High Performance Matrix-matrix Multiplication of Very Small Matrices

Ian Masliah , Marc Baboulin, ICL people

University Paris-Sud - LRI

Sparse Days Cerfacs, Toulouse, 1/07/2016

Context

Tensor Contractions

- High-order FEM hydrodynamics code from BLAST
- Tensor contractions results in batch of small matrix-matrix products

Contraction by the first index :

$$C_{i_1,i_2,i_3} = \sum_{k_1} A_{k_1,i_1} B_{k_1,i_2,i_3}$$

Can be written as : $Reshape(C)^{nd_1 \times (nd_2nd_3)} = A^T Reshape(B)^{nq_1 \times (nd_2nd_3)}.$

Context

Use modern C++11

- Constexpr
- Integral constants
- Variadic templates

Write efficient code

- Use hardware anaylsis tools : PAPI, Intel memory checker , CUPTI...
- Make sure the algorithm fits the hardware multicore or GPUs

C++ features

auto : automatic type inference

auto x = 5;

Constexpr : compile time functions and variables

constexpr int factorial(int n) { return n < 2 ? 1 : n * factorial(n-1); }

Integral constant : Represent Integers as types

typedef std::integral_constant < int, 2> two_t;

Variadic templates : variable parameter size functions

template<typename... Values> class tuple;

Modeling a problem for a multicore

Register Data Reuse and Locality

Data Access Optimizations and Loop Transformation Techniques

Effect of the Multi-threading

Effect of the NUMA-socket and Memory Location

Register Data Reuse and Locality

We use a Intel Xeon Processor E5-2650 v3 - 10 cores

- Supports AVX-2 256 bit SIMD -16 Registers
- Measured bandwidth : 44 GB/s

We also ran test on a ARM Cortex A57 (Tegra X1) - 4 cores

- Supports NEON advanced SIMD 128 bit SIMD 32 Registers
- Measured bandwidth : 13 GB/s

A modern CPU has 32KB of L1 cache

Matrix-Matrix products of up to 32... fit in L1 cache

Data Access Optimizations and Loop Transformation Techniques

We focus on reusing data as much as possible

Minimize the number of Store and Load operations

Prefetch parts of B and reuse them

Before starting the matrix-matrix product

Unrolling inner loops

Better control on memory access patterns

universite

Algorithm 1 Generic matrix-matrix product applied to matrices of size 16×16

1: Load B0, B1, B2, B3
2: Load
$$\alpha$$
, β
3: S = 16
4: for i = 0, 1, ..., S-1 do
5: Load A[i*S]
6: Mi0 = A[i*S] * B0; ... Mi3 = A[i*S] *B3
7: for u = 1, 2, ..., S-1 do
8: Load A[i*S + u]
9: Load Bu0, Bu1, Bu2, Bu3
10: Mi0 += A[i*S+u] * Bu0; ... Mi3 += A[i*S+u] *Bui3
11: end for
12: Mi0 = α Mi0 + β (Load Ci0); ... Mi3 = α Mi3 + β (Load Ci3)
13: Store Mi0, Mi1, Mi2, Mi3
14: end for

```
template <unsigned long block.num = 1>
inline void batch.Mult (const double * A, const double * B, double * C, double alpha, double
beta, std::integral_constant<unsigned long,16>) {
constexpr int ind = 16 * block.num;
auto v.b. = .mm256.loadu.pd( &EB[0 ]);
auto v.b. = .mm256.loadu.pd( &EB[1]);
auto v.b. = .mm256.loadu.pd( &EB[1]);
auto v.b. = .mm256.set1.pd(&EB[12]);
auto alpha. = .mm256.set1.pd(beta);
for (int iA = 0; iA < 16; iA++){
auto tmp = .mm256.set1.pd( A[iA*ind] );
au
```

université

```
 \begin{array}{l} \text{auto } v.c3 = tmp * v.b...; \\ \text{for(int } u = 1 \; ; \; u < 16 \; ; \; + u \; ) \; \{ \\ tmp = \_mm256 \; \text{set} \; _104 \; \; (A[iA \ \text{int} \; + u \; ]); \\ \text{auto } v.bt = \_mm256 \; _10adu \; _pd(\; \&B[u \ \text{sind} \; + 1]); \\ \text{auto } v.b. \pm = \_mm256 \; _10adu \; _pd(\; \&B[u \ \text{sind} \; + 1]); \\ \text{auto } v.b. \pm = \_mm256 \; _10adu \; _pd(\; \&B[u \ \text{sind} \; + 1]); \\ \text{auto } v.b. \pm = \_mm256 \; _10adu \; _pd(\; \&B[u \ \text{sind} \; + 1]); \\ \text{auto } v.b. \pm = \_mm256 \; _10adu \; _pd(\; \&B[u \ \text{sind} \; + 1]); \\ \text{v.c} \; + = tmp \; * v.b \; ; \\ v.c1 \; + tmp \; * v.b \; ; \\ v.c2 \; + tmp \; * v.b \; ; \\ v.c3 \; + tmp \; * v.b \; ; \\ \} \end{array}
```

auto $v_c1 = tmp * v_b_;$ auto $v_c2 = tmp * v_b_;$

```
\label{eq:v_c1} $$v_c1 = .mm256.loadu.pd(&C[iA*ind]) * beta_+ v_c* alpha_;$$v_c1 = .mm256.loadu.pd(&C[iA*ind+4]) * beta_+ v_c1 * alpha_;$$v_c2 = .mm256.loadu.pd(&C[iA*ind+8]) * beta_+ v_c2 * alpha_;$$v_c3 = .mm256.loadu.pd(&C[iA*ind+12]) * beta_+ v_c3 * alpha_;$$}
```

```
_mm256.storeu.pd( &C[iA*ind], v.c);
_mm256.storeu.pd( &C[iA*ind+], v.c1);
_mm256.storeu.pd( &C[iA*ind+8], v.c2);
_mm256.storeu.pd( &C[iA*ind+8], v.c3);
}
}
```


Intel CPU performance analysis - 1

10 of 20

Intel CPU performance analysis - 2

Intel CPU performance analysis - 3

ARM CPU performance analysis

Modeling a problem for a GPU - CUDA

Take advantage of the architecture threads, thread blocks (TB) and Streaming Multiprocessors (SM)

- threads lots of them
- thread blocks (TB) shared memory
- Streaming Multiprocessors (SM) shared scheduler
 - 64 Double Precision units per SM
 - 32 Load/Store (LD/ST) units per SM
 - 64KB of shared memory/L1 cache

Use a hierarchical blocking model

Prefetch blocks of A and B

Overview of Kepler architectures

15 of 20

NVIDIA GPU performance analysis - 1

Universite

NVIDIA GPU performance analysis - 2

NVIDIA GPU performance analysis - 3

To Sum it up

Different architectures require different optimizations

But optimization for CPUs or GPUs is generally similar

- CPU : SIMD instruction set vary between constructors/architectures
- GPU : Tend to be more different textures, bandwidth, compute units

Concepts however remain the same

- If you don't write assembly, help the compiler !
- Architecture are hierarchical Go step by step

19 of 20

Thanks for your attention