
task-based sparse cholesky solver on top
of runtime system

Iain S. Duff, Jonathan D. Hogg and Florent Lopez
Sparse Days, 2016

Rutherford Appleton Laboratory
NLAFET Project

Objective

Solve Ax = b, where A is large and sparse, on modern
architectures.

Using Direct Method: Sparse Cholesky factorization A = LLT

▲ Numerically robust and general purpose

▼ High memory usage and computational cost

Exploiting modern platforms is challenging:
• Multicore processors and deep memory hierarchy.
• Heterogeneous e.g. CPU & GPU or Xeon Phi.
• Distributed-memory systems.

1

Runtime systems

Application

Architecture

xPU0 xM0 yPU0 yM0xPU1 xM1

• The classical approach is based
on a mixture of technologies (e.g.,
MPI+OpenMP+CUDA) which.
◦ programming costs.
◦ is difficult to maintain and update.
◦ is prone to (performance)

portability issues.

• runtimes provide an abstraction
layer that hides the architecture
details.

• the workload is expressed as a
DAG of tasks.

2

Runtime systems

Application

Runtime

Architecture

xPU0 xM0

Scheduling engine

Mem.
manager

xPU
driver

yPU
driver

A B
C

CB B

A

yPU0 yM0xPU1 xM1

Ax Ay

Bx Cx
• The classical approach is based
on a mixture of technologies (e.g.,
MPI+OpenMP+CUDA) which.
◦ programming costs.
◦ is difficult to maintain and update.
◦ is prone to (performance)

portability issues.

• runtimes provide an abstraction
layer that hides the architecture
details.

• the workload is expressed as a
DAG of tasks.

2

Runtime systems

Application

Runtime

Architecture

xPU0 xM0

Scheduling engine

Mem.
manager

xPU
driver

yPU
driver

A B
C

CB B

A

yPU0 yM0xPU1 xM1

Ax Ay

Bx Cx
• The classical approach is based
on a mixture of technologies (e.g.,
MPI+OpenMP+CUDA) which.
◦ programming costs.
◦ is difficult to maintain and update.
◦ is prone to (performance)

portability issues.

• runtimes provide an abstraction
layer that hides the architecture
details.

• the workload is expressed as a
DAG of tasks.

2

Sparse Cholesky factorization

In numerical factorization of A the
elimination tree expresses data
dependencies in the factor L. Each
node, referred to as supernode, is a
dense lower trapezoidal submatrix of L.

The tree is traversed in a topological
order, and each node is factorized
using dense Cholesky algorithm.

Updates between node are handled
using a supernodal scheme i.e.
updates are applied directly to the
target supernodes.

3

Sparse Cholesky factorization

In numerical factorization of A the
elimination tree expresses data
dependencies in the factor L. Each
node, referred to as supernode, is a
dense lower trapezoidal submatrix of L.

The tree is traversed in a topological
order, and each node is factorized
using dense Cholesky algorithm.

Updates between node are handled
using a supernodal scheme i.e.
updates are applied directly to the
target supernodes.

3

Sparse Cholesky factorization

In numerical factorization of A the
elimination tree expresses data
dependencies in the factor L. Each
node, referred to as supernode, is a
dense lower trapezoidal submatrix of L.

The tree is traversed in a topological
order, and each node is factorized
using dense Cholesky algorithm.

Updates between node are handled
using a supernodal scheme i.e.
updates are applied directly to the
target supernodes.

3

Sparse Cholesky factorization: parallelism

Sources of parallelism in the
elimination tree:

• Tree parallelism: Supernode in
independent branches can be
processed concurrently.

• Node parallelism: When a
supernode is large enough, it may
be processed in parallel.

4

Sparse Cholesky factorization: parallelism

Sources of parallelism in the
elimination tree:
• Tree parallelism: Supernode in
independent branches can be
processed concurrently.

• Node parallelism: When a
supernode is large enough, it may
be processed in parallel.

4

Sparse Cholesky factorization: parallelism

Sources of parallelism in the
elimination tree:
• Tree parallelism: Supernode in
independent branches can be
processed concurrently.

• Node parallelism: When a
supernode is large enough, it may
be processed in parallel.

4

Task-based Sparse Cholesky factorization

a

f

s s s

u
u u

s s

ff

s

f

s s

u u u

f s u f

a

a

a a

a

Supernodes are partitioned into square blocks (nb x nb) on which
operations are applied (factorize, solve, update,
update_between). The DAG replaces the elimination tree for
representing the dependencies.
Implemented in the HSL package MA87.

5

Task-based Sparse Cholesky factorization

a

f

s s s

u
u u

s s

ff

s

f

s s

u u u

f s u f

a

a

a a

a

Supernodes are partitioned into square blocks (nb x nb) on which
operations are applied (factorize, solve, update,
update_between).

The DAG replaces the elimination tree for
representing the dependencies.
Implemented in the HSL package MA87.

5

Task-based Sparse Cholesky factorization

a

f

s s s

u
u u

s s

ff

s

f

s s

u u u

f s u f

a

a

a a

a

Supernodes are partitioned into square blocks (nb x nb) on which
operations are applied (factorize, solve, update,
update_between). The DAG replaces the elimination tree for
representing the dependencies.

Implemented in the HSL package MA87.

5

Task-based Sparse Cholesky factorization

a

f

s s s

u
u u

s s

ff

s

f

s s

u u u

f s u f

a

a

a a

a

Supernodes are partitioned into square blocks (nb x nb) on which
operations are applied (factorize, solve, update,
update_between). The DAG replaces the elimination tree for
representing the dependencies.
Implemented in the HSL package MA87.

5

Task-based Sparse Cholesky factorization

forall nodes snode in post-order
call alloc(snode) ! allocate data structures

call init(snode) ! initianlize node structure
end do

forall nodes snode in post-order
! factorize node

call factorize(snode)

! update ancestor nodes
forall ancestors(snode) anode

call update_btw(snode, anode)
end do

end do
end do

6

Task-based Sparse Cholesky factorization

forall nodes snode in post-order
call alloc(snode) ! allocate data structures

call init(snode) ! initianlize node structure
end do

forall nodes snode in post-order
! factorize node
do k=1..n in snode

call factorize(blk(k,k)) ! factorize block
! solve block
do i=k+1..m in snode

call solve(blk(k,k), blk(i,k))
end do
! update block
do j=k+1..n in snode

do i=k+1..m in snode
call update(blk(j,k), blk(i,k), blk(i,j))

end do
end do

! update ancestor nodes
forall ancestors(snode) anode

do j=k+1..p(anode) in snode
do i=k+1..m in snode

call update_btw(blk(j,k), blk(i,k),
a_blk(rmap(i), cmap(j)))

end do
end do

end do

end do
end do 6

The Sequential Task Flow Model

Sequential Task Flow (STF) programming model:

• In the parallel code, tasks are submitted to the runtime system
following the sequential algorithm.

• The runtime analyses the manipulated data and infers task
dependencies in order to ensure the sequential consistency of
the parallel code.

• Superscalar analysis in processors: dependency detection
between instructions in order to issue them in parallel.

• The DAG is executed via a dynamic scheduling of the (ready)
tasks on the architecture.

• The runtime may be capable of automatically handling the data
transfers on the architecture (e.g. CPU/GPU memory nodes).

7

STF Sparse Cholesky Factorization

forall nodes snode in post-order
call alloc(snode) ! allocate data structures

call init(snode) ! initianlize node structure
end do

forall nodes snode in post-order
! factorize node
do k=1..n in snode

call factorize(blk(k,k)) ! factorize block
! solve block
do i=k+1..m in snode

call solve(blk(k,k), blk(i,k))
end do
! update block
do j=k+1..n in snode

do i=k+1..m in snode
call update(blk(j,k), blk(i,k), blk(i,j))

end do
end do

! update ancestor nodes
forall ancestors(snode) anode

do j=k+1..p(anode) in snode
do i=k+1..m in snode

call update_btw(blk(j,k), blk(i,k), a_blk(rmap(i), cmap(j)))
end do

end do
end do

end do
end do

8

STF Sparse Cholesky Factorization

forall nodes snode in post-order
call alloc(snode) ! allocate data structures

call submit(init, snode:W) ! initianlize node structure
end do

forall nodes snode in post-order
! factorize node
do k=1..n in snode

call submit(factorize , snode:R, blk(k,k):RW) ! factorize block
! solve
do i=k+1..m in snode

call submit(solve, blk(k,k):R, blk(i,k):RW)
end do
! update
do j=k+1..n in snode

do i=k+1..m in snode
call submit(update, blk(j,k):R, blk(i,k):R, blk(i,j):RW)

end do
end do

! update ancestor nodes
forall ancestors(snode) anode

do j=k+1..p(anode) in snode
do i=k+1..m in snode

call submit(update_btw , blk(j,k):R, blk(i,k):R, a_blk(rmap(i), cmap(j)):RW)
end do

end do
end do

end do
end do
call wait_for_all() 8

STF on top of Runtime System

OpenMP 4.0
• task construct and depend clause (in, out, inout).
• No control on the scheduling policy.
• Shared-memory system only.

StarPU
• starpu_insert_task and data handle with access mode (R, W,

RW).
• Full control on schduling policy with possibility to implement
new one.

• API for distributed-memory systems.

9

Experiments

Matrix Flops (109) Application/description
1 Schmid/thermal2 18.6 Unstructured thermal FEM
2 Rothberg/gearbox 22.8 Aircraft flap actuator
3 DNVS/m_t1 23.4 Tubular joint
4 DNVS/thread 35.7 Threaded connector
5 DNVS/shipsec1 40.5 Ship section
6 GHS_psdef/crankseg_2 48.8 Linear static analysis
7 AMD/G3_circuit 67.3 Circuit simulation
8 Koutsovasilis/F1 228 AUDI engine crankshaft
9 Oberwolfach/boneS10 297 Bone micro-FEM

10 ND/nd12k 514 3D mesh problem
11 JGD Trefethen/Trefethen_20000 669 Integer matrix
12 ND/nd24k 2080 3D mesh problem
13 Oberwolfach/bone010 3910 Bone micro-FEM
14 GHS_psdef/audikw_1 5840 Automotive crankshaft

• Symmetric positive-definite matrices.
• Metis nested disection ordering.
• Machine: 2 x 14 cores E5-2695 v3 (Haswell) @ 2.30GHz.

10

Experiments

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

t
i
m
e

(
s
)

Matrix #

Factorization times

MA87

• SpLLT and MA87 obtain similar performance for most
problems.

• Except in two cases (Matrices #1 and #7) where the difference
with MA87 is relatively big. 11

Experiments

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

t
i
m
e

(
s
)

Matrix #

Factorization times

MA87
SpLLT-STF (OpenMP)

• SpLLT and MA87 obtain similar performance for most
problems.

• Except in two cases (Matrices #1 and #7) where the difference
with MA87 is relatively big. 11

Experiments

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

t
i
m
e

(
s
)

Matrix #

Factorization times

MA87
SpLLT-STF (OpenMP)
SpLLT-STF (StarPU)

• SpLLT and MA87 obtain similar performance for most
problems.

• Except in two cases (Matrices #1 and #7) where the difference
with MA87 is relatively big. 11

STF model: limitations

SpLLT
OpenMP StarPU MA87

build (s) facto (s) build (s) facto (s) facto (s)
1 1.238 1.801 1.677 2.123 0.376
2 0.152 0.220 0.281 0.318 0.252
3 0.155 0.205 0.200 0.262 0.194
4 0.125 0.203 0.152 0.240 0.213
5 0.215 0.247 0.271 0.363 0.259
6 0.178 0.267 0.283 0.310 0.257
7 1.712 2.631 2.737 3.345 0.586
8 0.600 0.812 0.763 0.920 0.786
9 0.812 1.186 1.299 1.599 1.111

10 0.770 1.478 0.763 1.405 1.498
11 0.749 3.692 1.586 2.406 3.829
12 2.887 5.379 2.778 5.076 5.498
13 3.063 7.416 2.280 7.392 7.195
14 3.383 10.650 3.141 10.680 10.642

• In the STF model, depending on DAG size and granularity of
tasks, the time spent for building the DAG might be important
compared to the factorization time.

12

STF model: limitations

SpLLT
OpenMP StarPU MA87

build (s) facto (s) build (s) facto (s) facto (s)
1 1.238 1.801 1.677 2.123 0.376
2 0.152 0.220 0.281 0.318 0.252
3 0.155 0.205 0.200 0.262 0.194
4 0.125 0.203 0.152 0.240 0.213
5 0.215 0.247 0.271 0.363 0.259
6 0.178 0.267 0.283 0.310 0.257
7 1.712 2.631 2.737 3.345 0.586
8 0.600 0.812 0.763 0.920 0.786
9 0.812 1.186 1.299 1.599 1.111

10 0.770 1.478 0.763 1.405 1.498
11 0.749 3.692 1.586 2.406 3.829
12 2.887 5.379 2.778 5.076 5.498
13 3.063 7.416 2.280 7.392 7.195
14 3.383 10.650 3.141 10.680 10.642

• In the STF model, depending on DAG size and granularity of
tasks, the time spent for building the DAG might be important
compared to the factorization time.

12

The Parametrized Task Graph Model

Parametrized Task Graph (PTG) programming model:

• Uses a compact representation of the DAG (problem size
independent).

• The dataflow between tasks is explicitly encoded (i.e. task
dependencies are explicitly given to the runtime system).

• The runtime handles the communications implicitly using the
dataflow representation.

PTG vs. STF

▲ In the PTG model, the DAG is progressively unrolled during the
execution following the execution of tasks in a distributed way.

▼ Data-flow programming is much less intuitive than STF
programming.

13

PTG: example

for (i = 1; i <= N; i++) {
x[i] = f(x[i]);
if (i > 1)

y[i] = g(x[i], y[i-1]);
}

Simple squential code

f g

f g

f g

i-1

i

i+1

DAG

task_f

i=1..N

X X
x[i]

X=f(X)
task_g(i)

task_g

i=1..N

X

Y

Y=g(X,Y)
task_g(i)

task_f(i)

(i<N)
(i>1)

(i=1)

Y

y[i]

task_g(i-1)

PTG representation

14

PTG: example

for (i = 1; i <= N; i++) {
x[i] = f(x[i]);
if (i > 1)

y[i] = g(x[i], y[i-1]);
}

Simple squential code

f g

f g

f g

i-1

i

i+1

DAG

task_f

i=1..N

X X
x[i]

X=f(X)
task_g(i)

task_g

i=1..N

X

Y

Y=g(X,Y)
task_g(i)

task_f(i)

(i<N)
(i>1)

(i=1)

Y

y[i]

task_g(i-1)

PTG representation

14

PTG: example

for (i = 1; i <= N; i++) {
x[i] = f(x[i]);
if (i > 1)

y[i] = g(x[i], y[i-1]);
}

Simple squential code

f g

f g

f g

i-1

i

i+1

DAG

task_f

i=1..N

X X
x[i]

X=f(X)
task_g(i)

task_g

i=1..N

X

Y

Y=g(X,Y)
task_g(i)

task_f(i)

(i<N)
(i>1)

(i=1)

Y

y[i]

task_g(i-1)

PTG representation 14

PTG Sparse Cholesky Factorization

We implemented a PTG-based version of SpLLT using PaRSEC
which is one of the few runtime system supporting this model:

• In PaRSEC, The PTG code is written using a dedicated
language: Job Data Flow (JDF).

• In a distributed-memory context, The runtime system is
capable of handling iter-node communications implicitly.

15

Experiments

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

t
i
m
e

(
s
)

Matrix #

Factorization times

MA87
SpLLT-STF (OpenMP)
SpLLT-STF (StarPU)

• Competitive performance compared to MA87 and
OpenMP/StarPU codes.

• Better performance on matrices # 1 and # 7 compared to
STF-based implementations but still not as good as MA87. 16

Experiments

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

t
i
m
e

(
s
)

Matrix #

Factorization times

MA87
SpLLT-STF (OpenMP)
SpLLT-STF (StarPU)
SpLLT-PTG (PaRSEC)

• Competitive performance compared to MA87 and
OpenMP/StarPU codes.

• Better performance on matrices # 1 and # 7 compared to
STF-based implementations but still not as good as MA87. 16

Conclusion

• The runtime-based solver SpLLT gives competitive results
compared to the hand-tuned HSL code MA87.

• Both OpenMP and StarPU versions offer good performance
but we have seen some limitations of the STF model.

• The PTG version also offer good performance, it doesn’t suffer
from the same limitations as the STF-based codes but the
code seems less efficient than the other version (runtime
overhead ?).

17

Ongoing and Future work

• Run on distributed-memory systems: requires to provide a
data distribution to the runtime system.

• Run on GPU and Xeon Phi devices: requires to provide the
computational kernels.

• Handle indefinite systems using pivoting techniques.

18

Thanks!

Questions?

