
Partitioned High Performance Code Coupling

Applied to CFD

Florent Duchaine, Sandrine Berger, Gabriel Staffelbach, and Laurent Gicquel

Cerfacs - 42 avenue Gaspard Coriolis - 31 057 Toulouse - France

florent.duchaine@cerfacs.fr

Abstract. Based on in situ observations obtained in the context of

multiphysics and multicomponent simulations of the Computational Fluid

Dynamics community, parallel performances of code coupling is first

discussed. Overloads due to coupling steps are then analyzed with a

simple toy model. Many parameters can impact the communication times,

such as the number of cores, the communication mode (synchronous or

asynchronous), the global size of the exchanged fields or the amount of

data per core. Results show that the respective partionning of the coupled

codes as well as core distributions on the machine have an important

role in exchange times and thus on the total CPU hours needed by an

application. For the synchronous communications presented in this paper,

two main outcomes independent from the coupler can be addressed by

incorporating the knowledge of the coupling in the preprocessing step

of the solvers with constraint and co-partitioning as well as process

placement. Such conclusions can be directly extended to other field of

applications such as climat science where coupling between ocean and

atmosphere is of primary importance.

1 Introduction

Today, the design of gas turbines requires to consider strong interactions between
different physics as well as the components of the engine. As a result, integrated
simulations involving multiphysics and multicomponents are performed both at
the research level as well as in industries. With the constant increase of computing
power, numerical simulations of the interactions between the compressor, com-
bustion chamber and turbine, as well as of the thermal interaction between fluid
flows and solids offer new design paths to diminish development costs through
important reductions of the number of experimental tests. In these fields, the
main idea is to jointly simulate the different parts of the coupled problems with
a high level of fidelity limiting hypotheses on the boundary conditions:

– for the interactions between turbomachinery parts and combustor, inlet and
outlet models of the component interfaces can be avoided by resolving the
full system at once (Fig. 1-a),

– to determine mean heat loads on structures, many authors use Conjugate
Heat Transfer (CHT) where the fluid and solid equations are resolved si-
multaneously to predict the temperature and heat flux distributions in the
system (Fig. 1-b).



2 Florent Duchaine, Sandrine Berger, Gabriel Staffelbach, and Laurent Gicquel

Recent works have shown the ability of eddy resolving methods such as Large
Eddy Simulation (LES) to provide reliable results in the contexts of combustors
and turbomachinery [6,14,5,10]. Using an unsteady LES flow solver to resolve
such problems raises several complexities to address in the context of coupled
problems. Indeed, LES requires high mesh resolutions to accurately capture the
flow physics and is more CPU consuming than averaged methods to converge
spatial and temporal statistics. These specificities imply to use high performance
architectures to decrease the restitution times of the simulations.

Air 
inlet

Outlet of 
burned gases

(a) (b)

Fig. 1. Example of an integrated combustor/turbine simulation [3] (a), view of fluid

and solid models of an industrial combustor Conjugate Heat Transfer simulation [4] (b).

There are two basic approaches to numerically solve coupled problems such
as CHT. The first one is a direct coupling approach where the different physics
are solved simultaneously in a large system of equations by a monolithic solver.
The second approach consists in solving each set of equations separately with
dedicated solvers that exchange interface conditions through a coupler. The last
solution adopted here has the advantage of using existing state-of-the-art codes
to solve fluid and solid equations. Nevertheless, it stresses the tool used to couple
the solvers in terms of parallel computing performances. Several communities
have investigated the use of code coupler in many different areas ranging from
climate studies to industrial applications. These communities are now faced to
the challenge of running the coupled applications with highly loaded codes on
massively parallel machines where the solvers exchange a large amount of data
at a high frequency.

This paper presents a feed-back on the use of coupling libraries on massively
parallel systems for multiphysics and multicomponent simulations with a LES
solver [7]. Based on observations monitored on real applications running on HPC
systems, a toy model is constructed to identify paths of improvements on a simple
controlled code.



Partitioned High Performance Code Coupling Applied to CFD 3

2 In situ observations

The OpenPALM software is used in this study [4]. It is a code coupler, i.e. a
library of functionalities that facilitate the scheduling of existing components
execution sequentially or concurrently as well as the exchange of data between
these components. This is achieved in part via a collection of primitives that are
called in the codes as well as with more complex mechanisms for application
scheduling. OpenPALM aims at implementing a general tool allowing to easily
integrate high performance computing applications in a flexible and evolutive
way proposing a solution to the balance among performance, software reuse, and
numerical accuracy. OpenPALM is mainly composed of three complementary
components, (1) the PALM1 library [2,11], (2) the CWIPI2 library [13] and (3)
the graphical interface PrePALM [2,11].

Code coupling is an appealing method to develop multiphysics and multicom-
ponent applications. However if it is done incorrectly it can become a performance
pitfall and render useless the efforts invested to optimize each individual code.
There are at least two important aspects to take into account to manage ef-
ficient code coupling in a HPC context (Fig. 2): (1) reducing the overhead of
data transfer between the solvers and (2) maintaining a global processor idle
time low, unless both codes have perfectly equal CPU per iteration times, the
fastest code will have to wait the others. Having a good load balancing is the
key to maintain a low idle time and thus reduce CPU waste. The first point
requires the most attention and a direct point to point communication between
each solver’s processors is proposed [8]. Also non matching grids being used, a
parallel interpolation method is required. The algorithm consists of two parts:
the initialization or setup phase, i.e. where the communication routes and the
interpolation coefficients are computed, and the run-time phase, or how inter-
code synchronization is actually executed. The first phase is done just once per
coupled simulation except if the geometries are mobile. Figure 3 presents the time
requested for the initialization and the run-time phases for a turbomachinery
application [9] performed on Titan3 until 132,000 cores. Globally, a decrease of
both times is observed as the number of cores involved in the coupling increases.
Interestingly, there are two order of magnitude difference between the two phases,
the initialization being the more time consuming. These times are affected by
the location algorithms, machine performance and characteristics as well as by
the way external communications between solvers are handled (communication
algorithm, interface partitioning).

Focusing on the communication time (run-time phase), Fig. 4 shows the
exchange time as a function of the ratio between the number of cores allocated to
the fluid and those allocated to the solid (in abscissa) as well as the total number
of cores involved in the exchange (which increases with the bubbles size) in the

1 Projet d’Assimilation par Logiciel Multiméthodes
2 Coupling With Interpolation Parallel Interface
3 Titan: Oak Ridge National Laboratory. No. 1 system of Top500 in November 2012



4 Florent Duchaine, Sandrine Berger, Gabriel Staffelbach, and Laurent Gicquel

	Internal	compu.ng	 Coms	

Wait	 		

Time Launching Restitution 

		

		…			

		 …	

Code 1 

Code 2 

Fig. 2. Time line corresponding to a coupled simulation including two codes.

100 1000 10000
Number of coupling cores

1

10

Ti
m

e 
(s

)

100 1000 10000
Number of coupling cores

0.0001

0.001

0.01

0.1

Ti
m

e 
(s

)

(a) (b)

Fig. 3. Time requested for the initialization (a) and the run-time (b) phases as a

function of the number of cores involved in the coupling process for a turbomachinery

application [9] performed on Titan.

case of a CHT computation on Curie4 [4]. The total number of exchanging cores
(indicated by the bubble size) does not have a leading role in the variation of
the communication times. Instead Fig. 4 highlights that the more the ratio of
cores increases, the more communications are expensive. This points out that
important unbalance in the core distribution between the solvers which may be
requested to synchronize to avoid waiting as illustrated on Fig. 2 which can be
detrimental for exchange time optimization. Interestingly, two points (colored in
red in Fig. 4) exhibit very close core ratios with very different communications
times. Neither this switching of ratio nor the corresponding total number of cores
can explain by themselves the differences in the communication time between the
two cases. Other underlying parameters are involved and next the section intends
to give elements in this direction with a controlled toy coupled application.

4 Curie supercomputer, owned by GENCI and operated at the TGCC by CEA.



Partitioned High Performance Code Coupling Applied to CFD 5

0,005	

0,05	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

M
ea
n	
ex
ch
an

ge
	*
m
e	
[s
]	

cores	fluid	/	cores	solid	

Fig. 4. Evolution of the exchange time as a function of the ratio between the number

of cores allocated to the fluid and the number of cores allocated to the solid (abscissa)

and the total number of cores involved in the exchange (increasing with the bubbles

size). Data extracted from [4].

3 Toy model

The toy model is composed of two identical codes. In the following, quantities
referring to the first and second executables are respectively indexed with the
subscripts 1 and 2. Each of these entities build a square including nptsi (with
i the index of the solver) points distributed on Ni cores where Ni is such that
Ni = m2, m ∈ N . As detailed on Fig. 5, the partitioning is homogeneous, i.e.
each square edge is cut in the same way (which justifies the need for a number of
cores such that Ni = m2). The codes perform 100 data exchange ping-pongs with
the OpenPALM coupler to provide statistically converged exchange times. Both
the initialization and the communication phases are recorded separately. Since
the initialization time mainly relies on localisation methods, the investigation
focus of this study is on communication times.

The results come from computations performed on a Cerfacs-based BULL B510
Supercomputer. Each computational node includes two processors, itself composed
of eight cores. The Infiniband interconnection network offers a theoretical 5GB.s−1

bandwidth between nodes. The MPI latency is lower than 1 micro-second. For
the present tests, MPI communications are performed thanks to the IntelMPI
library.

The influence of various parameters has been considered. This paper reports
cases for synchronous communications first with the same number of cores for
each executable and then with a different number of cores. The dependency of
exchange time to the global amount of data on the models as well as per core is
investigated by changing the number of points on the grid nptsi. The number of
cores is denoted Ni, and the total amount of data sent by a code (in bytes, B)
is denoted datatoti and the quantity of data per core is given by dataproci. No



6 Florent Duchaine, Sandrine Berger, Gabriel Staffelbach, and Laurent Gicquel

Code	1	

Code	2	

9	cores	
64	grid	points	

4	cores	
64	grid	points	

Fig. 5. Schematic of the inter-code communication toy.

placement effort is made and the MPI ranks are distributed among the available
cores in a linear way, i.e. the first application is assigned to the first N1 cores
and the second one to the following N2 cores.

The influence of the total amount of data on the grid is investigated by
increasing the number of nodes that composed the grids. Figure 6-a shows
the evolution of the exchange time as a function of the total amount of data
on the grid for different values of core numbers N1 = N2. The curves display
the same behavior in logarithmic scale with as expected the exchange time
greatly increasing with the number of grid points. On the contrary, for a given
number of grid points, the increase of the number of cores on which data are
distributed tends to decrease the communication time. Such behavior can be
mathematically modeled based on architecture parameters [1]. To explore the
effect of the quantity of data per core on communications, Fig. 6-b shows the
communication times arranged here as a function of the data quantity per core.
This different representation of the same data highlights three groups of curves:

– N1 = N2 = 1 and 4
– N1 = N2 = 9
– N1 = N2 = 16, 25, 36 and 49.

These gatherings may be explained by the bandwidth variation between the vari-
ous levels of the supercomputer network. The bandwidth between two computing
cores of a given machine depends on their relative positioning on the network as
well as on the size of the exchanged message. Three cases can be distinguished
that depend on the computer communication networks used by the toy model:

– N1 = N2 = 1 and 4: the cores are distributed on the two processors of the
same node. Communications are thus achieved within the same node but



Partitioned High Performance Code Coupling Applied to CFD 7

on potentially different processors. They are thus relatively fast but very
dependent on the exchanged message size.

– N1 = N2 = 9: the cores are mainly placed on the same node, only three cores
are on a different node due to the use of one process for the coupler’s driver.
Even though most of the communications are intra-processor or intra-node,
some exchanges are made between cores from different nodes.

– N1 = N2 = 16, 25, 36 and 49, the cores are distributed on several nodes (3
to 7 nodes depending on the case). A large part of the communications (if
not all) is made between nodes. Most of the communications are thus made
between cores that are quite far from each other on the network resulting in
slower exchanges.

These analyses bring to the conclusion that the minimization of exchange times
between coupled components can be performed by process placement on the
parallel architecture. Such placement algorithm must take into account internal
exchanges in the parallel models to minimize the impact on the standalone model
performances.

104 105 106 107 108 109

Data global size [B]

10−4

10−3

10−2

10−1

100

M
ea

n
ex

ch
an

ge
ti

m
e

[s
]

N1 = N2

N1 = N2 = 1

N1 = N2 = 4

N1 = N2 = 9

N1 = N2 = 16

N1 = N2 = 25

N1 = N2 = 36

N1 = N2 = 49

102 103 104 105 106 107 108

Data size by core [B]

10−4

10−3

10−2

10−1

100

M
ea

n
ex

ch
an

ge
ti

m
e

[s
]

N1 = N2

N1 = N2 = 1

N1 = N2 = 4

N1 = N2 = 9

N1 = N2 = 16

N1 = N2 = 25

N1 = N2 = 36

N1 = N2 = 49

(a) (b)

Fig. 6. Evolution of the exchange time as a function of the total amount of data on the

grids datatoti , for several values of the number of cores (a), Evolution of the exchange

time as a function of the data size per core dataproci, for several values of the number

of cores (b).

In a real coupled application, the exchange interface between two codes is
rarely partitioned in the same way and/or distributed over the same number of
computing cores. To investigate this point, the toy is run for cases where the
number of allocated cores is different for each executable (N1 ̸= N2). These tests



8 Florent Duchaine, Sandrine Berger, Gabriel Staffelbach, and Laurent Gicquel

are performed for every possible N1 and N2 value combinations. The global ten-
dencies remain the same for all cases. Therefore, for brevity, Fig. 7 presents only
the results for the cases where N1 = 16 and N2 = 16; 25; 36. For each of them,
the relative positions of the partitioning are indicated on the top of the figure.
Exchange times evolve within the same range as those presented for the case
N1 = N2 increasing as the total amount of data increases. However, it is worth
noting that for every tested case, given a fixed number of cores N1, every values
of N2 different from N1 leads to communication times superior or similar to the
N1 = N2 case. Cases with partitionings of the two executable grids that are either
identical or quite coincident minimize the number of communications between
the two codes leading to lower communication times. A smart partitioning of
both domains with respect to each other could lead to lower exchange times
and hence better performance of the coupled simulations. According to these
observations, future work should focus on the development of co-partitioning
techniques able to decrease greatly the communications time between solvers [12].

104 105 106 107 108 109

Data global size [B]

10−4

10−3

10−2

10−1

100

M
ea

n
ex

ch
an

ge
ti

m
e

[s
]

N1 = 16

N2 = 16 : identical
N2 = 25 : non-matching
N2 = 36 : quite matching

Fig. 7. Evolution of the exchange time as a function of the total amount of data on the

grid, for cases where the partitioning of the two executables is either identical, or quite

coincident, or totally non-coincident.



Partitioned High Performance Code Coupling Applied to CFD 9

4 Conclusion

The CPU costs of a coupled simulation are determined both by the internal
computational time of each code as well as by the interconnection process and
the communication times between solvers. Core repartition between the coupled
model to insure a good load balancing is rather trivial. Studying the effect
of the data exchange time is much more complex and is examined here via
a toy model. Many parameters can impact the communication times, such as
the number of cores, the communication mode (synchronous or asynchronous),
the global size of the exchanged fields or the amount of data per core. For
the synchronous communications presented in this paper, two main outcomes
independent from the coupler can be addressed by incorporating the knowledge
of the coupling in the preprocessing step of the solvers with constraint and
co-partitioning as well as process placement. Moreover, tests on asynchronous
communications show an important improvement of the scalability of the coupler
indicating development paths for the future. Finally, many order of magnitude
higher than the communication time, the time requested by the interconnection
process also depends on several parameters such as core distribution between
the coupled components. Nevertheless, the real gain to decrease its CPU cost
relies on interconnection algorithms and thus on further development in coupling
libraries rather than on the global management of the coupling environment.

References

1. Berger, S.: Implementation of a coupled computational chain to the combustion

chamber’s heat transfer. Ph.D. thesis, Institut National Polytechnique de Toulouse

(June 2016)
2. Buis, S., Piacentini, A., Déclat, D.: Palm: a computational framework for assembling

high-performance computing applications. Concurrency and Computation: Practice

and experience 18(2), 231–245 (2006)
3. Duchaine, F., Dombard, J., Gicquel, L., Koupper, C.: Integrated large-eddy simula-

tion of combustion chamber / turbone interactiàons. In: 51st 3AF International

Conference on Applied Aerodynamics. Strasbourg, France (4-6 April 2016)
4. Duchaine, F., Jauré, S., Poitou, D., Quémerais, E., Staffelbach, G., Morel, T.,

Gicquel, L.: Analysis of high performance conjugate heat transfer with the openpalm

coupler. Journal of Computational Science and Discovery 8, 015003 (2015)
5. Duchaine, F., Maheu, N., Moureau, V., Balarac, G., Moreau., S.: Large eddy

simulation and conjugate heat transfer around a low-mach turbine blade. J.

Turbomach. 136(5) (2013)
6. Gicquel, L.Y.M., Staffelbach, G., Poinsot, T.: Large eddy simulations of gaseous

flames in gas turbine combustion chambers. Prog. Energy Comb. Sci. 38(6), 782 –

817 (2012)
7. Gicquel, L., Gourdain, N., Boussuge, J.F., Deniau, H., Staffelbach, G., Wolf, P.,

Poinsot, T.: High performance parallel computing of flows in complex geometries.

Comptes Rendus Mécanique 339(2-3), 104 – 124 (2011)
8. Jauré, S., Duchaine, F., Staffelbach, G., Gicquel, L.: Massively parallel conjugate

heat transfer solver based on large eddy simulation and application to an aeronautical

combustion chamber. Comput. Sci. Disc. Submitted (2013)



10 Florent Duchaine, Sandrine Berger, Gabriel Staffelbach, and Laurent Gicquel

9. de Laborderie, J., Duchaine, F., Vermorel, O., Gicquel, L.: Application of an overset

grid method to the large eddy simulation of a high-speed multistage axial compressor.

In: ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition.

No. GT2016-56344, Seoul, Korea (13-17 June 2016)

10. N. Gourdain F. Sicot, F.D., Gicquel, L.: Large eddy simulation of flows in industrial

compressors: a path from 2015 to 2035. Philosophical Transactions A 372(2022)

(2014)

11. Piacentini, A., Morel, T., Thévenin, A., Duchaine, F.: O-palm: An open source

dynamic parallel coupler. In: Proceedings of the IV International Conference on

Computational Methods for Coupled Problems in Science and Engineering–Coupled

Problems (2011)

12. Predari, M., Esnard, A.: Coupling-aware graph partitioning algorithms: Preliminary

study. In: IEEE International Conference on High Performance Computing. Goa

India (December 2014)

13. Refloch, A., Courbet, B., Murrone, A., Villedieu, P., Laurent, C., Gilbank, P.,

Troyes, J., Tessé, L., Chaineray, G., Dargaud, J., Quémerais, E., Vuillot, F.: Cfd

platforms and coupling - cedre software. The Onera Journal Aerospace Lab (2)

(2011)

14. Tucker, P., Eastwood, S., Klostermeier, C., Xia, H., Ray, P., Tyacke, J., Dawes, W.:

Hybrid les approach for practical turbomachinery flows - part 2: further applications.

J. Turbomach. 134(2) (2012)


