
Shock capturing techniques
for the Spectral Difference

method

Author : Wioletta Stachura

Supervisors : G. Puigt, J.-F. Boussuge

University Supervisor : A. Crestetto

Ref.: WN-CFD-16-207
September 12, 2016

© Copyrighted by the author(s)
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Chapter 1

Introduction

This report describes the whole work done during the internship at CERFACS in the CFD
team. At the beginning, the research center and the CFD team are presented. Then, the
description of a field of interest for CFD called LES is introduced. Finally, the general principle
of high-order spectral methods is recalled and the aim of the training period is given.

1.1 CERFACS

CERFACS (Centre Européen de Recherche et de Formation avancée en Calcul Scientifique) is a
research organization that aims to develop advanced methods for the numerical simulation and
the algorithmic solution of large scientific and technological problems of interest for research as
well as industry, and that requires access to most powerful computers presently available. This
research center is governed by a Conseil de Gérance with representatives from its associates, and
benefits from the recommendations of its Scientific Council. CERFACS is strongly interacting
with its seven shareholders:

� CNES, the French Space Agency,

� AIRBUS Group France, European Aeronautic and Defence Space Company,

� EDF, Electricité de France,

� Météo France, the French meteorological service,

� ONERA, the French Aerospace Lab,

� SAFRAN, an international high-technology group,

� TOTAL, a multinational energy company.

More than 150 people work at CERFACS, coming from ten different countries and who belong
to five teams:

� Aviation and environment,

� Climate modeling and Global change (GLOBC),

� Computation Fluid Dynamics (CFD),

� Computer Support Group (CSG),

� Parallel Algorithms.
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1.2 CFD team

The CFD team is composed of three main groups of work: combustion, turbo machinery and
applied aerodynamics. It is the biggest team at CERFACS and represents approximately half
of the research center in human resources. The aim of the CFD team is to solve the largest
CFD problems by use of solvers with High Performance Computing (HPC) capability.

1.3 Large eddy simulation

The idea of Large Eddy Simulation (LES) is to compute the largest turbulent scales and to
model the smallest ones. However, this technique demands highly accurate, low dissipation
and low dispersion numerical methods to solve real-world problems. There are two possibilities
which guarantee these three properties. The first approach consists in considering a lot of
degrees of freedom (DoF) and a low-order approach. The number of DoF must be high in
order to keep information over long distance, with both limited dissipation and dispersion. At
CERFACS, it is preferred to take less DoF and to introduce a high-order technique, because
for the same number of degrees of freedom, high-order methods give a less dissipative solution
than their low-order counterparts. Although advanced schemes work well for LES, another
family of techniques (high-order spectral methods), which are suitable for HPC, can be used
in the future for such simulations.

1.4 High-order spectral methods

The advantage of the high-order spectral methods is that they avoid a large stencil, which is
relevant for HPC. To compute the solution in the mesh cell, only information from neighbour
elements are needed, so the stencil is the smallest possible. The idea of spectral technique is
to consider the solution in each cell as a polynomial of degree p, given by p+ 1 coefficients in
1D while one DoF per cell is required with standard schemes. The procedure does not require
a continuous solution at the mesh interface.

The high-order spectral methods can be classified in three groups: techniques which solve
the weak (Discontinuous Galerkin - DG), the integral (Spectral Volume - SV) or the strong
(Spectral Difference - SD, Flux Reconstruction - FR) form of the problem. Let give more
details about these approaches:

1. The DG method combines elements from Finite Volume and Finite Element techniques.
It is the oldest spectral approach introduced by Read and Hill in 1973 [25]. However, it
was extended to full Navier-Stokes equations in 1997 by Bassi and Rabay [1]. Since the
weak form of the equation is solved, it is mandatory to use complex integration rules to
compute integrals of polynomials at a given order of accuracy. The recent Hybridized
Discontinuous Galerkin method avoids this need for quadrature rules.

2. The SV technique is based on Finite Volume approach [31] and is not used any more.

3. The SD method joins elements from Finite Volume and Finite Difference techniques. It
is stable and more CPU efficient than DG.

4. The FR approach appears first in 2007 [11]. It is similar to the SD, but uses a flux lifting
operator (which is not unique) and accuracy, stability and FR properties depend on this
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user-defined lifting operator. Moreover, it is weakly stable for certain configurations, but
more CPU efficient than the DG, SV and SD methods.

Despite of the advantages of the high-order methods, they have also an important drawback,
namely, their inability to handle flow discontinuities remains still a great challenge.

1.5 Presentation of the internship

This report follows 6 months of training period realized in the CFD aerodynamics team.
More precisely, in a group composed of Jean-François Boussuge (project leader), Guillaume
Puigt (senior researcher), Aravind Balan (postdoctoral researcher) and Julien Vanharen (PhD
student).

The work is an extension of the report of Marie Lemesle [16] in which the analysis of several
methods to handle flows with discontinuities is done for the hyperbolic problem of Burger’s
equation. Since this equation involves shock and rarefaction wave, it is a perfect test case
to verify how different techniques capture and smooth numerical oscillations. The obtained
results prove that the considered methods can be adapted to the SD approach and provide a
good correction of non-regularity in the solution.

The goal in this internship is to analyze and to adapt to the Spectral Difference method
some shock capturing techniques present in the literature. Some of them are implemented
in JAGUAR - CERFACS in-house solver. The work is divided into several parts. At the
beginning, the Spectral Difference approach is described in details for a hyperbolic problem
and diffusion term. The isoparametric transformation is also introduced in order to diminish
the computational cost of the solver. Afterwards, the standard test case of Sod’s shock tube is
presented and it is chosen to verify how well a code captures and resolves flow discontinuities.
The approximated solution given by an initial version of JAGUAR (available at the beginning
of the internship) is shown. Finally, techniques based on the artificial viscosity which enable
to smooth spurious oscillations are described. For some of them, the approximated solution is
presented and commented.

The current version of the report is considered to defend the Master of Sciences thesis but
the internship is not finished. During the next three weeks, other test case will be analyzed
and other method to treat flow discontinuities will be implemented in JAGUAR.
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Chapter 2

Spectral Difference method

The Spectral Difference (SD) technique is a recent high-order approach which combines ele-
ments from Finite Volume (FV) and Finite Difference (FD) methods. Proposed by Kopriva
and Kolias in 1995 [14] and 1996 [15] on quadrilateral structured meshes, this approach has
been forgotten up to 2006 when Liu, Vinokur and Wang published a more general formulation
on simplex elements [17, 18]. Finally, Wang, Liu and Sun extended it for 3D Navier-Stokes
equations on hexahedral unstructured meshes in 2007 [28].

In this chapter, the Spectral Difference method is introduced in details. First, attention
is focused on a hyperbolic problem in 1D. Then, the computation of diffusion term involving
both solution and gradients is described. At the end, the key points to extend the approach
to 2D and 3D flows by means of the isoparametric transformation are introduced. Finally, the
global algorithm, as implemented in JAGUAR, is presented.

2.1 Details of the Spectral Difference approach in 1D

2.1.1 General principle

The following one-dimensional hyperbolic equation is considered in order to present details of
the Spectral Difference (SD) method:

∂Q

∂t
+
∂F(Q)
∂x

= 0, (2.1)

where Q is the unknown and F defines the flux (e.g. advection or convection flux). The
domain is discretized by several 1D segments. The SD approach solves a strong form of the
equation inside each mesh cell without needing for a continuous reconstruction of the solution
at the cell boundary. Before entering into the details of the method, it is of great importance
to introduce the general principles.

The basic principle of the SD method is to consider a solution Q as a polynomial of degree
p in any segment and to solve Eq. 2.1 after projection onto the space of polynomials. If Q
is a polynomial of degree p in space, its time derivative is also a polynomial of degree p.
As a consequence and in order to be consistent with Eq. 2.1, the derivative of F must be
a p-th order polynomial. Finally, by integration, the flux must be a polynomial of degree
p+ 1 inside any cell. As a consequence, the SD method introduces a way to balance between
two different polynomials for Q and F , the flux polynomial being one degree higher than the
solution polynomial. Finally, as soon as the value of ∂F

∂x is known, the solution Q is computed
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at the next time instant using a standard time integration algorithm such as a Runge-Kutta
approach.

2.1.2 Description of the individual steps for a hyperbolic problem

In this section, explanations how the Spectral Difference method works in one-dimensional
case are given. Knowing an approximate solution of the problem (2.1) at time t (or an initial
solution at t0), the objective is to find a solution after a time interval ∆t.

Let consider a single mesh cell and the solution Q represented by a p-th order polynomial
inside it. A p-th order polynomial is defined by its p+ 1 coefficients or conversely, by its value
in p+1 different points. Instead of dealing with the polynomial coefficients, p+1 points where
the solution is defined are introduced. They are called Solution Points (SP) and are noted
X1, . . . , Xp+1.

As the solution at SP is known, using polynomial interpolation, the p-th order polynomial
in the cell at fixed time t can be defined:

Q(x) =
p+1∑
i=1

Q(Xi)hi(x), (2.2)

where the set of functions {hi(x) | i = 1, . . . , p+ 1} is the Lagrange basis:

hi(x) =
p+1∏

s=1,s 6=i

(
x−Xs

Xi −Xs

)
for i = 1, . . . , p+ 1.

Let take an example of p = 2. In Fig. 2.1, the solution points, their associated solution and
the second order interpolation polynomial are shown. Here, it is important to notice that SD
approach is locally continuous but globally discontinuous.

Figure 2.1: Step 0: Solution points (N), solution (•) and 2nd order interpolation polynomial
in the cell

As the derivative of the flux F should be a polynomial of order p, the flux has to be of
(p+1)−th order. As for the solution, the flux polynomial is not defined by the p+2 polynomial
coefficients, but from a set of p+2 values in points called Flux Points (FP). Let remark that the
numbers of FP and SP differ by one and a ’natural’ way to introduce the SP and FP follows
a staggered way: a solution point is located between two flux points. The flux polynomial
must be evaluated from the solution and the first step of the method is the extrapolation of
the solution at the p + 2 flux points. Since the approach is staggered, the FP are referred by
X1/2, . . . , Xp+3/2, Fig. 2.2.
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Figure 2.2: Step 1: Extrapolation of solution (•) at the flux points (H)

At this moment, the flux F at flux points can be computed, Fig. 2.3. For example, for
advection problem, the solution should be multiplied by the velocity. However, two different
extrapolated quantities are obtained on the mesh interface. The solution at the interface being

Figure 2.3: Step 2: Computing flux F (�) at flux points

discontinuous, it is typically a kind of Riemann’s problem. The definition of the interface flux
is unique and based on the application of an exact Riemann solver (Godunov’s scheme) or an
approximated Riemann solver (Roe’s or Rusanov’s schemes). The application of an upwind
scheme drives two properties. First, the use of a Riemann solver guarantees conservation since
the flux polynomial is continuous. Moreover, the upwind scheme is diffusive, which is a positive
aspect for stability (Fig. 2.4).

Figure 2.4: Step 3: Unique flux at interfaces thanks to Riemann solver

As before, using Lagrangian interpolation, a new (p+1)−th order polynomial can be found
from FP quantities:

F(Q(x)) =
p+1∑
i=0

F(Q(Xi+1/2))li+1/2(x), (2.3)
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where F designates flux components such that the flux polynomial is made continuous across
the mesh interfaces. The difference between F and F lies on the definition of the flux at the
cell interfaces. Moreover, the set of functions {li+1/2(x) | i = 0, . . . , p + 1} is the Lagrange
basis:

li+1/2(x) =
p+1∏

s=0,s 6=i

(
x−Xs+1/2

Xi+1/2 −Xs+1/2

)
for i = 0, . . . , p+ 1.

This step of the method is represented in Fig. 2.5. Let remark that the constructed polynomial
is globally continuous and differentiable inside each cell, but not at the interfaces.

Figure 2.5: Step 4: (p+ 1)− th order polynomial at flux points

Finally, a new flux polynomial (Eq. (2.3)) is differentiated at SP (Fig. 2.6):

∂F(Q)
∂x

(Xs) =
p+1∑
i=0

F(Q(Xi+1/2))l′i+1/2(Xs) for s = 1, . . . , p+ 1.

Figure 2.6: Step 5: Differentiation of the flux polynomial at solution points

At the end, the increment is computed thanks to the derivative of the flux at solution
points and a time integration algorithm.

2.1.3 Description of the individual steps for the calculation of diffusion term

In the next chapters, some techniques to handle shocks which often require the computation of
gradient or divergence are proposed. Moreover, the viscous flux of the Navier-Stokes equations
demands the same work. Therefore, the solution gradients have to be calculated at flux points
in order to compute a second-order derivative by differentiation. The method presented in
this section is similar to the previous one and based on the extrapolation and the derivation.
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But, in order to play with the Laplacian operator, it is mandatory to estimate the gradient
polynomial at the same degree as the solution polynomial. Obtaining the p-th order gradient
polynomial for a p-th order solution polynomial is the key point.

The first step of the method to compute a gradient is the same as before, i.e. the value
Qf at flux points from the solution Q at solution points is computed by interpolation, using
Eq. 2.2 (Fig. 2.7).

Figure 2.7: Step 1 : Extrapolation of solution (•) at flux points (H)

This solution is again discontinuous at the interfaces. The interface quantity is then defined
as the average of left and right contributions (centered scheme) as in [28] (Fig. 2.8).

Figure 2.8: Step 2 : Computation of the average solution (•) at interfaces

A new interpolation polynomial is defined using Qf at FP. Now, as previously, a polynomial
is defined inside any mesh cell and it can be differentiated everywhere but the cell interfaces
(Fig. 2.9). The next steps introduced in Fig. 2.10 and 2.11 consist in both the extrapolation

Figure 2.9: Step 3 : Construction of the continuous polynomial (blue) at flux points and
derivation (�) at solution points

of the gradient from SP to FP and the average of the solution gradient at the mesh interfaces.
As before, it is a kind of centered scheme for the gradient.
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Figure 2.10: Step 4 : Definition of the derivative (red) at solution points

Figure 2.11: Step 5 : Extrapolation of the derivative (�) and computation of the continuous
gradient at flux points

Finally, a continuous gradient polynomial ∇Qf at flux points is built and its divergence is
computed to define the Laplacian operator.

2.2 Isoparametric transformation in 3D

The SD method is based on quadrilateral (in 2D) or hexahedral (in 3D) meshes. However, the
shape of the cells changes if the mesh is not regular and as a consequence, the location of both
SP as FP would change. In this context, the matrices introduced to perform extrapolation /
interpolation and differentiation would be defined on a given cell. In order to minimize the data
storage and help in the matrices definition for extrapolation and differentiation, an isopara-
metric transformation is introduced to convert any cell from the physical domain Ωφ into the
reference element Ωref = [0, 1]d (d is a space dimension). The goal is to solve the initial set of
equations in the reference domain instead of the computational domain. The change of frame
has an impact on the equations and in this section, details of the isoparametric transformation
are described for 3D solutions.

To achieve an efficient implementation, all elements in the physical domain (x, y, z) ∈ Ωφ are
transformed into a standard reference cell (ξ, η, ψ) ∈ Ωref using the following transformation:xy

z

 =
K∑
i=1

Mi(ξ, η, ψ)

xiyi
zi

 ,

where K is the number of vertices used to define the physical element, (xi, yi, zi) are Carte-
sian coordinates of those vertices, and Mi(ξ, η, ψ) are the shape functions associated with the
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isoparametric transformation.
Let consider the following hyperbolic equation in the physical domain:

∂Qφ

∂t
+
∂f

∂x
(Qφ) +

∂g

∂y
(Qφ) +

∂h

∂z
(Qφ) = 0. (2.4)

where Qφ is the solution in the physical element and F = (f, g, h)T designates a three-
dimensional flux. Let convert Eq. 2.4 into the reference domain. Firstly, this equation can
also be written as:

∂Qφ

∂t
+
∂ξ

∂x

∂f

∂ξ
+
∂η

∂x

∂f

∂η
+
∂ψ

∂x

∂f

∂ψ
+

+
∂ξ

∂y

∂g

∂ξ
+
∂η

∂y

∂g

∂η
+
∂ψ

∂y

∂g

∂ψ
+

+
∂ξ

∂z

∂h

∂ξ
+
∂η

∂z

∂h

∂η
+
∂ψ

∂z

∂h

∂ψ
= 0.

Then, the solution in the physical domain Qφ is transformed to the reference solution Qref :

Qref = |J |Qφ,

where |J | is the determinant of the Jacobian of the isoparametric transformation J defined
as:

J =


∂x
∂ξ

∂x
∂η

∂x
∂ψ

∂y
∂ξ

∂y
∂η

∂y
∂ψ

∂z
∂ξ

∂z
∂η

∂z
∂ψ

 .

If |J | 6= 0 then the inverse transformation exists and its Jacobian matrix is given by

J −1 =


∂ξ
∂x

∂ξ
∂y

∂ξ
∂z

∂η
∂x

∂η
∂y

∂η
∂z

∂ψ
∂x

∂ψ
∂y

∂ψ
∂z

 .

The equation becomes:

∂Qref

∂t
+ |J |

(
∂ξ

∂x

∂f

∂ξ
+
∂η

∂x

∂f

∂η
+
∂ψ

∂x

∂f

∂ψ
+

+
∂ξ

∂y

∂g

∂ξ
+
∂η

∂y

∂g

∂η
+
∂ψ

∂y

∂g

∂ψ
+

+
∂ξ

∂z

∂h

∂ξ
+
∂η

∂z

∂h

∂η
+
∂ψ

∂z

∂h

∂ψ

)
= 0.

Finally, the relationship between fluxes (f̃ , g̃, h̃)T in the reference domain and (f, g, h)T is the
following one:f̃g̃

h̃

 = |J |J −1

fg
h

 .
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Then, the hyperbolic equation becomes:

∂Qref

∂t
+
∂f̃

∂ξ
(Qref ) +

∂g̃

∂η
(Qref ) +

∂h̃

∂ψ
(Qref ) = 0. (2.5)

To conclude, Eq. (2.5) is always solved in the reference domain and a physical solution is only
computed at the very end of the algorithm, essentially for visualization purpose.

2.3 Position of solution and flux points

The key point of the Spectral Difference method is the definition of solution and flux points in
the reference element.

2.3.1 Definition in 1D

In our computations, the SP are chosen as Gauss-Lobatto points:

Xs =
1
2

[
1− cos

(
2s− 1
2p+ 2

π

)]
with s = 1, . . . , p+ 1. (2.6)

Remark: The SD method is not sensitive to the location of the SP and other choices are
possible.

For the flux points position, a literature analysis shows that two set of positions are generally
chosen. The first choice is the Gauss-Lobatto points:

Xs+1/2 =
1
2

[
1− cos

(
s

p+ 1
π

)]
with s = 0, . . . , p+ 1.

However, Van den Abeele proved that this set of FP produces SD schemes unstable for p > 2
[30]. The other possibility is to select Legendre flux points, defined as the roots of Legendre
polynomial of degree p shifted to the interval [0, 1] plus the end points of the reference segment.
The Legendre flux points are proven to be stable [12]. The Legendre flux points are the root
of the Legendre polynomials and Legendre polynomials are a family of orthogonal polynomials
defined as:

d

dx

(
(1− x2)P ′n(x)

)
+ n(n+ 1)Pn(x) = 0, Pn(1) = 1, (2.7)

or by recurrence:

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) with P0(x) = 1 and P1(x) = x.

It is also known that Pn is an n− th order polynomial and has exactly n roots in the interval
]− 1, 1[.

To conclude this section, the standard SD approach demands a staggered mesh to find the
solution, it means that between two solution points there is one flux point, which is verified
by Gauss SP and Legendre FP, and which are considered during the internship.
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2.3.2 Extension to 2D and 3D

Any quadrangle (or an hexahedron) defines 2 (resp. 3) privilegied space directions. The
principle of the SD method is to keep the directional treatment on the reference element.
From the solution at SP, the solution is extrapolated direction per direction to the flux points
and the 1D procedure is applied direction per direction.

For a cell in dimension d, there are (p + 1)d SP in the cell and d(p + 2)(p + 1)d−1 FP in
the element (or equivalently (p+ 2)(p+ 1)d−1 per direction). The two sets of points in 2D are
illustrated in Fig. 2.12.

Figure 2.12: Position of solution and flux points for p = 2

2.4 Final algorithm in 3D for a hyperbolic problem

In summary, the algorithm to compute an approximate solution of the hyperbolic problem in
3D is based on several steps:

1. Define solution and flux points in the reference cell for a chosen polynomial degree p.

2. Initialize the solution in the physical domain.

3. Convert the physical solution Qφ into the solution in the reference domain Qref at the
solution points thanks to the formula: Qref = |J |Qφ.

At each time step:

4. Compute the extrapolated solution at flux points Qreff using polynomial interpolation
and known vector Qref :

Qreff (ξ, η, ψ) =
p+1∑
k=1

p+1∑
j=1

p+1∑
i=1

Qrefi,j,khi(ξ)hj(η)hk(ψ),

where Qrefi,j,k is the solution at solution point (i, j, k) in the reference domain.
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5. Transform the solution at flux points in the reference domain to the physical solution

applying the relationship: Qφf =
Qreff
|J | .

6. Calculate the flux F = (f, g, h)T in the physical domain:

� at intern flux points directly applying the flux definition,

� at interfaces using a Riemann solver.

7. Convert the flux F into the flux in the reference domain F̃ = (f̃ , g̃, h̃)T with the expres-
sion: F̃ = |J |J −1F .

8. Differentiate the flux polynomial (found using a Lagrangian interpolation) at solution
points according to the formulas:

∂f̃

∂ξ
(ξ, η, ψ) =

p+1∑
i=0

p+1∑
j=1

p+1∑
k=1

f̃i+1/2,j,kl
′
i+1/2(ξ)hj(η)hk(ψ),

∂g̃

∂η
(ξ, η, ψ) =

p+1∑
i=1

p+1∑
j=0

p+1∑
k=1

g̃i,j+1/2,khi(ξ)l
′
j+1/2(η)hk(ψ),

∂h̃

∂ψ
(ξ, η, ψ) =

p+1∑
i=1

p+1∑
j=1

p+1∑
k=0

h̃i,j,k+1/2hi(ξ)hj(η)l′k+1/2(ψ).

9. Update the solution in the reference domainQref thanks to the flux derivatives at solution
points and time integration algorithm.

At the end, the final solution in the physical domain is obtained by applying Qφ = Qref

|J | at any
point in the cell.

2.5 JAGUAR

JAGUAR (proJect of An Aerodynamic solver using General Unstructured grids And high
ordeR schemes) is a new code developed by the CFD team at CERFACS. The project started
in 2012 and the code is written in Fortran90.

The discretization technique implemented in JAGUAR is the Spectral Difference method.
This choice was motivated by a few reasons. First, the formulation is simple, which leads to a
straightforward implementation. Moreover, solving the strong form of the equation avoids the
need for complex integration rules, as for integral-based approaches. Finally, the SD approach
is known to be more CPU-efficient than the Discontinuous Galerkin method but a little bit
less efficient than the Flux Reconstruction one.

JAGUAR solves 2D and 3D Euler and Navier-Stokes equations. JAGUAR handles High
Performance Computing (HPC) capability and many efforts addressed this constraint. Several
parallel paradigms are implemented, based on the standard libraries MPI1, OpenMP2 and
hybrid (MPI and OpenMP).

1Message Passing Interface
2Open Multi-Processing
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For the moment, only quadrilateral (in 2D) and hexahedral (in 3D) meshes are taken into
account. The SD approach must be extended to any element shape but this is still a research
domain. During this master thesis, efforts are dedicated to the implementation and validation
of a shock capturing technique in order to deal with transonic and supersonic flows.
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Chapter 3

Spectral Difference method and shocks

In this chapter, the definition of Euler equations necessary to describe the test case of shock
tube, which is often considered to verify how well a code captures and resolves flow discon-
tinuities, is recalled. For a given initial solution, its exact solution and the approximated
solution given by the initial version of JAGUAR (available at the beginning of the internship)
are presented. Finally, reasons why a shock capturing technique is mandatory to be added in
JAGUAR are explained.

3.1 Sod’s shock tube

The shock tube problem was introduced by Gary A. Sod in 1978 [27] in order to test the
capability of various algorithms to solve fluid dynamics problems with shock wave behavior.
This standard test case is very useful if shock capturing techniques are considered, because it
involves the contact discontinuity, shock and rarefaction waves and its exact solution is known.

3.1.1 Euler equations in 3D

Euler equations of gas dynamics in 3D involve the following variables:

� ρ: the density (in kg.m−3),

� ~u: the velocity vector such as ~u = (u, v, w)T (in m.s−1),

� E: the total energy (in m2.s−2),

� p: the pressure (in Pa).

The total energy E is defined as:

E = e+
‖u‖2

2
,

where e represents the internal energy and the second term is the kinetic energy.
Finally, Euler equations in compact form are given by the following hyperbolic system:

∂U

∂t
+∇ · F = 0, (3.1)

Page 21 of 57



where U = (ρ, ρu, ρv, ρw, ρE)T is the vector of conserved variables and F = (F1, F2, F3) is a
three-dimensional flux whose components are defined as:

F1 =


ρu

ρu2 + p
ρuv
ρuw

u(ρE + p)

 , F2 =


ρv
ρuv

ρv2 + p
ρvw

v(ρE + p)

 , F3 =


ρw
ρuw
ρvw

ρw2 + p
w(ρE + p)

 .

However, these five equations involve six unknowns, so it is mandatory to introduce other
information to close the system. In the following, let suppose that

� the considered fluid verifies the ideal gas law:

p = ρRT,

where T is the temperature (in K) and R is the specific gas constant (in J.kg−1.K−1),

� the gaz is polytropic, so characterized by the specific heat for a constant pressure Cp and
the specific heat for a constant volume Cv given by

Cp =
γR

γ − 1
, Cv =

R

γ − 1
,

where γ is polytropic constant. Moreover, there is a linear relation between the internal
energy and temperature:

e = CvT.

At this moment, the numbers of equations and unknowns are the same.

3.1.2 Description and exact solution of the shock tube

Let consider Euler equations of gas dynamics in 1D:

∂S

∂t
+
∂W

∂x
= 0 for t > 0, x ∈ Ω, (3.2)

where S = (ρ, ρu, ρE)T , W = (ρu, ρu2 + p, u(ρE + p))T and Ω ⊂ R. Moreover, the initial
solution is a Riemann problem given by:

S(t = 0, x) =

{
SL if x ≤ x0,

SR if x > x0,
(3.3)

where x0 ∈ R is an interface. Eq. (3.2) and (3.3) define the Sod’s shock tube problem where
x0 can be seen as a diaphragm and SL and SR represent properties of the gas at the left and
at the right of the interface. In the following, the gas is at rest in the whole domain and the
pressure and the density are discontinuous across the interface:

SL =

ρLuL
pL

 =

1
0
1

 , SR =

ρRuR
pR

 =

0.125
0

0.1

 .
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As it exists a relation for perfect gases:

p = ρ(γ − 1)
(
E − 1

2
u2

)
,

the total energy can be found:

EL = 2.5 and ER = 2.

Finally, Dirichlet boundary conditions are considered and the problem is well-posed. Due
to the difference of the pressure and the density, the diaphragm is broken and three waves
(rarefaction, shock, contact discontinuity) are created. The advantage of this test case is
that its analytical solution can be computed [10, 20]. Details on the theoretical solution are
introduced in Appendix A.

In the following, let Ω = [0, 1] and x0 = 0.5. The exact solution of the shock tube problem
at t = 0.1 is represented in Fig. 3.1. As mentioned before, three kinds of wave exist:

� the first one is a rarefaction wave between about x = 0.38 and x = 0.5,

� at about x = 0.6, the velocity and the pressure are continuous but the density is not, so
it is a contact discontinuity,

� on the right, all variables are discontinuous, then there is a shock wave at about x = 0.67.

Figure 3.1: Sod’s shock tube - exact solution at t = 0.1

3.1.3 Approximated solution - JAGUAR

Let take a look on the approximated solution given by JAGUAR with a basic Spectral Dif-
ference method. For a fair comparison, all computations are done with about 500 Degrees of
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Freedom (DoF). Moreover, x0 should not be in the middle of the cell due to the interpolation
of the solution, which would create two artificial shocks at the end of the element including
the interface. Therefore, x0 is chosen to be between two cells. Details on the mesh definition
are summarized in Tab. 3.1.

p 3 4 5
Number of cells 124 100 84
Number of DoF 496 500 504

Table 3.1: Details of the mesh used for further computation for each degree of polynomial p.

In Fig. 3.2-3.10, an approximated solution of a Sod’s shock tube is represented. On the
right of each figure, there is a zoom on the zone between the rarefaction and shock wave.
For each polynomial order p, spurious oscillations appear in the solution. The smallest ones
are near the head of the rarefaction and the highest next to the shock. Moreover, all region
between these two waves is covered by oscillations, which increase a little bit for the density
close to the contact discontinuity. However, there is no dependency between a polynomial
order p and a size of oscillations.

3.2 Conclusion

Since the Spectral Difference method is based on the extrapolation and polynomial differen-
tiation, it can not deal with flow discontinuities like shock wave or contact discontinuity. As
shown in all figures from this chapter, solutions of problems involving any kind of disconti-
nuities, such as shock tube, given by JAGUAR prove that numerical oscillations appear even
near a rarefaction wave. Therefore, it is necessary to develop algorithms which are able to
detect and correct the solution in every necessary zone. Then, it is mandatory to implement
some of them in JAGUAR. In this work, several techniques based on the artificial viscosity to
handle discontinuity are considered.

Figure 3.2: Density in the shock tube given by JAGUAR without any shock capturing technique
for p = 3 at t = 0.1 (CFL=0.3, 496 DoF)
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Figure 3.3: Density in the shock tube given by JAGUAR without any shock capturing technique
for p = 4 at t = 0.1 (CFL=0.3, 500 DoF)

Figure 3.4: Density in the shock tube given by JAGUAR without any shock capturing technique
for p = 5 at t = 0.1 (CFL=0.3, 504 DoF)
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Figure 3.5: Velocity in the shock tube given by JAGUAR without any shock capturing tech-
nique for p = 3 at t = 0.1 (CFL=0.3, 496 DoF)

Figure 3.6: Velocity in the shock tube given by JAGUAR without any shock capturing tech-
nique for p = 4 at t = 0.1 (CFL=0.3, 500 DoF)
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Figure 3.7: Velocity in the shock tube given by JAGUAR without any shock capturing tech-
nique for p = 5 at t = 0.1 (CFL=0.3, 504 DoF)

Figure 3.8: Pressure in the shock tube given by JAGUAR without any shock capturing tech-
nique for p = 3 at t = 0.1 (CFL=0.3, 496 DoF)
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Figure 3.9: Pressure in the shock tube given by JAGUAR without any shock capturing tech-
nique for p = 4 at t = 0.1 (CFL=0.3, 500 DoF)

Figure 3.10: Pressure in the shock tube given by JAGUAR without any shock capturing
technique for p = 5 at t = 0.1 (CFL=0.3, 504 DoF)
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Chapter 4

Shock capturing techniques:
constant viscosity

Many methods to deal with flow discontinuities can be found in the literature. The most
known ones are: Linear Reconstruction [4, 32], Piecewise Parabolic Method (PPM) [29], Multi-
dimensional Optimal Order Detection Method (MOOD) [3, 5, 6, 7, 21] and techniques based
on the artificial viscosity, which are considered during the internship.

At the beginning of this chapter, the system of Euler equations with a smoothing operator
is introduced. Then, the first and the simplest technique to handle shock based on the constant
viscosity is presented.

4.1 Euler equations with a dissipation term

4.1.1 Extended Euler equations with a smoothing operator

Let consider a modified system of equations:

∂U

∂t
+∇ · F = ε∆U, (4.1)

where ε is a small amount of viscosity which is added in order to remove oscillations. This
quantity can be defined in different ways as presented in the next sections. The idea of this
approach is to solve Eq. (4.1) and consider this smooth solution as a solution of Euler equations.

4.1.2 Consequence on numerical algorithm

It is mandatory to add some steps to the basic algorithm described in the sec. 2.1.2 due to
the dissipation term ∆U . Let recall that ∆U = ∇ ·∇U and that details to compute ∇U were
presented in the sec. 2.1.3. The divergence of the gradient can be found in two steps. First,
using the same algorithm as for ∇U , ∇ (∇U) is computed and then it is simple to deduce
∇ · ∇U . Finally, ε should be defined.
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4.2 Constant viscosity

4.2.1 Definition of the viscosity

The simplest choice is to suppose that the amount of viscosity is constant in the whole domain,
so ε = ε0 ∈ R+ and Eq. (4.1) becomes:

∂U

∂t
+∇ · F = ε0 ∆U,

Let remark that if ε0 = 0 then the basic equation (3.1) is solved. In fact, the higher quantity
of viscosity is chosen, the smoother solution is obtained, so the aim of this method is to find
ε0 such as oscillations are removed but the accuracy is not affected too greatly.

4.2.2 Numerical results for Sod’s shock tube

The results of the method for p = 3, 4, 5 with ε0 = 0.001 can be seen in Fig. 4.1-4.3. On
the right, there is a zoomed solution near the shock. All spurious oscillations are removed
for the density and pressure. However, a little problem still remains for the velocity, but it is
only visible with a zoom. Moreover, there is no special difference between solutions given by
different polynomial degree.

Since the highest oscillations were located in the shock zone, a chosen quantity of the
viscosity, necessary to smooth them all, is too large for other regions. For that reason, the
rarefaction wave and the contact discontinuity are noticeably degraded.

4.2.2.1 Dependence of the CFL on the amount of the viscosity

As mentioned before, if ε0 increases, the solution becomes smoother. But the solution can not
be of high quality for large values of ε0 since the solution is too much smoothed (Fig. 4.4).
Moreover, for ε0 = 0.01 and CFL= 0.3, the code crashes for p = 3, 4, 5. The following relation
between the quantity of the viscosity and the stability condition is highlighted: the higher ε0
and the higher polynomial degree p are, the smaller CFL has to be. Finally, in order to find
the solution represented in Fig. 4.4, the corresponding stability condition taken is: for p = 3, 4
CFL = 0.1 and for p = 5 CFL = 0.05.

4.2.3 Conclusion

The main advantages of the method based on the constant artificial viscosity is the fact that
it can remove all spurious oscillations and that it is very easy to implement. However, some
important drawbacks should be mentioned. The value of ε0 depends on the test case and it can
be a complex task to find its proper value. Moreover, the main disadvantage is an addition of
the artificial viscosity in the whole domain, which enables the loss of the accuracy in smooth
regions, so it would be valuable to find a way to choose areas where some viscosity should be
added. To do this, a shock sensor should be used. During the internship two sensors were
considered [2, 8] and are described in details in Appendix B.
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Figure 4.1: Density in the shock tube given by JAGUAR with the constant viscosity ε0 = 0.001
for p = 3, 4, 5 at t = 0.1 (CFL=0.3, about 500 DoF)

Figure 4.2: Velocity in the shock tube given by JAGUAR with the constant viscosity ε0 = 0.001
for p = 3, 4, 5 at t = 0.1 (CFL=0.3, about 500 DoF)
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Figure 4.3: Pressure in the shock tube given by JAGUAR with the constant viscosity ε0 = 0.001
for p = 3, 4, 5 at t = 0.1 (CFL=0.3, about 500 DoF)

Figure 4.4: Density in the shock tube given by JAGUAR with the constant viscosity ε0 = 0.01
for p = 3 (CFL=0.1), p = 4 (CFL=0.1) and p = 5 (CFL=0.05) at t = 0.1 and about 500 DoF
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Chapter 5

Shock capturing techniques:
localized Laplacian artificial viscosity

A new method to capture shocks, called Localized Laplacian Artificial Viscosity (LLAV), was
proposed by Persson and Peraire in 2006 [24] for the Discontinuous Galerkin approach. Re-
cently, Lodato adapted this technique to the SD framework [19].

The principle of LLAV is to construct a shock sensor based on the decay rate of the expan-
sion coefficients of the solution in an orthogonal basis. For smooth solutions, the coefficients
are expected to decay very quickly and for non-smooth solutions, rate of decay is dictated by
the strength of the discontinuity. Then, this sensor is used to define the amount of the viscosity
needed to remove oscillations.

5.1 New equation

The LLAV method is introduced using the following 1D equation:

∂u

∂t
+∇ · f = ∇ · (ε∇u) ,

where u is the unknown, f defines the flux and ε is a function of viscosity computed in each
cell as presented in the next section.

5.2 Definition of the viscosity

First, the solution u can be expressed in terms of the orthogonal basis as

u(x) =
N(p)∑
i=1

ui φi(x),

where N(p) is the total number of terms in the expansion (in a directional approach: N(p) =
p + 1) and {φi | i = 1, . . . , N(p)} is a family of the orthogonal polynomials. Moreover, a
truncated expansion of the same solution is considered:

û(x) =
N(p−1)∑
i=1

ui φi(x).
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Finally, the smoothness indicator is defined for each cell Ωe:

Se =
(u− û, u− û)e

(u, u)e
,

where (·, ·)e is the standard inner product in L2 (Ωe).
In the following, the orthonormal Legendre polynomials P ∗i are deduced from the orthogonal

family Pi (introduced in the sec. 2.3) and are used as the definition of φi. Let recall the property
of the Legendre polynomials:∫ 1

−1
Pi(x)Pj(x) dx =

2
2i+ 1

δij ,

where δij is the Kronecker symbol: δij =
{

1 if i = j
0 if i 6= j

. So the orthonormal Legendre poly-

nomial is given by

P ∗i (x) = Pi(x)

√
2i+ 1

2
.

This choice of the orthogonal family enables to compute easily the sensor Se. Actually:

u(x) =
N(p)∑
i=1

u∗iP
∗
i−1(x) and û(x) =

N(p−1)∑
i=1

u∗iP
∗
i−1(x),

so:

(u− û, u− û)e =
∫ 1

−1

(
u∗p+1

)2
P ∗p (x)P ∗p (x) dx =

(
u∗p+1

)2
and

(u, u)e =
∫ 1

−1

N(p)∑
i=1

N(p)∑
j=1

u∗i u
∗
j P
∗
i−1(x)P ∗j−1(x) dx =

N(p)∑
i=1

N(p)∑
j=1

u∗i u
∗
j

∫ 1

−1
P ∗i−1(x)P ∗j−1(x) dx

=
N(p)∑
i=1

N(p)∑
j=1

δij u
∗
i u
∗
j =

N(p)∑
i=1

(u∗i )
2 .

Once the value of the sensor is known, the constant diffusion coefficient is computed over
each cell e by the following relation:

εe =


0 if se < s0 − κ,
ε0
2

(
1 + sin

(
π(se−s0)

2κ

))
if s0 − κ ≤ se ≤ s0 + κ,

ε0 if se > s0 + κ,

(5.1)

where se = log10 Se, ε0 ≈ h/p is the magnitude of the artificial viscosity (h is the size of the
cell), s0 ≈ 1/p4 and κ is chosen empirically sufficiently large so as to obtain a sharp but smooth
shock profile. The final viscosity is a function of element-wise viscosity: ε(x) = εe(x) where
e(x) designates the element to which x belongs.
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5.2.1 Remarks

1. As the amount of the piecewise viscosity can vary a lot between two adjacent cells, it
is beneficial to consider a version of ε(x) with higher level of smoothness: ε0(x) for
C0-continuity or ε2(x) for C2-continuity as proposed in [23].

2. The sensor Se can robustly detect all kinds of flow discontinuities, but it can not distin-
guish its different types (e.g. shock and rarefaction waves). To diminish the amount of
the viscosity near the expansion fan, Yu and Wang [33] proposed to correct the definition
of εe according to the criterion: ”if the velocity divergence ∇ · ~u is larger than zero, then
the flow field is treated as smooth”. The new definition of the viscosity is:

εcorre =

{
Cdivu εe if ∇ · ~u > 0,
εe if ∇ · ~u ≤ 0,

where Cdivu is a reduction parameter which should be set as 0. However, they find that a
small value of Cdivu (e.g. Cdivu ∈ [0.1, 0.3]) can improve the results for some simulations.

3. According to Klöckner at al. [13], the estimation of s0 in [23, 24] is wrong and to
obtain a proper comparability, they take s0 ≈ log10(1/p4). In 2015, Yu [34] notes that s0
should scale like log10(1/p3) in order to prevent the addition of the unnecessary numerical
dissipation to relatively smooth flow features.

4. It is important not to set naively ε0 = h/p, because the time-step size has to be (very
often) significantly reduced to guarantee stability [22]. In the literature, we can find lots
of definition of ε0 [22, 33, 34].

5. In order to extend the method to higher dimensions, only the definitions of u and û
change:

u(x, y, z) =
N(p)∑
i=1

N(p)∑
j=1

N(p)∑
k=1

uijk φi(x)φj(y)φk(z),

û(x, y, z) =
N(p−1)∑
i=1

N(p−1)∑
j=1

N(p−1)∑
k=1

uijk φi(x)φj(y)φk(z).

5.3 Perspectives

During the internship, the LLAV method was implemented in JAGUAR. However, it is still
in the phase of debugging. The last three weeks will be devoted to find bugs and proper
parameters necessary to define the artificial viscosity for Sod’s shock tube.
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Chapter 6

Shock capturing techniques:
concentration method

The concentration method presented in this chapter is based on the detection of jump dis-
continuities in piecewise smooth functions using their spectral data. Proposed by Gelb et
al. in 1999 [9], it was extended by Sheshadri and Jameson in [26] to polynomial modes for
the Discontinuous Galerkin technique and such an approach can be adapted for the Spectral
Difference method.

At the beginning, the idea of the concentration method is described, then its extension in
1D and higher dimensions for SD technique is presented. Finally, numerical results for Sod’s
shock tube are commented.

6.1 Definition of the viscosity

6.1.1 Idea of the method

Let’s note the jump at point x of the piecewise smooth function f with a single jump discon-
tinuity by [f ](x) = f(x+)− f(x−), where x+ (x− resp.) denotes the right (left resp.) limit of
f at x. Moreover, consider the generalized conjugate Fourier partial sum defined by:

S̃σN [f ](x) =
N∑
k=1

σ

(
k

N

)
(ak sin(kx)− bk cos(kx)),

where
(
f̂k = ak + ibk

)N
k=1

are the Fourier coefficients and σ(·) is called concentration factor.

It is known that for σ(x) ≡ 1:

−π
logN

S̃σN [f ](x) N→∞−→ [f ](x) δc(x),

where c is a point of discontinuity and δc(x) =
{

1 if x = c
0 if x 6= c

. Gelb and Tadmor in [9]

extended this result and they obtained that

S̃σN [f ](x) N→∞−→ [f ](x) δc(x)

for all nondecreasing C2[0, 1] functions σ(·) which verify∫ 1

1/N

σ(x)
x

dx
N→∞−→ −π.
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Finally, the idea of this method is to detect zones with discontinuity using the generalized
conjugate Fourier partial sum, which can be seen as a sensor.

6.1.2 Principle for SD in 1D

The first step of the method consists of converting the nodal solution of a particular repre-
sentative variable (called density) to modal one in each element e. The conversion is done by
means of the matrix constructed by use of Legendre polynomials {Pi, i = 0, . . . , p} evaluated
at solution points: f̄1

...
f̄p+1

 =

 P0(X1) · · · Pp(X1)
...

. . .
...

P0(Xp+1) · · · Pp(Xp+1)


−1 f1

...
fp+1

 ,

where (f1, . . . , fp+1)T is a nodal solution at SP and (f̄1, . . . , f̄p+1)T represents a modal solution.
Then, the identification of elements with discontinuity is done using the following sensor:

Se = (p+ 1)r/2
∣∣∣∣∣ max
i=1,...,p+1

(
π

p+ 1

√
1−X2

i

p+1∑
k=1

σ

(
|k|
p+ 1

)
f̄kP

′
k(Xi)

)∣∣∣∣∣
r

,

where σ(·) are concentration factors whose examples can be found in [9] and r > 1 is the
enhancement exponent. Finally, if an element is identified as element with discontinuity, a
technique to correct the solution should be applied. In this work, the definition of the artificial
viscosity, proposed by Persson and Peraire [24] (Eq. (5.1)), is considered.

6.1.3 Extension to 2D and 3D

In this work, only quadrilateral and hexahedral meshes are considered. It means that each row
and column of solution points in the element represents a 1D slice. The idea of the method
is to apply the 1D concentration method to each slice in the cell and take as the value of the
sensor the maximum value of sensors computed for each slice. Then, if necessary, the element
is marked for special treatment.

6.2 Numerical results for Sod’s shock tube

In Fig. 6.1-6.3, the numerical solutions given by JAGUAR with concentration method are
presented for p = 3, 4, 5. As for the technique with the constant viscosity, a zoomed solution
near the shock is on the right of each figure. All computations are done with σ(x) ≡ 1, r = 3,
κ = 4, s0 = −3 log10(p) and CFL = 0.3. However, the value of ε0 changes with polynomial
order p: ε0 = 0.003 for p = 3, ε0 = 0.0045 for p = 4 and ε0 = 0.0065 for p = 5. The amount of
the artificial viscosity is chosen in such a way that all spurious oscillations are removed from
the pressure and the density. Three remarks can be done:

� The higher p is, the larger value of ε0 has to be in order to smooth the solution.

� The higher oscillations are, the more important amount of viscosity should be applied to
remove them all. For shock tube, the highest oscillations appear for the velocity near the
shock and the value of ε0 sufficient to correct the pressure and the density is not enough
to smooth entirely the velocity (there is still a little problem visible on the zoom).
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� As before, the rarefaction wave and the contact discontinuity are degraded.

6.3 Conclusion

The concentration method is considered as a first step to verify if there is no bug in the
definition of the artificial viscosity implemented in JAGUAR for the LLAV technique.

Compared with the constant viscosity approach, this technique has a more complicated
implementation. As shown in all figures from this chapter, the method gives a smooth solution
without any oscillations, but the artificial viscosity is still added in smooth regions. In order
to find a better solution, it would be valuable to do more tests with different parameters.

Figure 6.1: Density in the shock tube given by JAGUAR with the concentration method:
ε0 = 0.003 for p = 3, ε0 = 0.0045 for p = 4 and ε0 = 0.0065 for p = 5 at t = 0.1 (σ(x) ≡ 1,
r = 3, κ = 4, s0 = −3 log10(p), CFL=0.3, about 500 DoF)

Figure 6.2: Velocity in the shock tube given by JAGUAR with the concentration method:
ε0 = 0.003 for p = 3, ε0 = 0.0045 for p = 4 and ε0 = 0.0065 for p = 5 at t = 0.1 (σ(x) ≡ 1,
r = 3, κ = 4, s0 = −3 log10(p), CFL=0.3, about 500 DoF)
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Figure 6.3: Pressure in the shock tube given by JAGUAR with the concentration method:
ε0 = 0.003 for p = 3, ε0 = 0.0045 for p = 4 and ε0 = 0.0065 for p = 5 at t = 0.1 (σ(x) ≡ 1,
r = 3, κ = 4, s0 = −3 log10(p), CFL=0.3, about 500 DoF)
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Chapter 7

Comparison of the constant viscosity and concentration
method

In this chapter, the numerical results for the method based on the constant artificial viscosity
and the concentration technique are compared.

Let recall all parameters used for computations. All simulations are stopped at t = 0.1
and CFL = 0.3 is considered. Moreover, for the concentration method σ(x) ≡ 1, r = 3, κ = 4
and s0 = −3 log10(p). Finally, the amount of the artificial viscosity necessary to find a smooth
solution is detailed in Tab. 7.1.

polynomial degree p 3 4 5
ε0 for the constant viscosity 0.001 0.001 0.001

ε0 for the concentration method 0.003 0.0045 0.0065

Table 7.1: Details of the amount of the artificial viscosity for each degree of polynomial p used
for computations.

The approximated solution found for these parameters is represented in Fig. 7.1-7.9. Three
points can be highlighted:

1. The two techniques gives a regular and similar solution, however they degrade a lot
smooth regions.

2. For a given polynomial order p, the amount of viscosity necessary to remove oscillations
is higher for the concentration method than for the constant viscosity.

3. The concentration approach gives a slightly better solution than other technique, espe-
cially near the rarefaction wave.
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Figure 7.1: Density in the shock tube given by JAGUAR with the constant viscosity ε0 = 0.001
and concentration method with ε0 = 0.003, σ(x) ≡ 1, r = 3, κ = 4 and s0 = −3 log10(p) for
p = 3 at t = 0.1 (CFL=0.3, about 500 DoF)

Figure 7.2: Density in the shock tube given by JAGUAR with the constant viscosity ε0 = 0.001
and concentration method with ε0 = 0.0045, σ(x) ≡ 1, r = 3, κ = 4 and s0 = −3 log10(p) for
p = 4 at t = 0.1 (CFL=0.3, about 500 DoF)
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Figure 7.3: Density in the shock tube given by JAGUAR with the constant viscosity ε0 = 0.001
and concentration method with ε0 = 0.0065, σ(x) ≡ 1, r = 3, κ = 4 and s0 = −3 log10(p) for
p = 5 at t = 0.1 (CFL=0.3, about 500 DoF)

Figure 7.4: Velocity in the shock tube given by JAGUAR with the constant viscosity ε0 = 0.001
and concentration method with ε0 = 0.003, σ(x) ≡ 1, r = 3, κ = 4 and s0 = −3 log10(p) for
p = 3 at t = 0.1 (CFL=0.3, about 500 DoF)

Page 43 of 57



Figure 7.5: Velocity in the shock tube given by JAGUAR with the constant viscosity ε0 = 0.001
and concentration method with ε0 = 0.0045, σ(x) ≡ 1, r = 3, κ = 4 and s0 = −3 log10(p) for
p = 4 at t = 0.1 (CFL=0.3, about 500 DoF)

Figure 7.6: Velocity in the shock tube given by JAGUAR with the constant viscosity ε0 = 0.001
and concentration method with ε0 = 0.0065, σ(x) ≡ 1, r = 3, κ = 4 and s0 = −3 log10(p) for
p = 5 at t = 0.1 (CFL=0.3, about 500 DoF)
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Figure 7.7: Pressure in the shock tube given by JAGUAR with the constant viscosity ε0 = 0.001
and concentration method with ε0 = 0.003, σ(x) ≡ 1, r = 3, κ = 4 and s0 = −3 log10(p) for
p = 3 at t = 0.1 (CFL=0.3, about 500 DoF)

Figure 7.8: Pressure in the shock tube given by JAGUAR with the constant viscosity ε0 = 0.001
and concentration method with ε0 = 0.0045, σ(x) ≡ 1, r = 3, κ = 4 and s0 = −3 log10(p) for
p = 4 at t = 0.1 (CFL=0.3, about 500 DoF)
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Figure 7.9: Pressure in the shock tube given by JAGUAR with the constant viscosity ε0 = 0.001
and concentration method with ε0 = 0.0065, σ(x) ≡ 1, r = 3, κ = 4 and s0 = −3 log10(p) for
p = 5 at t = 0.1 (CFL=0.3, about 500 DoF)

Page 46 of 57



Chapter 8

Conclusion and perspectives

This Master of Science thesis treats the extension of the Spectral Difference solver JAGUAR to
handle discontinuous flows. JAGUAR is a new CFD code solving the Euler and Navier-Stokes
equations using the Spectral Difference method which belongs to the family of high-order
discontinuous spectral techniques and which does not deal itself with shocks.

The idea of the Spectral Difference approach is to represent the solution as a polynomial
inside each mesh cell and it is based mainly on the extrapolation and polynomial differenti-
ation. Since the method is only locally continuous, in order to deal with discontinuities at
the interfaces a Riemann solver is used for a hyperbolic problem and a centered scheme for
a diffusion term. Moreover, the isoparametric transformation is applied in order to cast the
initial problem into a reference domain.

The Sod’s shock tube was considered as a test case to show that for each order of accuracy
of the method, the approximated solution given by an initial version of JAGUAR without
shock treatment includes spurious oscillations. Moreover, they are present not only near the
shock wave but also near the rarefaction wave and the contact discontinuity. However, there
is no special difference between a chosen polynomial degree and the size of oscillations.

All methods implemented in JAGUAR during the internship are based on the artificial
viscosity. It means that instead of looking for the solution of the basic problem, Euler equations
with a smoothing operator are solved. Among techniques available in the literature, three of
them were chosen: constant viscosity, localized Laplacian artificial viscosity and concentration
method. They were adapted to the Spectral Difference approach and implemented in the code.

The first and the simplest technique considered was the method based on the constant
artificial viscosity. It is simple to implement and enables to remove all spurious oscillations
from the solution. However, the smoothing operator is applied in the whole domain even
in regions where it is not necessary. For this reason, the rarefaction wave and the contact
discontinuity are visibly degraded. To overcome this effect, it would be valuable to implement
a sensor whose aim is to detect zones with non-regularity.

The second technique which was chosen is localized Laplacian artificial viscosity proposed
by Persson and Peraire for the Discontinuous Galerkin method. This approach includes com-
putation of the sensor which enables to eliminate numerical oscillations without degrading
smooth areas of the solution. For now, the technique is in the phase of debugging. However,
G. Lodato adapted and successfully implemented this method in his Spectral Difference solver.

The last technique is the concentration method which is similar to the previous one and
it was possibly to verify if the definition of the viscosity is well implemented for it. The
solution obtained for the shock tube proves that the technique removes all oscillations, but the
rarefaction wave and contact discontinuity are still too much smoothed. However, this method
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is slightly better than the constant viscosity, because it degrades less the solution in regular
areas.

The internship will be finished on September 30th and during the next three weeks the
localized Laplacian artificial viscosity method will be analyzed in order to find why it does not
work. Moreover, standard transonic test cases will be considered to verify if all implemented
techniques gives a desirable solution. Finally, if solutions are convincing, it is planned to extend
the results presented in the report to prepare an article to submit to a refereed journal.
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Chapter A

APPENDIX A: Analytical solution of Sod’s shock tube

In this chapter, the following system of equations is considered:

∂S

∂t
+
∂W

∂x
= 0 for t > 0, x ∈ R, (A.1)

where S = (ρ, ρu, ρE)T and W = (ρu, ρu2 +p, u(ρE+p))T . Let recall also a relation for perfect
gases:

p = ρ(γ − 1)
(
E − 1

2
u2

)
, E = e+

1
2
u2. (A.2)

Moreover, the initial data of a Riemann problem is given by:

S(t = 0, x) =

{
SL if x ≤ x0,

SR if x > x0,

with SL and SR which represent properties of the gas at the left and at the right from an
interface x0.

First step: Determine the matrix A(S′) such as:

∂S′

∂t
+A(S′)

∂S′

∂x
= 0 for t > 0, x ∈ R,

where S′ = (ρ, u, p)T is a vector of primitive variables.

The first equation of the system (A.1) implies:

∂ρ

∂t
+
∂(ρu)
∂x

= 0⇔ ∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0. (A.3)

In the following, let suppose that ρ 6= 0 and using Eq. (A.3), the second line of A(S′) can
be found:

∂(ρu)
∂t

+
∂(ρu2 + p)

∂x
= 0⇔ u

∂ρ

∂t
+ ρ

∂u

∂t
+ u

∂(ρu)
∂x

+ ρu
∂u

∂x
+
∂p

∂x
= 0⇔

∂u

∂t
+ u

∂u

∂x
+

1
ρ

∂p

∂x
= 0. (A.4)
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Finally, the last equation is considered and by means of Eq. (A.2) and (A.4), the third line
is deduced:

∂(ρE)
∂t

+
∂(u(ρE + p))

∂x
= 0⇔

∂
(
ρe+ 1

2ρu
2
)

∂t
+
∂
(
ρue+ 1

2ρu
3 + up

)
∂x

= 0⇔

∂p

∂t
+ γp

∂u

∂x
+ u

∂p

∂x
= 0.

Then, the matrix A(S′) is:

A(S′) =

 u ρ 0
0 u 1

ρ

0 γp u

 .

Second step: Determine the eigenvalues of A(S′).

Let solve the equation det(A(S′)− λI) = 0:

det

 u− λ ρ 0
0 u− λ 1

ρ

0 γp u− λ

 = (u− λ)
(
u− λ−

√
γp

ρ

)(
u− λ+

√
γp

ρ

)
.

So, det(A(S′)− λI) = 0⇔ λ ∈ {u− c, u, u+ c}, where c =
√

γp
ρ .

Third step: Determine the eigenvectors of A(S′) (see Tab. A.1).

eigenvalue eigenvector

u− c
(

1, −cρ , c
2
)T

u (0, 1, 0)T

u+ c
(

1, c
ρ , c

2
)T

Table A.1: Eigenvalues and eigenvectors of the matrix A(S′).

It is easy to check that these pairs verify: A(S′)r = λr, where r is an eigenvector corre-
sponding to the eigenvalue λ.

Fourth step: Determine the nature of waves (see Tab. A.2).

Conclusion: The final solution of a Riemann problem (A.1) is composed of four possibilities:

1. rarefaction wave + contact discontinuity + rarefaction wave,

2. rarefaction wave + contact discontinuity + shock wave,

3. shock wave + contact discontinuity + rarefaction wave,

4. shock wave + contact discontinuity + shock wave.
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λ ∇S′λ r ∇S′λ · r nature

u− c
(

1
2

√
γp
ρ3
, 1, −1

2

√
γ
ρp

)T (
1, −cρ , c

2
)T

6= 0 GNL

u (0, 1, 0)T (1, 0, 0)T 0 LD

u+ c
(
−1

2

√
γp
ρ3
, 1, 1

2

√
γ
ρp

)T (
1, c

ρ , c
2
)T

6= 0 GNL

Table A.2: Verification of the nature of waves (LD - linearly degenerate, GNL - genuinely
non-linear)

In the following, only the case 2 is considered. It corresponds to a standard shock tube
(i.e. higher density and pressure at the left from an interface, and the velocity is set to zero in
the whole domain). The exact solution without details is presented (see [20] for computations
for all combinations of waves).

The solution is studied in five regions which are represented on the Fig. A.1. Let start

Figure A.1: Description of regions for Sod’s shock tube

with two regions next to the contact discontinuity. The theoretical analysis implies that the
pressure and velocity are constant across them. Moreover, the velocity in the third region is
given by:

v3 = vL −
2cL
γ − 1

((
p3

pL

) γ−1
2γ

− 1

)
,

and in the fourth one by:

v4 = vR + (p4 − pR)

√
AR

p4 +BR
,

where AR = 2
(γ+1)ρR

and BR = γ−1
γ+1pR. Now, using relations: v3 = v4 and p3 = p4 the value of
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pressure in the regions 3 and 4 is computed by solving numerically the following equation:

(p3 − pR)

√
AR

p3 +BR
+

2cL
γ − 1

((
p3

pL

) γ−1
2γ

− 1

)
+ vR − vL = 0,

and then the pressure and the velocity are known next to the contact discontinuity. Remains
to calculate the value of the density using formulas:

ρ3 = ρL

(
p3

pL

)1/γ

and

ρ4 = ρR

(
pR(γ − 1) + p4(γ + 1)
p4(γ − 1) + pR(γ + 1)

)
.

At this time, the exact solution of (A.1) in four of five regions can be determined. For the
region i ∈ {L, 3, 4, R}:

ρexact = ρi,

uexact = ui,

pexact = pi.

Finally, in the second region an exact solution is given by:

ρexact = ρL

(
2

γ + 1
+

γ − 1
cL(γ + 1)

(
vL −

x− x0

t

)) 2
γ−1

,

uexact =
2

γ + 1

(
cL +

1
2

(γ − 1)uL +
x− x0

t

)
,

pexact = pL

(
2

γ + 1
+

γ − 1
cL(γ + 1)

(
vL −

x− x0

t

)) 2γ
γ−1

.

At the end, conditions which define the regions should be described. Let xi designate the
end of the i-th region, then:

xL = x0 + vheadt,

x2 = x0 + vtailt,

x3 = x0 + vcontactt,

x4 = x0 + vshockt,

where vhead = vL − cL, vtail = v3 − c3, vcontact = v3 and vshock = vR + cR

√
(γ+1)p4

2γpR
+ γ−1

2γ .
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Chapter B

APPENDIX B: Shock sensors

B.1 Shock sensor based on dilatation

The idea of the method, proposed by Bogey et al. in [2] for the Finite Difference (FD) scheme,
is to detect regions in the domain where it is helpful to add some artificial viscosity. In this
case, the viscosity is given by

ε =

{
ε0 if the sensor is activated,
0 if not.

In the following, let note θ = ∇ · ~u and at each node i: θi = ∇ · ~ui. First, the high-pass
filtered dilatation is computed as

Dθi = −(θi+1 − 2θi + θi−1)
4

,

and its amplitude as

Dθmagni =
1
2

[
(Dθi − θi+1)2 + (Dθi − θi−1)2

]
.

Since these two definitions concern the FD approach, they have to be adapted to SD method,
which is done by using the Taylor’s theorem in the reference domain:

Dθi = −∇ · ∇θi
4

and Dθmagni = (∇Dθi)2 ,

where i actually represents a flux point. Then, the sensor r is defined as

ri =
Dθmagni

c2i
,

where c2i = γpi/ρi represents the square of the local sound speed. Finally, the formula of the
artificial viscosity at each flux point is given by:

εi =

{
ε0 if ri > rth,

0 if ri ≤ rth,
for i = 1, . . . , d(p+ 2)(p+ 1)d−1, (B.1)

with a threshold parameter rth which is used to specify the regions where the artificial viscosity
should be applied.

Page 53 of 57



B.2 Modified shock sensor based on pressure variations

The approach described in this section, proposed by Ducros et al. in [8] for the Finite Volume
scheme, is similar to the previous one, only the definition of the shock sensor r changes. For
now, at each node i:

ri =
∣∣∣∣pi+1 − 2pi + pi−1

pi+1 + 2pi + pi−1

∣∣∣∣ θ2
i

θ2
i + ‖ω‖2 + δ

,

where δ = 10−30 is a small positive real number added to the denominator in order to prevent
the division by zero and ω is the local vorticity given by

ω =

 ∂w
∂y −

∂v
∂z

∂u
∂z −

∂w
∂x

∂v
∂x −

∂u
∂y

 .

As before, the formula for Finite Volume scheme has to be adjusted to the SD approach at
each flux point i by means of the Taylor’s theorem:

ri =
∣∣∣∣1− 4pi

4pi + ∆pi

∣∣∣∣ θ2
i

θ2
i + ‖ω‖2 + δ

.

Finally, the artificial viscosity at each flux point is defined as in Eq. (B.1).
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