
scheduling sparse symmetric fan-both cholesky
factorization

Mathias Jacquelin
mjacquelin@lbl.gov

Esmond Ng, Kathy Yelick and Yili Zheng
egng|kayelick|yzheng@lbl.gov

July 1 2016

Scalable Solvers Group
Computational Research Department
Lawrence Berkeley National Laboratory

mjacquelin@lbl.gov
egng|kayelick|yzheng@lbl.gov

outline

Background and motivation

Fan-In, Fan-Out and Fan-Both factorizations

Parallel distributed memory implementation, a.k.a. symPACK

Numerical experiments

1/18

objective & motivation

Motivations:

∙ Sparse matrices arise in many applications:
∙ Optimization problems
∙ Discretized PDEs
∙ . . .

∙ Some sparse matrices are symmetric

Challenges for current and future platforms:

∙ Higher relative communication costs
∙ Lower amount of memory per core

2/18

objective & motivation

Motivations:

∙ Sparse matrices arise in many applications:
∙ Optimization problems
∙ Discretized PDEs
∙ . . .

∙ Some sparse matrices are symmetric

Challenges for current and future platforms:

∙ Higher relative communication costs
∙ Lower amount of memory per core

2/18

objective & motivation

Objective:

∙ Compute sparse A = LLT factorization
∙ A is sparse symmetric matrix
∙ A is positive definite

∙ Need to exploit symmetry

∙ L is a lower triangular matrix

3/18

sparse matrices and elimination tree

Processor list:
p0 p1 p2 p3

1
2

3

4

5

6
7

8
9

10

10

9

85

6 72 4

1 3

∙ Elim. tree represents
column dependences

∙ Fill in, Ω(A) ⊆ Ω(L)

∙ Supernode, same
structure below diagonal
block

A = LLT

Ω(A) is the sparsity pattern of A 4/18

sparse matrices and elimination tree

Processor list:
p0 p1 p2 p3

1
2

3

4

5

6
7

8
9

10

10

9

85

6 72 4

1 3

∙ Elim. tree represents
column dependences

∙ Fill in, Ω(A) ⊆ Ω(L)

∙ Supernode, same
structure below diagonal
block

A = LLT

Ω(A) is the sparsity pattern of A 4/18

sparse matrices and elimination tree

Processor list:
p0 p1 p2 p3

1
2

3

4

5

6
7

8
9

10

10

9

85

6 72 4

1 3

∙ Elim. tree represents
column dependences

∙ Fill in, Ω(A) ⊆ Ω(L)

∙ Supernode, same
structure below diagonal
block

A = LLT

Ω(A) is the sparsity pattern of A 4/18

sparse matrices and elimination tree

Processor list:
p0 p1 p2 p3

1
2

3

4

5

6
7

8
9

10

10

9

85

6 72 4

1 3

∙ Elim. tree represents
column dependences

∙ Fill in, Ω(A) ⊆ Ω(L)
∙ Supernode, same
structure below diagonal
block

A = LLT

Ω(A) is the sparsity pattern of A 4/18

cholesky factorization

∙ Only lower triangular part of A is stored
∙ Basic algorithm:

Algorithm 1: Basic Cholesky algorithm
for column j = 1 to n do

`j,j =
√
Aj,j

for row i = j+ 1 to n do
`i,j = Ai,j/`j,j

end

 Factor column j

for column k = j+ 1 to n do
for row i = k to n do

Ai,k = Ai,k − `i,j · `k,j
end

end



Update next columns

and Aggregate updates

for row i = k to n do
tmpi = tmpi + `i,j · `k,j

end
A∗,k = A∗,k − tmp∗

end

5/18

cholesky factorization

∙ Only lower triangular part of A is stored
∙ Basic algorithm:

Algorithm 1: Basic Cholesky algorithm
for column j = 1 to n do

`j,j =
√
Aj,j

for row i = j+ 1 to n do
`i,j = Ai,j/`j,j

end

 Factor column j

for column k = j+ 1 to n do
for row i = k to n do

Ai,k = Ai,k − `i,j · `k,j
end

end



Update next columns

and Aggregate updates

for row i = k to n do
tmpi = tmpi + `i,j · `k,j

end
A∗,k = A∗,k − tmp∗

end

5/18

cholesky factorization

∙ Only lower triangular part of A is stored
∙ Basic algorithm:

Algorithm 1: Basic Cholesky algorithm
for column j = 1 to n do

`j,j =
√
Aj,j

for row i = j+ 1 to n do
`i,j = Ai,j/`j,j

end

 Factor column j

for column k = j+ 1 to n do
for row i = k to n do

Ai,k = Ai,k − `i,j · `k,j
end

end



Update next columns

and Aggregate updates

for row i = k to n do
tmpi = tmpi + `i,j · `k,j

end
A∗,k = A∗,k − tmp∗

end

5/18

cholesky factorization

∙ Only lower triangular part of A is stored
∙ Basic algorithm:

Algorithm 1: Basic Cholesky algorithm
for column j = 1 to n do

`j,j =
√
Aj,j

for row i = j+ 1 to n do
`i,j = Ai,j/`j,j

end

 Factor column j

for column k = j+ 1 to n do
for row i = k to n do

Ai,k = Ai,k − `i,j · `k,j
end

end



Update next columns
and Aggregate updates

for row i = k to n do
tmpi = tmpi + `i,j · `k,j

end
A∗,k = A∗,k − tmp∗

end

5/18

cholesky factorization

∙ Only lower triangular part of A is stored
∙ Basic algorithm:

Algorithm 1: Basic Cholesky algorithm
for column j = 1 to n do

`j,j =
√
Aj,j

for row i = j+ 1 to n do
`i,j = Ai,j/`j,j

end

 Factor column j

for column k = j+ 1 to n do
for row i = k to n do

Ai,k = Ai,k − `i,j · `k,j
end

end



Update next columns
and Aggregate updates
for row i = k to n do

tmpi = tmpi + `i,j · `k,j
end
A∗,k = A∗,k − tmp∗

end

5/18

fan-both algorithm

∙ Three families [Ashcraft’95]:
∙ Fan-In: “fanning-in updates”
∙ Reduce aggregate vectors (updates)
∙ Factorize column
∙ Compute all updates from that column locally

∙ Fan-Out: “fanning-out factors”
∙ Factorize column
∙ Distribute the Cholesky factor
∙ Compute and apply all updates to my column.

Family determined by type of data exchanged

Fan-In, Fan-Out ⊂ Fan-Both

6/18

fan-both algorithm

∙ Three families [Ashcraft’95]:
∙ Fan-In: “fanning-in updates”
∙ Reduce aggregate vectors (updates)
∙ Factorize column
∙ Compute all updates from that column locally

∙ Fan-Out: “fanning-out factors”
∙ Factorize column
∙ Distribute the Cholesky factor
∙ Compute and apply all updates to my column.

Family determined by type of data exchanged

Fan-In, Fan-Out ⊂ Fan-Both

6/18

fan-both algorithm

∙ Three families [Ashcraft’95]:
∙ Fan-In: “fanning-in updates”
∙ Reduce aggregate vectors (updates)
∙ Factorize column
∙ Compute all updates from that column locally

∙ Fan-Out: “fanning-out factors”
∙ Factorize column
∙ Distribute the Cholesky factor
∙ Compute and apply all updates to my column.

Family determined by type of data exchanged

Fan-In, Fan-Out ⊂ Fan-Both

6/18

fan-both algorithm

∙ Three families [Ashcraft’95]:
∙ Fan-In: “fanning-in updates”
∙ Reduce aggregate vectors (updates)
∙ Factorize column
∙ Compute all updates from that column locally

∙ Fan-Out: “fanning-out factors”
∙ Factorize column
∙ Distribute the Cholesky factor
∙ Compute and apply all updates to my column.

Family determined by type of data exchanged

Fan-In, Fan-Out ⊂ Fan-Both

6/18

fan-both algorithm

∙ Three families [Ashcraft’95]: Fan-In, Fan-Out ⊂ Fan-Both

∙ Task based algorithm:
∙ A(i): accumulation of aggregate
vectors (updates) to column i

Reduces the aggregate vectors t∗i

∙ F(j): factorization of col. j

Produces cholesky factor `∗,j

∙ U(j,i): update of col. i with col. j

Put the update in an (temporary) aggregate vector tji

F(j)

U(j, i)

U(j, h)

`∗,j

A(i)
tji

F(i)

U(i, h)

`∗,i

A(h)

tih
tjh

F(h)

7/18

fan-both algorithm

∙ Three families [Ashcraft’95]: Fan-In, Fan-Out ⊂ Fan-Both

∙ Task based algorithm:
∙ A(i): accumulation of aggregate
vectors (updates) to column i

Reduces the aggregate vectors t∗i

∙ F(j): factorization of col. j

Produces cholesky factor `∗,j

∙ U(j,i): update of col. i with col. j

Put the update in an (temporary) aggregate vector tji

F(j)

U(j, i)

U(j, h)

`∗,j

A(i)
tji

F(i)

U(i, h)

`∗,i

A(h)

tih
tjh

F(h)

7/18

fan-both algorithm

∙ Three families [Ashcraft’95]: Fan-In, Fan-Out ⊂ Fan-Both

∙ Task based algorithm:
∙ A(i): accumulation of aggregate
vectors (updates) to column i

Reduces the aggregate vectors t∗i

∙ F(j): factorization of col. j

Produces cholesky factor `∗,j

∙ U(j,i): update of col. i with col. j

Put the update in an (temporary) aggregate vector tji

F(j)

U(j, i)

U(j, h)

`∗,j

A(i)
tji

F(i)

U(i, h)

`∗,i

A(h)

tih
tjh

F(h)

7/18

fan-both mappings

∙ How do we map tasks ?
(independently of data)

∙ Use of 2D computation mapping
gridM
∙ Mapping grid “extends” to matrix size

∙ Better if P processors on diagonal
∙ Many possible mappings

∙ F(i) on proc. M(i, i)
∙ U(j, i) onM(j, i)
∙ A(j) onM(j, j)

1D Cyclic distribution

1 2 3 4

Virtual 2D mappingM
1

2

3

4

2

1

2

1 3 3

1

2

4 4

4

3

8/18

fan-both mappings

∙ How do we map tasks ?
(independently of data)

∙ Use of 2D computation mapping
gridM
∙ Mapping grid “extends” to matrix size
∙ Better if P processors on diagonal

∙ Many possible mappings

∙ F(i) on proc. M(i, i)
∙ U(j, i) onM(j, i)
∙ A(j) onM(j, j)

1D Cyclic distribution

1 2 3 4

Virtual 2D mappingM
1

2

3

4

2

1

2

1 3 3

1

2

4 4

4

3

8/18

fan-both mappings

∙ How do we map tasks ?
(independently of data)

∙ Use of 2D computation mapping
gridM
∙ Mapping grid “extends” to matrix size
∙ Better if P processors on diagonal
∙ Many possible mappings

∙ F(i) on proc. M(i, i)
∙ U(j, i) onM(j, i)
∙ A(j) onM(j, j)

1D Cyclic distribution

1 2 3 4

Virtual 2D mappingM
1

2

3

4

2

1

2

1 3 3

1

2

4 4

4

3

8/18

fan-both mappings

∙ How do we map tasks ?
(independently of data)

∙ Use of 2D computation mapping
gridM
∙ Mapping grid “extends” to matrix size
∙ Better if P processors on diagonal
∙ Many possible mappings

∙ F(i) on proc. M(i, i)
∙ U(j, i) onM(j, i)
∙ A(j) onM(j, j)

1D Cyclic distribution

1 2 3 4

Virtual 2D mappingM
1

2

3

4

2

1

2

2 1 2

1

2

1 2

4

4

8/18

fan-both mappings

∙ How do we map tasks ?
(independently of data)

∙ Use of 2D computation mapping
gridM
∙ Mapping grid “extends” to matrix size
∙ Better if P processors on diagonal
∙ Many possible mappings

∙ F(i) on proc. M(i, i)
∙ U(j, i) onM(j, i)
∙ A(j) onM(j, j)

P1 P2 P3 P4 P1 P2 P3

P1

P3
P1
P1
P3

P2

P4

P2

P3
P3
P1

P4P4

8/18

fan-both mappings

∙ How do we map tasks ?
(independently of data)

∙ Use of 2D computation mapping
gridM
∙ Mapping grid “extends” to matrix size
∙ Better if P processors on diagonal
∙ Many possible mappings

∙ F(i) on proc. M(i, i)
∙ U(j, i) onM(j, i)
∙ A(j) onM(j, j)

P1 P2 P3 P4 P1 P2 P3

P1 P1 P3 P3 P1 P1 P3
P1 P2 P4 P4 P2 P2 P4
P3 P4 P3 P3 P1 P1 P3
P3 P4 P3 P4 P2 P2 P4
P1 P2 P1 P2 P1 P1 P3
P1 P2 P1 P2 P1 P2 P4
P3 P4 P3 P4 P3 P4 P3

P1

P3
P1
P1
P3

P2

P4

P2

P3
P3
P1

P4P4

8/18

fan-both mappings

∙ How do we map tasks ?
(independently of data)

∙ Use of 2D computation mapping
gridM
∙ Mapping grid “extends” to matrix size
∙ Better if P processors on diagonal
∙ Many possible mappings

∙ F(i) on proc. M(i, i)

∙ U(j, i) onM(j, i)
∙ A(j) onM(j, j)

P1 P2 P3 P4 P1 P2 P3

P1 P1 P3 P3 P1 P1 P3
P1 P2 P4 P4 P2 P2 P4
P3 P4 P3 P3 P1 P1 P3
P3 P4 P3 P4 P2 P2 P4
P1 P2 P1 P2 P1 P1 P3
P1 P2 P1 P2 P1 P2 P4
P3 P4 P3 P4 P3 P4 P3

P1

P3
P1
P1
P3

P2

P4

P2

P3
P3
P1

P4P4

8/18

fan-both mappings

∙ How do we map tasks ?
(independently of data)

∙ Use of 2D computation mapping
gridM
∙ Mapping grid “extends” to matrix size
∙ Better if P processors on diagonal
∙ Many possible mappings

∙ F(i) on proc. M(i, i)

∙ U(j, i) onM(j, i)
∙ A(j) onM(j, j)

P1 P2 P3 P4 P1 P2 P3

P1 P1 P3 P3 P1 P1 P3
P1 P2 P4 P4 P2 P2 P4
P3 P4 P3 P3 P1 P1 P3
P3 P4 P3 P4 P2 P2 P4
P1 P2 P1 P2 P1 P1 P3
P1 P2 P1 P2 P1 P2 P4
P3 P4 P3 P4 P3 P4 P3

P1

P3
P1
P1
P3

P2

P4

P2

P3
P3
P1

P4P4

8/18

fan-both mappings

∙ How do we map tasks ?
(independently of data)

∙ Use of 2D computation mapping
gridM
∙ Mapping grid “extends” to matrix size
∙ Better if P processors on diagonal
∙ Many possible mappings

∙ F(i) on proc. M(i, i)
∙ U(j, i) onM(j, i)

∙ A(j) onM(j, j)

P1 P2 P3 P4 P1 P2 P3

P1 P1 P3 P3 P1 P1 P3
P1 P2 P4 P4 P2 P2 P4
P3 P4 P3 P3 P1 P1 P3
P3 P4 P3 P4 P2 P2 P4
P1 P2 P1 P2 P1 P1 P3
P1 P2 P1 P2 P1 P2 P4
P3 P4 P3 P4 P3 P4 P3

P1

P3
P1
P1
P3

P2

P4

P2

P3
P3
P1

P4P4

8/18

fan-both mappings

∙ How do we map tasks ?
(independently of data)

∙ Use of 2D computation mapping
gridM
∙ Mapping grid “extends” to matrix size
∙ Better if P processors on diagonal
∙ Many possible mappings

∙ F(i) on proc. M(i, i)
∙ U(j, i) onM(j, i)

∙ A(j) onM(j, j)

P1 P2 P3 P4 P1 P2 P3

P1 P1 P3 P3 P1 P1 P3
P1 P2 P4 P4 P2 P2 P4
P3 P4 P3 P3 P1 P1 P3
P3 P4 P3 P4 P2 P2 P4
P1 P2 P1 P2 P1 P1 P3
P1 P2 P1 P2 P1 P2 P4
P3 P4 P3 P4 P3 P4 P3

P1

P3
P1
P1
P3

P2

P4

P2

P3
P3
P1

P4P4

8/18

fan-both mappings

∙ How do we map tasks ?
(independently of data)

∙ Use of 2D computation mapping
gridM
∙ Mapping grid “extends” to matrix size
∙ Better if P processors on diagonal
∙ Many possible mappings

∙ F(i) on proc. M(i, i)
∙ U(j, i) onM(j, i)

∙ A(j) onM(j, j)

P1 P2 P3 P4 P1 P2 P3

P1 P1 P3 P3 P1 P1 P3
P1 P2 P4 P4 P2 P2 P4
P3 P4 P3 P3 P1 P1 P3
P3 P4 P3 P4 P2 P2 P4
P1 P2 P1 P2 P1 P1 P3
P1 P2 P1 P2 P1 P2 P4
P3 P4 P3 P4 P3 P4 P3

P1

P3
P1
P1
P3

P2

P4

P2

P3
P3
P1

P4P4

8/18

fan-both mappings

∙ How do we map tasks ?
(independently of data)

∙ Use of 2D computation mapping
gridM
∙ Mapping grid “extends” to matrix size
∙ Better if P processors on diagonal
∙ Many possible mappings

∙ F(i) on proc. M(i, i)
∙ U(j, i) onM(j, i)

∙ A(j) onM(j, j)

P1 P2 P3 P4 P1 P2 P3

P1 P1 P3 P3 P1 P1 P3
P1 P2 P4 P4 P2 P2 P4
P3 P4 P3 P3 P1 P1 P3
P3 P4 P3 P4 P2 P2 P4
P1 P2 P1 P2 P1 P1 P3
P1 P2 P1 P2 P1 P2 P4
P3 P4 P3 P4 P3 P4 P3

P1

P3
P1
P1
P3

P2

P4

P2

P3
P3
P1

P4P4

8/18

fan-both mappings

∙ How do we map tasks ?
(independently of data)

∙ Use of 2D computation mapping
gridM
∙ Mapping grid “extends” to matrix size
∙ Better if P processors on diagonal
∙ Many possible mappings

∙ F(i) on proc. M(i, i)
∙ U(j, i) onM(j, i)

∙ A(j) onM(j, j)

P1 P2 P3 P4 P1 P2 P3

P1 P1 P3 P3 P1 P1 P3
P1 P2 P4 P4 P2 P2 P4
P3 P4 P3 P3 P1 P1 P3
P3 P4 P3 P4 P2 P2 P4
P1 P2 P1 P2 P1 P1 P3
P1 P2 P1 P2 P1 P2 P4
P3 P4 P3 P4 P3 P4 P3

P1

P3
P1
P1
P3

P2

P4

P2

P3

P3
P1

P4P4

8/18

fan-both mappings

∙ How do we map tasks ?
(independently of data)

∙ Use of 2D computation mapping
gridM
∙ Mapping grid “extends” to matrix size
∙ Better if P processors on diagonal
∙ Many possible mappings

∙ F(i) on proc. M(i, i)
∙ U(j, i) onM(j, i)

∙ A(j) onM(j, j)

P1 P2 P3 P4 P1 P2 P3

P1 P1 P3 P3 P1 P1 P3
P1 P2 P4 P4 P2 P2 P4
P3 P4 P3 P3 P1 P1 P3
P3 P4 P3 P4 P2 P2 P4
P1 P2 P1 P2 P1 P1 P3
P1 P2 P1 P2 P1 P2 P4
P3 P4 P3 P4 P3 P4 P3

P1

P3
P1
P1
P3

P2

P4

P2

P3
P3
P1

P4P4

8/18

fan-both mappings

∙ How do we map tasks ?
(independently of data)

∙ Use of 2D computation mapping
gridM
∙ Mapping grid “extends” to matrix size
∙ Better if P processors on diagonal
∙ Many possible mappings

∙ F(i) on proc. M(i, i)
∙ U(j, i) onM(j, i)
∙ A(j) onM(j, j)

P1 P2 P3 P4 P1 P2 P3

P1 P1 P3 P3 P1 P1 P3
P1 P2 P4 P4 P2 P2 P4
P3 P4 P3 P3 P1 P1 P3
P3 P4 P3 P4 P2 P2 P4
P1 P2 P1 P2 P1 P1 P3
P1 P2 P1 P2 P1 P2 P4
P3 P4 P3 P4 P3 P4 P3

P1

P3
P1
P1
P3

P2

P4

P2

P3
P3
P1

P4

P4

8/18

fan-both mappings

∙ How do we map tasks ?
(independently of data)

∙ Use of 2D computation mapping
gridM
∙ Mapping grid “extends” to matrix size
∙ Better if P processors on diagonal
∙ Many possible mappings

∙ F(i) on proc. M(i, i)
∙ U(j, i) onM(j, i)
∙ A(j) onM(j, j)

P1 P2 P3 P4 P1 P2 P3

P1 P1 P3 P3 P1 P1 P3
P1 P2 P4 P4 P2 P2 P4
P3 P4 P3 P3 P1 P1 P3
P3 P4 P3 P4 P2 P2 P4
P1 P2 P1 P2 P1 P1 P3
P1 P2 P1 P2 P1 P2 P4
P3 P4 P3 P4 P3 P4 P3

P1

P3
P1
P1
P3

P2

P4

P2

P3
P3
P1

P4

P4

8/18

fan-both mappings

∙ How do we map tasks ?
(independently of data)

∙ Use of 2D computation mapping
gridM
∙ Mapping grid “extends” to matrix size
∙ Better if P processors on diagonal
∙ Many possible mappings

∙ F(i) on proc. M(i, i)
∙ U(j, i) onM(j, i)
∙ A(j) onM(j, j)

P1 P2 P3 P4 P1 P2 P3

P1 P1 P3 P3 P1 P1 P3
P1 P2 P4 P4 P2 P2 P4
P3 P4 P3 P3 P1 P1 P3
P3 P4 P3 P4 P2 P2 P4
P1 P2 P1 P2 P1 P1 P3
P1 P2 P1 P2 P1 P2 P4
P3 P4 P3 P4 P3 P4 P3

P1

P3
P1
P1
P3

P2

P4

P2

P3
P3
P1

P4

P4

8/18

0

0

0

0

0

0

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

0

0

0

0

0

0

1

1

1

1

1

1

Fan-In
Mi,j = mod(i,P)

0

1

2

3

0

1

0

1

2

3

0

1

0

1

2

3

0

1

0

1

2

3

0

1

0

1

2

3

0

1

0

1

2

3

0

1

Fan-Out
Mi,j = mod(j,P)

0

1

0

1

0

1

0

1

0

1

0

1

2

3

2

3

2

3

2

3

2

3

2

3

0

1

0

1

0

1

0

1

0

1

0

1

Fan-Both
Mi,j =

mod(min(i, j),P)+
Pbmod(max(i, j),P)/Pc

Three different computation maps, corresponding to
Fan-In, Fan-Out and Fan-Both

9/18

design principles

∙ Remove synchronization points
∙ Asynchronous point to point send
∙ Group communication:
(MPI) Collectives probably not the way to go
∙ Requires too many communicators
∙ Efficient non blocking collectives needed
∙ Collective nature

∙ Asynchronous tree-based group communications
∙ Non-collectives = full asynchronicity

∙ Minimize memory operations
∙ Row-major layout

∙ Avoid making extra copies when sending data

10/18

design principles

∙ Remove synchronization points
∙ Asynchronous point to point send
∙ Group communication:
(MPI) Collectives probably not the way to go
∙ Requires too many communicators
∙ Efficient non blocking collectives needed
∙ Collective nature

∙ Asynchronous tree-based group communications
∙ Non-collectives = full asynchronicity

∙ Minimize memory operations
∙ Row-major layout

∙ Avoid making extra copies when sending data

10/18

design principles

∙ Remove synchronization points
∙ Asynchronous point to point send
∙ Group communication:
(MPI) Collectives probably not the way to go
∙ Requires too many communicators
∙ Efficient non blocking collectives needed
∙ Collective nature

∙ Asynchronous tree-based group communications
∙ Non-collectives = full asynchronicity

∙ Minimize memory operations
∙ Row-major layout

∙ Avoid making extra copies when sending data

10/18

design principles

∙ Remove synchronization points
∙ Asynchronous point to point send
∙ Group communication:
(MPI) Collectives probably not the way to go
∙ Requires too many communicators
∙ Efficient non blocking collectives needed
∙ Collective nature

∙ Asynchronous tree-based group communications
∙ Non-collectives = full asynchronicity

∙ Minimize memory operations
∙ Row-major layout
∙ Avoid making extra copies when sending data

10/18

deadlock prevention

∙ All operations described by task Tsrc→tgt

∙ Message Msgsrc→tgt

∙ “Push” strategy natural with MPI

Asynchronous comm. becomes blocking when out of buffer

Deadlock issues
∙ Deadlock prevention is difficult:
∙ Total order in operations/messages

(Also observed by Amestoy et al.)
∙ Order by non decreasing tgt, then src:

⇒ Use of priority queue for tasks/messages

Potential over-synchronization

∙ “Pull” strategy (one sided communications)
∙ Signal data when available
∙ Receiver gets data when ready

11/18

deadlock prevention

∙ All operations described by task Tsrc→tgt

∙ Message Msgsrc→tgt

∙ “Push” strategy natural with MPI

Asynchronous comm. becomes blocking when out of buffer

Deadlock issues
∙ Deadlock prevention is difficult:
∙ Total order in operations/messages

(Also observed by Amestoy et al.)
∙ Order by non decreasing tgt, then src:

⇒ Use of priority queue for tasks/messages

Potential over-synchronization

∙ “Pull” strategy (one sided communications)
∙ Signal data when available
∙ Receiver gets data when ready

11/18

deadlock prevention

∙ All operations described by task Tsrc→tgt

∙ Message Msgsrc→tgt

∙ “Push” strategy natural with MPI

Asynchronous comm. becomes blocking when out of buffer

Deadlock issues

∙ Deadlock prevention is difficult:
∙ Total order in operations/messages

(Also observed by Amestoy et al.)
∙ Order by non decreasing tgt, then src:

⇒ Use of priority queue for tasks/messages

Potential over-synchronization

∙ “Pull” strategy (one sided communications)
∙ Signal data when available
∙ Receiver gets data when ready

11/18

deadlock prevention

∙ All operations described by task Tsrc→tgt

∙ Message Msgsrc→tgt

∙ “Push” strategy natural with MPI

Asynchronous comm. becomes blocking when out of buffer

Deadlock issues
∙ Deadlock prevention is difficult:
∙ Total order in operations/messages

(Also observed by Amestoy et al.)
∙ Order by non decreasing tgt, then src:

⇒ Use of priority queue for tasks/messages

Potential over-synchronization

∙ “Pull” strategy (one sided communications)
∙ Signal data when available
∙ Receiver gets data when ready

11/18

deadlock prevention

∙ All operations described by task Tsrc→tgt

∙ Message Msgsrc→tgt

∙ “Push” strategy natural with MPI

Asynchronous comm. becomes blocking when out of buffer

Deadlock issues
∙ Deadlock prevention is difficult:
∙ Total order in operations/messages

(Also observed by Amestoy et al.)
∙ Order by non decreasing tgt, then src:

⇒ Use of priority queue for tasks/messages
Potential over-synchronization

∙ “Pull” strategy (one sided communications)
∙ Signal data when available
∙ Receiver gets data when ready

11/18

deadlock prevention

∙ All operations described by task Tsrc→tgt

∙ Message Msgsrc→tgt

∙ “Push” strategy natural with MPI

Asynchronous comm. becomes blocking when out of buffer

Deadlock issues
∙ Deadlock prevention is difficult:
∙ Total order in operations/messages

(Also observed by Amestoy et al.)
∙ Order by non decreasing tgt, then src:

⇒ Use of priority queue for tasks/messages
Potential over-synchronization

∙ “Pull” strategy (one sided communications)
∙ Signal data when available
∙ Receiver gets data when ready

11/18

task scheduling in sympack

∙ Tasks Tsrc→tgt

∙ Tasks currently mapped statically
∙ Processor manages local task queue LTQ

∙ Dependency count
∙ Ready tasks are placed in RTQ

LTQ Tj,j Tg,g

RTQ

Mi,j

1
decrease dependency
count of Tj,∗
Store Mi,j

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tl,g

3 Pick a task from RTQ
and process it

Tl,g

3 Pick a task from RTQ
and process it

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

Scheduling policy ? FIFO, close to diagonal, etc.

12/18

task scheduling in sympack

∙ Tasks Tsrc→tgt

∙ Tasks currently mapped statically
∙ Processor manages local task queue LTQ
∙ Dependency count

∙ Ready tasks are placed in RTQ

LTQ Tj,j Tg,g

RTQ

Mi,j

Mi,j

1
decrease dependency
count of Tj,∗
Store Mi,j

1
decrease dependency
count of Tj,∗
Store Mi,j

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tl,g

3 Pick a task from RTQ
and process it

Tl,g

3 Pick a task from RTQ
and process it

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

Scheduling policy ? FIFO, close to diagonal, etc.

12/18

task scheduling in sympack

∙ Tasks Tsrc→tgt

∙ Tasks currently mapped statically
∙ Processor manages local task queue LTQ
∙ Dependency count

∙ Ready tasks are placed in RTQ

LTQ Tj,j Tg,g

RTQ
Mi,j

1
decrease dependency
count of Tj,∗
Store Mi,j

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tl,g

3 Pick a task from RTQ
and process it

Tl,g

3 Pick a task from RTQ
and process it

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

Scheduling policy ? FIFO, close to diagonal, etc.

12/18

task scheduling in sympack

∙ Tasks Tsrc→tgt

∙ Tasks currently mapped statically
∙ Processor manages local task queue LTQ
∙ Dependency count
∙ Ready tasks are placed in RTQ

LTQ Tj,j Tg,g

RTQ
Mi,j

1
decrease dependency
count of Tj,∗
Store Mi,j

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tl,g

3 Pick a task from RTQ
and process it

Tl,g

3 Pick a task from RTQ
and process it

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

Scheduling policy ? FIFO, close to diagonal, etc.

12/18

task scheduling in sympack

∙ Tasks Tsrc→tgt

∙ Tasks currently mapped statically
∙ Processor manages local task queue LTQ
∙ Dependency count
∙ Ready tasks are placed in RTQ

LTQ Tj,j Tg,g

RTQ
Mi,j

1
decrease dependency
count of Tj,∗
Store Mi,j

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tl,g

3 Pick a task from RTQ
and process it

Tl,g

3 Pick a task from RTQ
and process it

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

Scheduling policy ? FIFO, close to diagonal, etc.

12/18

task scheduling in sympack

∙ Tasks Tsrc→tgt

∙ Tasks currently mapped statically
∙ Processor manages local task queue LTQ
∙ Dependency count
∙ Ready tasks are placed in RTQ

LTQ Tj,j Tg,g

RTQ
Mi,j

1
decrease dependency
count of Tj,∗
Store Mi,j

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tl,g

3 Pick a task from RTQ
and process it

Tl,g

3 Pick a task from RTQ
and process it

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

Scheduling policy ? FIFO, close to diagonal, etc.

12/18

task scheduling in sympack

∙ Tasks Tsrc→tgt

∙ Tasks currently mapped statically
∙ Processor manages local task queue LTQ
∙ Dependency count
∙ Ready tasks are placed in RTQ

LTQ Tj,j Tg,g

RTQ
Mi,j

1
decrease dependency
count of Tj,∗
Store Mi,j

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tl,g

3 Pick a task from RTQ
and process it

Tl,g

3 Pick a task from RTQ
and process it

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

Scheduling policy ? FIFO, close to diagonal, etc.

12/18

task scheduling in sympack

∙ Tasks Tsrc→tgt

∙ Tasks currently mapped statically
∙ Processor manages local task queue LTQ
∙ Dependency count
∙ Ready tasks are placed in RTQ

LTQ Tj,j Tg,g

RTQ
Mi,j

1
decrease dependency
count of Tj,∗
Store Mi,j

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tl,g

3 Pick a task from RTQ
and process it

Tl,g

3 Pick a task from RTQ
and process it

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

Scheduling policy ? FIFO, close to diagonal, etc.

12/18

task scheduling in sympack

∙ Tasks Tsrc→tgt

∙ Tasks currently mapped statically
∙ Processor manages local task queue LTQ
∙ Dependency count
∙ Ready tasks are placed in RTQ

LTQ Tj,j Tg,g

RTQ
Mi,j

1
decrease dependency
count of Tj,∗
Store Mi,j

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tl,g

3 Pick a task from RTQ
and process it

Tl,g

3 Pick a task from RTQ
and process it

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

Scheduling policy ? FIFO, close to diagonal, etc.

12/18

task scheduling in sympack

∙ Tasks Tsrc→tgt

∙ Tasks currently mapped statically
∙ Processor manages local task queue LTQ
∙ Dependency count
∙ Ready tasks are placed in RTQ

LTQ Tj,j Tg,g

RTQ
Mi,j

1
decrease dependency
count of Tj,∗
Store Mi,j

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tj,j

2 if dependency count of Tj,k = 0
push Tj,k into RTQ

Tl,g

3 Pick a task from RTQ
and process it

Tl,g

3 Pick a task from RTQ
and process it

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

4 decrease dependency count of Tg,∗
depending upon task Tl,g

Mg,x 5 Send Mg,x to every task Tx,∗
depending upon task Tl,g

Scheduling policy ? FIFO, close to diagonal, etc. 12/18

notification and communications in sympack

∙ UPC++ and GASNet for
communications

∙ global pointer to remote memory
∙ one-sided communications
∙ asynchronous remote functions
calls

psource

symPACK UPC++

ta
sk
T i async. call to signal(ptr,meta) on ptarget

1

po
ll progress()

ta
sk
T j

po
ll progress()

ta
sk
T k

ptarget

symPACKUPC++

ta
sk
T n

po
ll 2

progress()
3

signal(ptr,meta):
enqueue ptr si

gn
al

4

list of global ptr

for each ptr:5
get(ptr)

ptr to data for task Tm
if Tm met all deps.
enqueue task
Tm in RTQ

6

ta
sk
T p

13/18

impact of communication strategy and scheduling

1 4 24 32 64 96 192 256 38
4

Processor count

100

101

Ti
m
e
(s
)

Run times on boneS10 for three variants of symPACK
symPACK- Push
symPACK- Pull
symPACK- Pull dynamic scheduling

n=914,898 nnz(A)=20,896,803 nnz(L)=318,019,434
14/18

strong scaling vs. state-of-the-art

1 4 16 24 32 64 96 192 256 38
4

576 784102
4

20
48

Processor count

101

102

Ti
m
e
(s
)

Run times on Flan_1565
SuperLU_DIST 4.3
Pastix 5.2.2
MUMPS 5.0
symPACK

n=1,564,794 nnz(A)=57,865,083 nnz(L)=1,574,541,576
15/18

strong scaling vs. state-of-the-art

1 4 16 32 64 128 256 512 102
4

20
48

Processor count

101

102

Ti
m
e
(s
)

Run times for audikw_1_MT
SuperLU_DIST 4.3
PASTIX 5.2.2
MUMPS 5.0
symPACK
PASTIX 5.2.2 MT

n=943,695 nnz(A)=39,297,771 nnz(L)=1,221,674,796
16/18

conclusions

∙ Reduces communication cost in theory [Ashcraft’95]
∙ Increases parallelism during updates

∙ Avoiding deadlocks is challenging (Similar to observation by
Larkar et al.)

∙ New symmetric solver symPACK
∙ implements Fan-Both
∙ Task based Cholesky requires fine / dynamic scheduling
∙ One sided approach using UPC++
∙ Asynchronous task execution model
∙ dynamic scheduling

17/18

conclusions

∙ Reduces communication cost in theory [Ashcraft’95]
∙ Increases parallelism during updates

∙ Avoiding deadlocks is challenging (Similar to observation by
Larkar et al.)

∙ New symmetric solver symPACK
∙ implements Fan-Both
∙ Task based Cholesky requires fine / dynamic scheduling
∙ One sided approach using UPC++
∙ Asynchronous task execution model
∙ dynamic scheduling

17/18

ongoing and future work

∙ 2D wrap mapping performance
∙ Hybrid parallelism (UPC++/OpenMP, UPC++ / UPC++)
∙ Conflict with load balancing (proportional mapping) ?

∙ Tree-based group communications

∙ Data distribution (2D, block based ?)
∙ Scheduling strategies
∙ New task mapping policies

Async. model important for scalability and to tolerate variability

www.sympack.org

18/18

www.sympack.org

ongoing and future work

∙ 2D wrap mapping performance
∙ Hybrid parallelism (UPC++/OpenMP, UPC++ / UPC++)
∙ Conflict with load balancing (proportional mapping) ?

∙ Tree-based group communications

∙ Data distribution (2D, block based ?)
∙ Scheduling strategies
∙ New task mapping policies

Async. model important for scalability and to tolerate variability

www.sympack.org

18/18

www.sympack.org

ongoing and future work

∙ 2D wrap mapping performance
∙ Hybrid parallelism (UPC++/OpenMP, UPC++ / UPC++)
∙ Conflict with load balancing (proportional mapping) ?

∙ Tree-based group communications

∙ Data distribution (2D, block based ?)
∙ Scheduling strategies
∙ New task mapping policies

Async. model important for scalability and to tolerate variability

www.sympack.org

18/18

www.sympack.org

	Background and motivation
	Fan-In, Fan-Out and Fan-Both factorizations
	Parallel distributed memory implementation, a.k.a. symPACK
	Numerical experiments

