	P ₄	
	P_3	P		P_3	P_1	P_1	P_3	
C	30) (P	30	4	P_2	P_2	P_4	
C		P			P_1	P_1	P_3	
P	DC	2	P_1		P_1	P_2	P_4	
P	3	P_4	P_3		P_3	P ₄	P_3	

0	1	2	3	0	1	0	0	0	0	0	0	0	0	2	2	0	0
0	1	2	3	0	1	1	1	1	1	1	1	1	1	3	3	1	1
0	1	2	3	0	1	2	2	2	2	2	2	0	0	2	2	0	0
0	1	2	3	0	1	3	3	3	3	3	3	1	1	3	3	1	1
0	1	2	3	0	1	0	0	0	0	0	0	0	0	2	2	0	0
0	1	2	3	0	1	1	1	1	1	1	1	1	1	3	3	1	1

Three different computation maps, corresponding to Fan-In, Fan-Out and Fan-Both

- · Remove synchronization points
 - $\cdot\,$ Asynchronous point to point send
 - Group communication: (MPI) Collectives probably not the way to go
 - · Requires too many communicators
 - · Efficient non blocking collectives needed
 - · Collective nature

- · Remove synchronization points
 - $\cdot\,$ Asynchronous point to point send
 - Group communication: (MPI) Collectives probably not the way to go
 - · Requires too many communicators
 - · Efficient non blocking collectives needed
 - · Collective nature
 - $\cdot\,$ Asynchronous tree-based group communications
 - · Non-collectives = full asynchronicity

- · Remove synchronization points
 - $\cdot\,$ Asynchronous point to point send
 - Group communication: (MPI) Collectives probably not the way to go
 - · Requires too many communicators
 - · Efficient non blocking collectives needed
 - · Collective nature
 - $\cdot\,$ Asynchronous tree-based group communications
 - · Non-collectives = full asynchronicity
- · Minimize memory operations
 - · Row-major layout

- · Remove synchronization points
 - $\cdot\,$ Asynchronous point to point send
 - Group communication: (MPI) Collectives probably not the way to go
 - · Requires too many communicators
 - · Efficient non blocking collectives needed
 - · Collective nature
 - $\cdot\,$ Asynchronous tree-based group communications
 - · Non-collectives = full asynchronicity
- · Minimize memory operations
 - · Row-major layout
 - $\cdot\,$ Avoid making extra copies when sending data

DEADLOCK PREVENTION

- \cdot All operations described by task $\mathsf{T}_{\mathsf{src}\to\mathsf{tgt}}$
- Message Msg_{src→tgt}
- · "Push" strategy natural with MPI

- \cdot All operations described by task $\mathsf{T}_{src \rightarrow tgt}$
- Message Msg_{src→tgt}
- \cdot "Push" strategy natural with MPI

Asynchronous comm. becomes blocking when out of buffer

- \cdot All operations described by task $\mathsf{T}_{src \rightarrow tgt}$
- Message Msg_{src→tgt}
- · "Push" strategy natural with MPI

Asynchronous comm. becomes blocking when out of buffer

Deadlock issues

- \cdot All operations described by task $\mathsf{T}_{src \rightarrow tgt}$
- Message Msg_{src→tgt}
- · "Push" strategy natural with MPI

$\label{eq:synchronous comm.} becomes \ blocking \ when \ out \ of \ buffer$

Deadlock issues

- · Deadlock prevention is difficult:
 - \cdot Total order in operations/messages

(Also observed by Amestoy et al.)

• Order by non decreasing tgt, then src:

 \Rightarrow Use of priority queue for tasks/messages

- \cdot All operations described by task ${\rm T}_{\rm src \rightarrow tgt}$
- Message Msg_{src→tgt}
- · "Push" strategy natural with MPI

Asynchronous comm. becomes blocking when out of buffer

Deadlock issues

- · Deadlock prevention is difficult:
 - \cdot Total order in operations/messages

(Also observed by Amestoy et al.)

 \cdot Order by non decreasing tgt, then src:

 \Rightarrow Use of priority queue for tasks/messages

Potential over-synchronization

- \cdot All operations described by task ${\rm T}_{\rm src \rightarrow tgt}$
- Message Msg_{src→tgt}
- · "Push" strategy natural with MPI

Asynchronous comm. becomes blocking when out of buffer

Deadlock issues

- · Deadlock prevention is difficult:
 - \cdot Total order in operations/messages

(Also observed by Amestoy et al.)

• Order by non decreasing tgt, then src:

 \Rightarrow Use of priority queue for tasks/messages

Potential over-synchronization

- \cdot "Pull" strategy (one sided communications)
 - \cdot Signal data when available
 - $\cdot\,$ Receiver gets data when ready

- \cdot Tasks T_{src to tgt}
- · Tasks currently mapped statically
- · Processor manages local task queue LTQ

- \cdot Tasks T_{src to tgt}
- · Tasks currently mapped statically
- · Processor manages local task queue LTQ
 - \cdot Dependency count

- \cdot Tasks T_{src \rightarrow tgt}
- · Tasks currently mapped statically
- · Processor manages local task queue LTQ
 - · Dependency count

- \cdot Tasks T_{src tgt}
- · Tasks currently mapped statically
- Processor manages local task queue LTQ
 - $\cdot\,$ Dependency count
 - · Ready tasks are placed in RTQ

- \cdot Tasks T_{src tgt}
- · Tasks currently mapped statically
- Processor manages local task queue LTQ
 - · Dependency count
 - · Ready tasks are placed in RTQ

- \cdot Tasks T_{src tgt}
- · Tasks currently mapped statically
- Processor manages local task queue LTQ
 - $\cdot\,$ Dependency count
 - · Ready tasks are placed in RTQ

- \cdot Tasks T_{src tgt}
- · Tasks currently mapped statically
- · Processor manages local task queue LTQ
 - $\cdot\,$ Dependency count
 - · Ready tasks are placed in RTQ

- \cdot Tasks T_{src tgt}
- · Tasks currently mapped statically
- Processor manages local task queue LTQ
 - \cdot Dependency count
 - · Ready tasks are placed in RTQ

- \cdot Tasks T_{src tgt}
- · Tasks currently mapped statically
- Processor manages local task queue LTQ
 - · Dependency count
 - · Ready tasks are placed in RTQ

- \cdot Tasks T_{src tgt}
- · Tasks currently mapped statically
- · Processor manages local task queue LTQ
 - $\cdot\,$ Dependency count
 - · Ready tasks are placed in RTQ

Scheduling policy ? FIFO, close to diagonal, etc.

NOTIFICATION AND COMMUNICATIONS IN Sympack

- **P**source Ptarget symPACK symPACK UPC++ UPC++ sync. call to signal(ptr,meta) on p_{target} task T ogress progress() lloc eignal enqueue ptr list of global ptr 5 get(ptr) for each ptr: ask -102 ptr to data for task Tm if T_m met all deps. engueue task Tim in RTO rogress(poll task T_k
- UPC++ and GASNet for communications
- $\cdot\,$ global pointer to remote memory
- \cdot one-sided communications
- asynchronous remote functions calls

IMPACT OF COMMUNICATION STRATEGY AND SCHEDULING

n=914,898 nnz(A)=20,896,803 nnz(L)=318,019,434

STRONG SCALING VS. STATE-OF-THE-ART

n=1,564,794 nnz(A)=57,865,083 nnz(L)=1,574,541,576

STRONG SCALING VS. STATE-OF-THE-ART

n=943,695 nnz(A)=39,297,771 nnz(L)=1,221,674,796

- · Reduces communication cost in theory [Ashcraft'95]
- · Increases parallelism during updates

- · Reduces communication cost in theory [Ashcraft'95]
- · Increases parallelism during updates
- Avoiding deadlocks is challenging (Similar to observation by Larkar et al.)
- New symmetric solver symPACK
 - · implements Fan-Both
 - \cdot Task based Cholesky requires fine / dynamic scheduling
 - One sided approach using UPC++
 - $\cdot\,$ Asynchronous task execution model
 - · dynamic scheduling

- \cdot 2D wrap mapping performance
- Hybrid parallelism (UPC++/OpenMP, UPC++ / UPC++)
- · Conflict with load balancing (proportional mapping) ?
- · Tree-based group communications
- · Data distribution (2D, block based ?)
- · Scheduling strategies
- $\cdot\,$ New task mapping policies

- \cdot 2D wrap mapping performance
- Hybrid parallelism (UPC++/OpenMP, UPC++ / UPC++)
- · Conflict with load balancing (proportional mapping)?
- · Tree-based group communications
- · Data distribution (2D, block based ?)
- · Scheduling strategies
- · New task mapping policies

Async. model important for scalability and to tolerate variability

- \cdot 2D wrap mapping performance
- Hybrid parallelism (UPC++/OpenMP, UPC++ / UPC++)
- · Conflict with load balancing (proportional mapping)?
- · Tree-based group communications
- · Data distribution (2D, block based ?)
- · Scheduling strategies
- · New task mapping policies

Async. model important for scalability and to tolerate variability

www.sympack.org