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The problem

Given a large, N X N matrix A and a function f

find diag(f(A))

Related problem: find trace of f(A): Tr(f(A))

Recall: Tr(A) =YY | A; =YY, AL(A)

Constraint: factorization methods prohibitive




The problem

Common functions f(A) : A~ log(A), exp(A), RTA™'R;, A%, ...
Applications:

e Graph/Data Mining/Uncertainty Quantification
Counting loops in network analysis
Node centralities are diagonals of exp(A)
Diagonal of inverse of covariance matrices measures confidence in data

e Quantum Monte Carlo
Stopping criterion based on ratio of determinants, det(A) = exp(Tr(log(A)))

e Lattice QCD
Tr(A~!) needed for sequences of matrices

Our focus: f(A) = A~! but techniques general




Basic method

Standard approach: (Hutchinson, a Monte Carlo method )

If x 1s a vector of random Z, variables

o 1 with probability 1/2
Y71 —1 with probability 1/2

then

E(x®A 'x) = diag(A™1)

for1=1:n
x =randi(V,1);
Sum =Sum+x®A 'x
diag = Sum / 1;

end
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Our goal: Reduce Variance




Variance of the Hutchinson estimator

The “squared error” of the statistical estimator #(A™!) is its variance

’)

Var(t(A™")) = 2|A~" 3 = 2 (|A"||3 — XL |47

where A~! = A~ —diag(diag(A~"))
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Variance of the Hutchinson estimator

The “squared error” of the statistical estimator #(A™!) is its variance

’)

Var(t(A™")) = 2|A~" 3 = 2 (|A"||3 — XL |47

where A~! = A~ —diag(diag(A~"))

Thus, the goal of variance reduction:

remove weight from the off-diagonals elements of A~

o Approximate M ~ A~!, Tr(A™!) = Tr(M) +Tr(A~! — M)
hope that 1(A~! — M) has smaller variance

e Choose vectors that remove particular patterns of A~!




Selecting the vectors in x”A~'x

Random
X e ZQ’ best variance for real matrices (Hutchinson 1989)
x =randn(N, 1) worse variance than Z,
X =e variance depends only on diag(A™")
single large element?
x=FTle, mixing of diagonal elements: (Toledo et al. 2010)
F DFT Best mixing but complex
H Hadamard Best mixing and real
Deterministic

x=H"e;, i=1,...,2* Hadamard in natural order (Bekas et al. 2007)

X' = { 0 else Probing. Assumes multicolored graph (Tang et al. 2011)
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Hadamard vectors in natural order

H H
H =1, szH:[ ok 2k]

sz _sz
Tr(A™") ~ LTr(h"A~'h), where h =H(: ,1:m) the first m = 2 vectors

Eliminates error contribution of all diagonals of A except 1 +i-m, i=0,1,2,...

e.g., form =4, )
10001000
01000100
00100010
% hiT (1) 8 8 (1) (1) 8 8 (1) . no contribu.tion from Al._j1 elements
01000100 corresponding to a 0
00100010
00010001




Hadamard vectors in natural order

1-D grid: m = 2 Hadamard vectors sufficient for Tr(A)
2-D grid: m = 2 natural order does not align with diagonals of A

But two different Hadamard vectors align.

Given ip, the inverse red-black permutation, h = H(ip, [1, %] )
1 1 1 1
1 -1 1 -1
L Hadamard natural order Red-black order L
1 ® @& @ O e o6 o o -1
1 1 1 1
1 1 1 -1
1 @®© @& @ @ ® o6 o o r1
1 1 1 1
1 -1 VS b
1 ® @ e @ e o6 o o t1
1 1
1 1
1 1
1 1
1 1




Probing, Green’s function, and A !

Probing:

The trace of an m-colorable
sparse matrix 1s recovered
exactly by m vectors

Tr(A) = Tr(h' Ah)
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Green’s function
Elements of A~! decay in magnitude away from the non-zero structure of A

Probing for Tr(A™!)
Color A* = distance-k coloring of A. Captures largest elements of A~!

Problems:
(1) If Tr(A~') not accurate enough, discard work and repeat for larger k
(2) Coloring expensive for large k




A hierarchical probing method

To avoid discarding work, previous quadrature vectors must be contained within
the subspace of the vectors of the new colors:

but

-
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Colorings for successive distances must be nested
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Colorings for successive distances must be nested

Since, [ (e) 2 ] e< [ Z _2 ] >, with e = [1,...,1]?, no probing vectors needed.

More colors means adding selected Hadamard vectors




Hierarchical coloring on the lattice (JL/AS 2014)

Hierarchy = distance k = 2"

1 1D:
2 Doubling k splits grid to 2 1D subgrids
4 Color R-B each with two new colors

o 2 1 3 0 2 1

0006060 0 00
3
0 2 1 3 4 7 5 8

k=1

eo0o0o0 2D: . |

Doubling £ splits grid to 4 2D subgrids
® 00600 (e.g., Reds split to 4 reds and 4 greens)
e 000 Color R-B each with two new colors
® 060600

Algorithm in d-dimensions:

1. Recursively split a lattice []%, 2¢ to 2¢ sublattices of size [J%,2¢!

2. When no further splits possible, Red-Black each sublattice with unique colors.
3. Choose unique colors appropriately to guarantee nesting




Hierarchical coloring on the lattice (JL/AS 2014)

Properties:

e 2/ colors at distance k, but taking k to max dist produces 1 permutation that
contains all previous colorings

e Efficient bit-arithmetic algorithm O(Nlog(N)/d)
e No additional memory
e Used incrementally with powers of 2 of Hadamard vectors

e Permutation and generation of Hadamard naturally parallel on each site

Resolved the two problems of probing




Hierarchical Hadamard eliminates largest elements first

IA | not yet ellmlnated by 1 hier.Hada.

|||'|'(
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5000




Hierarchical Hadamard eliminates largest elements first

A" not yet eliminated by 2 hier.Hada.

(A+0.11)~! Laplacian with periodic BC, 8 x 8 x 8 x 8

5000




Hierarchical Hadamard eliminates largest elements first

A" not yet eliminated by 4 hier.Hada.

(A+0.11)~! Laplacian with periodic BC, 8 x 8 x 8 x 8
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Hierarchical Hadamard eliminates largest elements first

A" not yet eliminated by 8 hier.Hada.

(A+0.11)~! Laplacian with periodic BC, 8 x 8 x 8 x 8

5000




Hierarchical Hadamard eliminates largest elements first

A" not yet eliminated by 16 hier.Hada.

(A+0.11)~! Laplacian with periodic BC, 8 x 8 x 8 x 8

5000




Hierarchical Hadamard eliminates largest elements first

A" not yet eliminated by 32 hier.Hada.

(A+0.11)~! Laplacian with periodic BC, 8 x 8 x 8 x 8

5000




Hierarchical Hadamard eliminates largest elements first

A" not yet eliminated by 64 hier.Hada.

(A+0.11)~! Laplacian with periodic BC, 8 x 8 x 8 x 8

5000




Hierarchical Hadamard eliminates largest elements first

A7 not yet eliminated by 128 hier.Hada.

(A+0.11)~! Laplacian with periodic BC, 8 x 8 x 8 x 8

5000




Hierarchical Hadamard eliminates largest elements first

A7 not yet eliminated by 256 hier.Hada.

(A+0.11)~! Laplacian with periodic BC, 8 x 8 x 8 x 8

5000




Hierarchical Hadamard eliminates largest elements first

A7 not yet eliminated by 512 hier.Hada.
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Hierarchical Hadamard eliminates largest elements first

A" not yet eliminated by 1024 hier.Hada.
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Hierarchical Hadamard eliminates largest elements first

A" not yet eliminated by 2048 hier.Hada.

0.02 . .-
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5000

(A+0.11)~! Laplacian with periodic BC, 8 x 8 x 8 x 8

5000




Classic probing extended vs Hierarchical Probing

Error for case 64 x 64 x 64, cond= 1e+02
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: ® Probingkl |
Probingk2 |]
s ® Probingk4 |;
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S5 10°} :
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Number of quadratures

Hierarchical Hadamard scheme better w/o discarding info




An LQCD lattice of size 32° x 64 MPI on 8 GPUs

Explicit dilution of the 12 x 12 links on each space-time site
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Variance reduction (left) and speedup over random noise method (right)
O(1/n) variance reduction

Max speedup when powers of two/colors complete




Hierarchical probing on general graphs

Problems:

(1) expensive to compute A, k=1,2,...

(2) non-hierarchical coloring for A* graphs, k =1,2,...
Our solutions:

(1) Multilevel: perform the A* in coarser graphs

(2) Color hierarchy through mixed radix base: (colory, colory,

cee s COlOI’leveZ)




Key of multilevel method: Coarsification

For 1-dimensional grids any coarsification of nearby nodes works
Example: Three levels, merging distance-1 or distance-2 neighbors

Each level is red-black colored. The highlighted fine grid node has colors:
0 at level O

2 =(10) at level 1

6 =(110) at level 2

012345670123 04152637041 52 63

g

Same color neighbor at distance—8




Key of multilevel method: Coarsification

Problems with higher connectivity

Example: 2-D grid

o] JoI YoI YoI
Yor 1o1 Yor 1o
000000 e
00000000
000000 e
Yor Y] Yol Yo
aeasinle
e e e 00

Q0000000
D000 ®

Two green nodes still at distance-2 after 3 lev

What neighbors should we merge at each level to ensure distance 2/¢"¢/?




Coarsification solution

Focus on neighborhoods, not on nodes

If we merge the distance-2 neighborhoods of the coalesced nodes we guarantee
a distance 2/ coloring




The algorithm

MultiLevelColor(A)

1. Color graph of A

2. Compute graph of A?

3. Initialize sparse coarse graph A,

4. For each node vin A
find w an unmerged neighbor of v
Coalesce z = (v,w) as a node of A,
N(A.z) = N(A%v)UN(A%,w)

5. MultiLevelColor(A,)




The algorithm

MultiLevelColor(A)

1. Color graph of A

2. Compute graph of A?

3. Initialize sparse coarse graph A,

4. For each node vin A
find w an unmerged neighbor of v
Coalesce z = (v,w) as a node of A,
N(A.z) = N(A%v)UN(A%,w)

5. MultiLevelColor(A,)

Could generate too many colors

Expensive to compute




Two algorithmic variations

Instead of greedy coloring of A,

e Compute 2 largest eigenectors of the graph Laplacian

e Use spectral coloring with 2 colors (similar to graph partitioning)

Approximately bipartite, identifies most important links in the first few levels.
When the coarse matrix size is small enough, continue with greedy coloring

Instead of computing A?
e Implicitly color A? and produce the A,

Avoids the first expensive step, and reduces cost of subsequent steps




A few preliminary experiments

. Covariance
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A few preliminary experiments
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A few preliminary experiments

Variance
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Hierarchical Probing conclusions

For regular grids significant speedups at no additional cost

For general matrices that are amenable to probing, our multilevel algorithm
1s close to the benefits of probing
is far less expensive than probing

requires an optimized C implementation




