BLOCK ITERATIVE METHODS AND RECYCLING FOR IMPROVED SCALABILITY OF LINEAR SOLVERS

Pierre Jolivet, IRIT-CNRS Pierre-Henri Tournier, UPMC/Inria Alpines

> Sparse Days 2016 June 30

Frédéric Nataf, LJLL–CNRS/Inria Alpines

Xavier Vasseur, CERFACS

INTRODUCTION

Subspace recycling

Keep information between restart or when solving sequences of linear systems:

$$A_i x_i = b_i$$
 $\forall i = 1, 2, \dots$

Subspace recycling

Keep information between restart or when solving sequences of linear systems:

$$A_i x_i = b_i \qquad \forall i = 1, 2, \ldots$$

Block methods

Treat multiple right-hand sides simultaneously for faster convergence:

$$AX = B$$
 $B \in \mathbb{K}^{n \times p}$

Available options

- hypre, DUNE, PARALUTION, SciPy: nothing
- PETSc: Loose GMRES and Deflated GMRES
- Trilinos (Belos): Block GMRES, Block GCRO-DR

Available options

- hypre, DUNE, PARALUTION, SciPy: nothing
- PETSc: Loose GMRES and Deflated GMRES
- Trilinos (Belos): Block GMRES, Block GCRO-DR

Why not use Belos?

- no support for variable preconditioning
- no support for languages other than C++

- implementation of (pseudo-)Block CG/GMRES/GCRO-DR
- support for left/right/variable preconditioning
- large-scale results for three different physics

- implementation of (pseudo-)Block CG/GMRES/GCRO-DR
- support for left/right/variable preconditioning
- large-scale results for three different physics

HPDDM

- open-source, https://github.com/hpddm/hpddm
- usable in C++, C, Python, or Fortran

SUBSPACE RECYCLING

Proposed by Parks et al. (2007)

Closely related to GMRES-DR by Morgan (2002)

Proposed by Parks et al. (2007)

Closely related to GMRES-DR by Morgan (2002)

Main idea

- 1. end of GMRES cycle: compute Ritz eigenpairs
- 2. next restart: use 1. to generate k vectors for Arnoldi basis
- 3. perform extra orthogonalizations with k vectors

Proposed by Parks et al. (2007)

Closely related to GMRES-DR by Morgan (2002)

Main idea

- 1. end of GMRES cycle: compute Ritz eigenpairs
- 2. next restart: use 1. to generate k vectors for Arnoldi basis
- 3. perform extra orthogonalizations with k vectors

Overhead: • persistent storage between cycles/solves

- one additional synchronization per cycle
- small dense (generalized) eigenvalue problem

BLOCK ITERATIVE METHODS

WHY USE BLOCK METHODS?

Numerical aspects

enlarged Krylov subspace \implies faster convergence

Performance

- higher arithmetic intensity
- fewer synchronizations with more data

WHY USE BLOCK METHODS?

Numerical aspects

enlarged Krylov subspace \implies faster convergence

Performance

- higher arithmetic intensity
- fewer synchronizations with more data

IMPLEMENTATION DETAILS

Block Arnoldi

- block orthogonalization
- tall-and-skinny QR (default to CholQR $V^{H}V = LL^{H}$)

IMPLEMENTATION DETAILS

Block Arnoldi

- block orthogonalization
- tall-and-skinny QR (default to CholQR $V^{H}V = LL^{H}$)

About CholQR: • V = QR with $R = L^{H}$, $Q = L^{-H}V$

- BLAS 3
- single reduction, Stathopoulos (2000)
- can rank-reveal (?pstrf)

IMPLEMENTATION DETAILS

Block Arnoldi

- block orthogonalization
- tall-and-skinny QR (default to CholQR $V^{H}V = LL^{H}$)

About CholQR: • V = QR with $R = L^{H}$, $Q = L^{-H}V$

- BLAS 3
- single reduction, Stathopoulos (2000)
- can rank-reveal (?pstrf)

Pseudo-block methods

p subspaces, computation and communication steps fused

APPLICATIONS AND NUMERICAL RESULTS

Two examples from the PETSc distribution:

- 1. ex32 (Poisson's equation)
- 2. ex56 (linear elasticity)

Geometric Algebraic MG preconditioner, Adams et al. (2004)

Two examples from the PETSc distribution:

- 1. ex32 (Poisson's equation)
- 2. ex56 (linear elasticity)

Geometric Algebraic MG preconditioner, Adams et al. (2004)

Nonlinear smoothers

 \implies FGCRO-DR is mandatory

- assemble a single linear system/preconditioner
- solve a sequence with multiple RHSs:

$$Ax_i = b_i \qquad \forall i \in \llbracket 1, 4 \rrbracket$$

RECYCLING For Poisson's equation II

RECYCLING For Poisson's equation II

recycling \implies relax preconditioner setup parameters

Comparison with Loose GMRES by Baker et al. (2004)

mpirun -np 8000 ./ex56 -ne 399 -ksp_rtol 1e-8
-ksp_type lgmres -ksp_pc_side right -pc_type gamg
-ksp_lgmres_augment 10

- small, moving inclusion (high contrast in *E*)
- assemble multiple linear systems/preconditioners
- PETSc doesn't implement flexible LGMRES

Iteration number

$$\nabla \times (\nabla \times \mathbf{E}) - \mu_0 \Big(\omega^2 \varepsilon + \mathrm{i} \omega \sigma \Big) \mathbf{E} = 0$$

AMS and MueLu:

1. only support eddy current formulation

- 2. are not trivial to use with high-order edge elements
- AMS cannot deal with multiple RHSs

$$\nabla \times (\nabla \times \mathbf{E}) - \mu_0 \Big(\omega^2 \mathbf{s} + \mathbf{i} \omega \sigma \Big) \mathbf{E} = 0$$

AMS and MueLu:

1. only support eddy current formulation

2. are not trivial to use with high-order edge elements AMS cannot deal with multiple RHSs

$$\nabla \times (\nabla \times \mathbf{E}) - \mu_0 \Big(\omega^2 \mathbf{s} + \mathbf{i} \omega \sigma \Big) \mathbf{E} = 0$$

AMS and MueLu:

1. only support eddy current formulation

2. are not trivial to use with high-order edge elements AMS cannot deal with multiple RHSs

$$\mathcal{M}_{\mathsf{ORAS}}^{-1} = \sum_{i=1}^{N} R_i^{\mathsf{T}} D_i B_i^{-1} R_i,$$

cf. Gander (2009).

- B_i^{-1} may be applied to multiple vectors at once
- *B_i* makes "more sense"?

MAXWELL'S EQUATION

Robustness of the preconditioner

- 50 million double-precision complex unknowns
- degree 3 edge elements
- 512 subdomains, 1 thread per subdomain

MAXWELL'S EQUATION Scalability of the preconditioner

- 119 million double-precision complex unknowns
- degree 2 edge elements

alternative	р	solve	# of it.	per RHS	eff.
GMRES	1				
GCRO-DR	1				

- (m, k) = (50, 10) for solving 32 RHSs
- 2,048 subdomains and 2 threads per subdomain

alternative	р	solve	# of it.	per RHS	eff.
GMRES	1	$3,\!078.4$	20,068	627	—
GCRO-DR	1	1,836.9	10,701	334	1.7

- (m, k) = (50, 10) for solving 32 RHSs
- 2,048 subdomains and 2 threads per subdomain

alternative	р	solve	# of it.	per RHS	eff.
GMRES	1	$3,\!078.4$	20,068	627	—
GCRO-DR	1	$1,\!836.9$	10,701	334	1.7
pseudo-BGMRES	32	1,577.9	653	—	2.0
BGMRES	32	724.8	158	_	4.2

- (m, k) = (50, 10) for solving 32 RHSs
- 2,048 subdomains and 2 threads per subdomain

alternative	р	solve	# of it.	per RHS	eff.
GMRES	1	$3,\!078.4$	20,068	627	—
GCRO-DR	1	$1,\!836.9$	10,701	334	1.7
pseudo-BGMRES	32	1,577.9	653	—	2.0
BGMRES	32	724.8	158	—	4.2
pseudo-BGCRO-DR	8	$1,\!357.8$	1,508	377	2.3
pseudo-BGCRO-DR	32	$1,\!376.1$	469	—	2.2

- (m, k) = (50, 10) for solving 32 RHSs
- 2,048 subdomains and 2 threads per subdomain

alternative	р	solve	# of it.	per RHS	eff.
GMRES	1	$3,\!078.4$	20,068	627	—
GCRO-DR	1	$1,\!836.9$	10,701	334	1.7
pseudo-BGMRES	32	1,577.9	653	—	2.0
BGMRES	32	724.8	158	—	4.2
pseudo-BGCRO-DR	8	$1,\!357.8$	1,508	377	2.3
pseudo-BGCRO-DR	32	$1,\!376.1$	469	—	2.2
BGCRO-DR	8	677.6	524	131	4.5
BGCRO-DR	32	992.3	127	—	3.1

- (m, k) = (50, 10) for solving 32 RHSs
- 2,048 subdomains and 2 threads per subdomain

alternative	р	solve	# of it.	per RHS	eff.
GMRES	1	$3,\!078.4$	20,068	627	—
GCRO-DR	1	$1,\!836.9$	10,701	334	1.7
pseudo-BGMRES	32	1,577.9	653	—	2.0
BGMRES	32	724.8	158	—	4.2
pseudo-BGCRO-DR	8	$1,\!357.8$	1,508	377	2.3
pseudo-BGCRO-DR	32	$1,\!376.1$	469	—	2.2
BGCRO-DR	8	677.6	524	131	4.5
BGCRO-DR	32	992.3	127	—	3.1

- (m, k) = (50, 10) for solving 32 RHSs
- 2,048 subdomains and 2 threads per subdomain
- alternative #1 to $\#8 \implies 158 \times$ fewer iterations

alternative	р	solve	# of it.	per RHS	eff.
GMRES	1	$3,\!078.4$	20,068	627	—
GCRO-DR	1	$1,\!836.9$	10,701	334	1.7
pseudo-BGMRES	32	1,577.9	653	—	2.0
BGMRES	32	724.8	158	—	4.2
pseudo-BGCRO-DR	8	$1,\!357.8$	1,508	377	2.3
pseudo-BGCRO-DR	32	$1,\!376.1$	469	—	2.2
BGCRO-DR	8	677.6	524	131	4.5
BGCRO-DR	32	992.3	127	—	3.1

- (m, k) = (50, 10) for solving 32 RHSs
- 2,048 subdomains and 2 threads per subdomain
- alternative #1 to $\#8 \implies 158 \times$ fewer iterations
- GCRO-DR always performs fewer iterations than GMRES

alternative	р	solve	# of it.	per RHS	eff.
GMRES	1	$3,\!078.4$	20,068	627	—
GCRO-DR	1	$1,\!836.9$	10,701	334	1.7
pseudo-BGMRES	32	1,577.9	653	—	2.0
BGMRES	32	724.8	158	—	4.2
pseudo-BGCRO-DR	8	$1,\!357.8$	1,508	377	2.3
pseudo-BGCRO-DR	32	$1,\!376.1$	469	—	2.2
BGCRO-DR	8	677.6	524	131	4.5
BGCRO-DR	32	992.3	127	—	3.1

- (m, k) = (50, 10) for solving 32 RHSs
- 2,048 subdomains and 2 threads per subdomain
- alternative #1 to #8 \implies 158× fewer iterations
- GCRO-DR always performs fewer iterations than GMRES
- working on all 32 RHSs is costly (#5/#7 vs. #6/#8)

CONCLUSION

Summary:

- various strategies for block methods and recycling
- large-scale experiments
- problem-specific performance but worth the try

Future work:

- other applications (inverse problems)
- block size reduction

For more: Jolivet and Tournier, SC16

Summary:

- various strategies for block methods and recycling
- large-scale experiments
- problem-specific performance but worth the try

Future work:

- other applications (inverse problems)
- block size reduction

For more: Jolivet and Tournier, SC16

Thank you!