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Abstract. The report presents the information processing that can be performed by a general
hermitian matrix when two of its distinct eigenvalues are coupled, such as λ < λ′, instead of

considering only one eigenvalue as traditional spectral theory does. Setting a = λ+λ′

2 6= 0 and

e = λ′−λ
2 > 0, the information is delivered in geometric form, both metric and trigonometric,

associated with various right-angled triangles exhibiting optimality properties quantified as
ratios or product of |a| and e. The potential optimisation has a triple nature which offers two
possibilities: in the case λλ′ > 0 they are characterised by e

|a| and |a|e and in the case λλ′ < 0

by |a|e and |a|e. This nature is revealed by a key generalisation to indefinite matrices over R or
C of Gustafson’s operator trigonometry.

Keywords: Spectral coupling, indefinite symmetric or hermitian matrix, spectral plane,
invariant plane, catchvector, antieigenvector, midvector, local optimisation, Euler equation,
balance equation, torus in 3D, angle between complex lines.

1. Spectral coupling

1.1. Introduction. In the work we present below, we focus our attention on the coupling of any
two distinct real eigenvalues λ < λ′ of a general hermitian or symmetric matrix A, a coupling
called spectral coupling. This coupling produces new information about A, of trigonometric and
geometric nature based on triangles.

Such a coupling can be seen as a self-interference for A, that is an interference of A with
itself by means of two of its eigenvalues. The effects of this self-interference for A are generated
by vectors in the invariant subspace spanned by the corresponding eigenvectors. Although this
seems like a natural line of research, no systematic study of the spectral coupling has been
undertaken when the matrix is indefinite over R or C.

On the one hand one finds many scattered results about pairs of eigenvalues for A positive
definite in the classic literature [Parlett, 1998, Horn and Johnson, 1985, (chap. 4 and 7)]. In
most cases the pair consists of the largest and smallest positive eigenvalues and vectors are
usually ignored.

On the other hand, a first attempt to a more systematic approach started in 1968 with the
work [Gustafson, 1968] about operator trigonometry vastly expanded in [Gustafson, 2012]. But
when applied to matrices this insightful theory leaves room for further development. In the
paper we address three issues 1) the matrix is not assumed to be definite, 2) Gustafson’s turning
angle ](x,Ax), x ∈ Rn is interpreted as one instance of three relevant angles in a triangle based
on the data λ < λ′, x and Ax, 3) the question of the geometric definition of an angle between
two complex vectors (i.e. two real planes) is considered.

The report serves the following goals: (i) It shows how theory can alleviate the three issues
cited above. (ii) It indicates that familiar inequalities about pairs of eigenvalues found in
Numerical Analysis and Statistics which seem unrelated are in fact the signature of the existence
of deeper variational principles applied to functionals defined by A and vectors in Rn or Cn.
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trc@gmail.com).
(2) CEREMATH, Université Toulouse 1, 21, Allée de Brienne, 31000 Toulouse, France.
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(iii) It presents a mechanism by which a geometric 2D-image emerges from the complex nD-
dynamics of a hermitian matrix when two eigenvalues are considered simultaneously rather
than one only, as this is classically done.

As we fulfil each of these three goals, we uncover new ways by which a hermitian matrix
discloses information about the dynamics of its inner potential [Chatelin, 2012, chap. 8].

1.2. Spectral coupling in the past. At the bottom of spectral coupling lies the resolution
of a quadratic polynomial which is assumed to have two distinct real roots. When the roots
are positive, the problem goes back to Sumer four millennia ago.

Let the eigenvalues λ and λ′, λ < λ′ be the distinct real roots of the quadratic equation

(1.1) µ2 − 2aµ+ g2 = 0, a =
λ+ λ′

2
, g2 = λλ′

where a is the arithmetic mean and we set e = λ′−λ
2

> 0. By assumption a2−g2 = 1
4
(λ−λ′)2 > 0.

Observe that a2 = g2 + e2 ⇔ −e2 ≤ g2 ≤ a2 and g2 ≥ 0 ⇔ |a| ≥ e ≥ 0, g2 ≤ 0 ⇔ |a| ≤ e.
If we have 0 < λ < λ′, we associate three types of mean: arithmetic a = λ+λ′

2
, geometric

g =
√
λλ′, harmonic h = g2

a
= 2λλ′

λ+λ′
. The three means which satisfy 0 < λ < h < g < a < λ′

are known since Antiquity as the pythagorean means.
If A is definite then g2 = λλ′ is always positive, i.e. |a| > e. By contrast, when A is indefinite,

λλ′ may be nonpositive (|a| ≤ e) leading to g = 0 (|a| = e) or |g| =
√
−λλ′ > 0 (|a| < e).

Let q and q′ be orthonormal eigenvectors associated respectively with λ and λ′. The subspace
M spanned by q and q′ is invariant under A: any x ∈M is such that Ax ∈M. The invariant
subspace M has 2 (resp. 4) real dimensions when A is symmetric (resp. hermitian). The
orthonormal projection of A onto M defines a 2×2 symmetric matrix A�M whose eigenvalues λ

and λ′ lie on R called the spectral line: A�M is similar to the symmetric matrix

(
a e
e a

)
= P ,

det P = g2.
Let us draw in R2 the circle Γ centered at (a, 0) with radius e: it passes through (λ, 0) and

(λ′, 0) and realises the link between λ and λ′ in the plane R2 called the spectral plane. Such a
circle Γ is well-known in continuum mechanics as Mohr’s circle. C.O. Mohr proposed in 1882
this circle as a graphical tool to analyse, from the perspective of linear elasticity, the dynamics
of the Cauchy stress tensor in 2 and 3D which is symmetric positive definite [Timoshenko, 1983].
The 3D-analysis leads to the tricircle, a figure related to that known to Archimedes and other
greek geometers as an arbelos [Boas, 2006].

The use of Γ that we propose goes in a different direction, trigonometric rather than me-
chanical. It is valid whether A is definite or not, real or complex. Its main asset is that it
provides a way to build a simple 2D-image of the evolution of Ax as the nD-vector x describes
the invariant subspace M. The result is fully original when A is hermitian and x is a complex
vector in Cn.

In modern times, coupled phenomena are ubiquitous in Science and often they are analysed
through spectral theory. It seems therefore worthwhile to study the new information provided
by structural coupling inside a hermitian matrix. The value of the paper is primarily in the
insight it brings about spectral information processing through eigenvector coupling in nD, in
particular about data representation and management.

1.3. Organisation of the paper. Section 2 sets the scene for the two aspects of spectral
coupling expressed in triangles, related to pairs of eigenvalues (λ, λ′) in R2 and of eigenvectors
(q, q′) in Rn generating an invariant plane M. With the ground field K = R, Section 3
establishes the link between right-angled triangles and local optimisation in M ⊂ Rn of 3
distinct functionals over Rn. In Section 4 with K = R or C, 3 variational principles are
derived from a unique generic functional Kn → R. Section 5 develops further one of the
classes of optimisers found in Section 4. We show how spectral coupling enriches the geometric
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understanding of inequalities due to Wielandt, Kantorovich and Greub-Rheinboldt in Numerical
Analysis, as well as of the Bloomfield-Watson inequality in Statistics. Section 6 presents for
K = C a geometric interpretation in R3 of the optimality results taking place in the complex
invariant subspace M isomorphic to R4. The paper closes in Section 7 by summarising the
salient features of spectral coupling that have been demonstrated.

2. Spectral information processing

Let A ∈ Kn×n, K = R or C, be a symmetric (K = R, A = AT ) or hermitian (K = C,
A = AH) matrix . The spectrum of A consists of n real eigenvalues λ1 ≤ . . . ≤ λn lying on
the spectral line R. If A 6= λI, the spectrum contains at least two distinct eigenvalues. The
matrix A is diagonalisable in the eigenbasis Q = [q1, . . . , qn], with Q−1 = QH if K = C and
Q−1 = QT ∈ Rn×n if K = R. We denote 〈x, y〉 = xHy or xTy and ‖x‖2 = xHx or xTx. For
the sake of simplicity we consider in Sections 2.2 and 3 only the case K = R. The treatment
of K = C (A hermitian) is deferred to Sections 4, 5 and 6.

The information processing takes place in the Spectral plane ∼= R2 (Section 2.1) and the
Invariant plane ⊂ Rn (Section 2.2).

2.1. Spectral plane, K = R or C. Let be given the pair {λ, λ′}, λ < λ′ lying on the spectral
line. We consider the circle Γ centered at C, OC = a with radius e, which passes through the
points (λ, 0) and (λ′, 0) and lies in the spectral plane, see Figure 1. Depending on the sign of
g2 = λλ′, the origin O is outside Γ (g2 > 0), Figure 1 (a), on Γ (g = 0) or inside Γ (g2 < 0),
Figure 1 (b). g2 is the power of O with respect to Γ. The circle Γ can be thought of as a linking
curve between the isolated eigenvalues λ and λ′, a curve specifying a plane where elementary
geometric constructions and trigonometric calculations can be performed.

Assuming that ae 6= 0 (λ′ 6= ±λ), we consider M a point lying on Γ and the corresponding
triangle OMC. Two of the side lengths are fixed: OC = |a| and MC = e, while the third
length OM varies with M . We denote the three ordinary angles of OMC as follows: α =
∠(OC,OM), β = ∠(MC,MO) and γ = ∠(CO,CM). For future reference, we also introduce
δ = γ

2
= ∠(Λ′Λ,Λ′M), 0 < δ < π

2
(Λ = (λ, 0), Λ′ = (λ′, 0)). See Figure 1. We recall that

α + β + γ = π and sinα
e

= sinβ
|a| = sin γ

OM
, hence the ratio sinα

sinβ
= e
|a| is fixed.

δγ
β

α

λ λ ′O C = (a, 0)

M

e

ΓH
T V

δ
γ

β

α

λ λ ′O C = (a, 0)

M

e

Γ

(a) λ′λ > 0 (b) λ′λ < 0

Figure 1. Spectral plane, |λ| = 0.2, λ′ = 0.8

2.2. Invariant plane, K = R. Let q and q′ be an orthonormal pair of eigenvectors associated
with λ and λ′: ‖q‖ = ‖q′‖ = 1 and 〈q, q′〉 = qT q′ = 0. The subspace of real linear combinations
of q and q′ is a real plane invariant under the action of A when K = R. It is worth to keep in
mind that we work with matrices of dimension n×n so that the corresponding invariant plane
in Rn is isomorphic to R2.

We consider the real combination u = (cos θ)q+(sin θ)q′, with unit norm ‖u‖ = 1, θ ∈ [0, 2π[.
When θ varies in [0, 2π[, the vector u describes the unit circle (C) centered at O and passing
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through the eigenvectors ±q, ±q′, see Figure 2 (a).

A key matrix for spectral coupling is the locally centered matrix B = A − aI (see Figure 2
(a)), a matrix which commutes with A: F = AB = BA = A2−aA and which has the following
property.

Lemma 2.1. ‖Bu‖ = e and ‖Fu− e2u‖ = |a|e for any u ∈ (C).

Proof. Bu = cos θ(λ− a)q + sin θ(λ′ − a)q = eũ with ũ = −q cos θ + q′ sin θ, ‖ũ‖ = 1, 〈u, ũ〉 =
− cos 2θ. Hence ‖Bu‖ = e for any θ. Next Fu− e2u = eaũ.

�

When u is not an eigenvector (θ /∈ {0, π
2
, 3π

2
, π}) and a 6= 0, the 3 vectors au, Au and Bu

are linearly independent. Since Bu = Au − au they form a non degenerate triangle OM ′C ′,
see Figure 2 (b) when a > e and (c) when a < e. In order that OM ′C ′ be non degenerate
(C ′ 6= O), we assume below that a 6= 0 when g2 < 0. As θ varies in [0, 2π], M ′ describes the
ellipse given in

Lemma 2.2. The point M ′ = (r, r′) describes the ellipse of equation
(
r
λ

)2
+
(
r′

λ′

)2
= 1 iff g2 6= 0.

The ellipse is reduced to a segment, if g2 = 0 and to a circle if a = 0.

Proof. Au = λ cos θq + λ′ sin θq′ = rq + r′q′, hence cos2 θ + sin2 θ = 1 =
(
r
λ

)2
+
(
r′

λ′

)2
when

λλ′ 6= 0. See Figure 2 (a). If g2 = 0, λ = 0 < λ′, r = 0 and r′ ∈ [−λ′, λ′] (say). The ellipse is
the cercle centered at O = C ′ with radius e if a = 0 ⇔ λ′ = −λ = e.

�

q

q ′

θ
αβ

γ = 2θ

uAu

(C )

O

ũ = 1
e
Bu

λ

λ ′

1

1

(a)

{q}

{q′}

α

β

θ

Γ ′

λ′

λ

γ

au

Au

O

Bu
M ′

C ′

{q}

{q′}

θ
α

β

Γ ′

λ′

λ

γ

au

Au

O

Bu

M ′

C ′

(b) λ′λ > 0 (c) λ′λ < 0

Figure 2. Invariant plane, |λ| = 0.2, λ′ = 0.8, K = R
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A remarkable consequence is that the spectral information processing in the spectral plane
is mirrored in the invariant plane. Indeed if we compare the triangle OMC parameterised by
δ and the triangle OM ′C ′ parameterised by θ we obtain the following result.

Corollary 2.3. The equality δ = θ in ]0, π
2
[ yields the congruence OMC = OM ′C ′.

Proof. The triangles have two fixed side lengths OC = OC ′ = |a| and CM = C ′M ′ = e. Each
pair of sides envelops the same (ordinary) angle γ if δ = θ in ]0, π

2
[: γ = 2θ = 2δ ∈]0, π[.

�

Therefore we denote the angles of the triangle OM ′C ′ by α = ∠(u,Au), β = ∠(Au,Bu), γ =
∠(−au,Bu). When M ′ describes its ellipse once in the invariant plane, θ varies in [0, 2π[. This
entails that the corresponding point M describes its circle Γ twice in the spectral plane. The
reference triangle OMC in the spectral plane has only one moving vertex M . By comparison,
in the invariant plane both vertices M ′ and C ′ evolve for OM ′C ′.
Let Γ′ be the circle (C ′, e) which intersects its diameter line OC ′ at the points λ and λ′ (Fig.2
(b), (c)). The evolution of M on Γ is equivalent to that of M ′ on Γ′. Observe that the sides
M ′λ and M ′λ′ of the right-angled triangle λM ′λ′ inscribed in Γ′ are parallel to the eigenvectors
q′ and q respectively.

Remark 2.1. The Figures presented in Sections 2 and 3 are computed with the numerical
data λ = 0.2 and λ′ = 0.8 when λ′λ > 0 and λ = −0.2 and λ′ = 0.8 when λ′λ < 0. Thus we
can observe the congruence between the triangles OMC in the spectral plane and the triangles
OM ′C ′ in the invariant plane, Figure 1 (a) and Figure 2 (b) when λλ′ > 0 and Figure 1 (b) and
Figure 2 (c) when λλ′ < 0. The only difference lies in the graphical scaling which was found
necessary to get a clear enough figure.

3. Right-angled triangles for optimality, K = R

In the previous section we introduced how the spectral information processing can be observed
in the spectral plane and in the invariant plane. In this section we show that the possibility for
one of the three angles α, β and γ to equal π

2
expresses one of three kinds of optimal property.

3.1. g2 > 0, β = π
2
, α maximum, catchvectors. When β = π

2
, the optimality property

corresponds to the maximisation of the angle α when g2 = λ′λ > 0. In the spectral plane the
optimality result illustrated in Figure 3 (a) is given by the

Lemma 3.1. When 0 < g2 < a2, the angle α is maximum at the value φ with sinφ = e
|a| ,

cosφ = |g|
a

and α = φ < π
2
⇔ β = ψ = π

2
, γ = π

2
− φ.

Proof. Elementary trigonometry. CH ≤ CT = e, see Figure 1 (a). The angle α is maximum
at the value φ when the secant line OM is tangent to Γ at T . Then OT 2 + e2 = a2, OT = g,
cosφ = OT

|a| = g
|a| = sin γ.

�
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δγ

β

φ

λ λ ′O C = (a, 0)

M

eg

Γ

{q}

{q ′}

aw+

aw ′
+

φ

β

θ

γ

av+

Av+

O

Bv+

M ′

C ′

(a) Spectral plane (b) Invariant plane

Figure 3. λ′λ > 0, α = φ maximum, β = π
2
, v+: catchvector

The key Corollary 2.3 allows us to transfer the optimality results of Lemma 3.1 about the
triangle OMC in the spectral plane to the triangle OM ′C ′ in the invariant plane, see Figure
3 (b). The optimality property α ≤ φ (g2 > 0) is valid for the corresponding ordinary angles
α = ∠(u,Au) in OM ′C ′. When g2 > 0, we define w+ and w′+ as the positive square roots of

w2
+ = λ′

λ+λ′
> 0 and w′2+ = λ

λ+λ′
> 0. Indeed λ′(λ + λ′) = λ′2 + g2 and λ(λ + λ′) = λ2 + g2 are

positive quantities.

Then we define the set of four catchvectors (see Figure 3 (b))

D+ =
{
v+ : v+ = εw+q + ε′w′+q

′, ε = ±1, ε′ = ±1
}

which are the maximisers for α.

Theorem 3.2. When g2 > 0, the minimum value cosφ = g
|a| is achieved by any v+ in D+ and

〈Bv+, Av+〉 = 0, ‖Av+‖ = 1
e
‖Fv+‖ = g.

Proof. i) When g2 > 0 and v+ = w+q+w′+q
′, Av+ = λw+q+λ′w′+q

′, Bv+ = e(−w+q+w′+q
′) and

BAv+ = e(−λw+q+λ′w′+q
′). Therefore ‖Av+‖ = g, 〈v+, Av+〉 = g2

a
, hence cos∠(v+, Av+) = g

a
.

(| cosα| ≥ cosφ = g
|a|). Moreover 〈Bv+, Av+〉 = 0 as expected. The vector 1

|a|Fv+ is orthogonal

to v+ with length eg
|a| .

�

Choosing the pair λ < λ′ at will provides a local optimisation in general. It is well known
that a global optimisation can be obtained if we consider a symmetric positive definite matrix
A with eigenvalues 0 < λ1 ≤ . . . ≤ λn and we couple the extreme pair (λ1, λn). The resulting
largest turning angle φ(A) is called the operator/matrix angle in [Gustafson, 1968].

3.2. g2 < 0, α = π
2
, β maximum, antieigenvectors. Letting α = π

2
when λλ′ < 0 we get

the second optimality property yielding the maximisation of the angle β. In the spectral plane
we have the following result displayed on Figure 4 (a).

Lemma 3.3. When −e2 < g2 < 0, the angle β is maximum at the value ψ with sinψ = |a|
e

,

cosψ = |g|
e

and β = ψ ⇔ α = φ = π
2
, γ = π

2
− ψ.

Proof. CH ≤ CO = |a| > 0, see Figure 1 (b). The angle β is maximum at the value ψ when
the line OM is orthogonal to the spectral axis, and intersects Γ at V . Then OV 2 + a2 = e2

and OV = |g|, cosψ = |g|
e

= sin γ.
�
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δ
γ

ψ

α

λ λ ′O C = (a, 0)

M

e
|g |

Γ

{q}

{q ′}

aw
−

aw ′
−

θ

α

ψ

γ

av
−

Av
−

O

Bv
−

M ′

C ′

(a) Spectral plane (b) Invariant plane

Figure 4. λ′λ < 0, α = π
2
, β = ψ maximum, v− : antieigenvector

Once more, thanks to the key Corollary 2.3, we are able to transfer the results of Lemma 3.3
about the triangle OMC in the spectral plane to the triangle OM ′C ′ in the invariant plane, see
Figure 4 (b). We define w− and w′− as the positive square roots of w2

− = λ′

λ′−λ and w′2− = − λ
λ′−λ ,

after we check that λ′(λ′ − λ) = λ′2 − g2 > 0 and −λ(λ′ − λ) = λ2 − g2 > 0.

In this case we define the set of four antieigenvectors (see Figure 4 (b))

D− =
{
v− : εw−q + ε′w′−q

′, ε = ±1, ε′ = ±1
}

which are the maximisers for β.

Theorem 3.4. When g2 < 0, the minimum value cosψ = |g|
e

is achieved by any v− in D− and

〈v−, Av−〉 = 0, ‖Av−‖ = 1
e
‖Fv−‖ = |g|.

Proof. When g2 < 0 and v− = w−q + w′−q
′, Av− = λw−q + λ′w′−q

′ and ‖Av−‖ = |g| =
√
−λλ′;

Bv− = e(−w−q + w′−q
′) and 〈Bv−, Av−〉 = −g2 = |g|2. Thus cos∠(Bv−, Av−) = |g|

e
, that is

cos β ≥ cosψ = |g|
e

. Finally 〈v−, Av−〉 = 0 and 1
|a|Fv− is orthogonal to Bv− with length e|g|

|a| . �

Remark 3.1. When A is indefinite, the spectral coupling of eigenvalues with different sign: λ <
0 < λ′ yields the existence of the vectors v− in D− with an orthogonal image Av−: 〈v−, Av−〉 =
0. These vectors which exist only for λλ′ < 0, are out of the scope of [Gustafson, 2012]. They
are actually the vectors which are “most turned” by A locally in the invariant plane: their
image direction, being orthogonal to, is the “furthest” from, their own direction. This is why
they truly deserve to be called antieigenvectors. Their dynamics under A is the opposite of
that for an eigenvector, whose direction is invariant under the action of A. Therefore, to avoid
ambiguity we called the vectors v+ in D+ when g2 > 0 catchvectors.

The striking similarity between the formulae for v+ (g2 > 0) and v− (g2 < 0) suggests that
the triple (λ,−λ, λ′) is implicitly at work when a 6= 0. The companion pair (−λ, λ′) is the

spectrum of the 2× 2 matrix P̃ =

(
e |a|
|a| e

)
, det P̃ = −g2. The matrix P̃ is similar to the

projection on M of the modified matrix Ã = QD̃QT : in the original diagonal D of eigenvalues
for A, λ is replaced by −λ to yield D̃ so that ‖A− Ã‖2 = ‖D− D̃‖2 = 2|λ|. An antieigenvector
v− for A is a catchvector ṽ+ for Ã and vice-versa, depending on the sign of g2. The symmetry
λ/− λ entails the symmetry catch-/antieigen- vectors.

3.3. γ = π
2
, maximal surface, midvectors. The previous sections have dealt with the or-

thogonality β = π
2

when g2 > 0 and α = π
2

when g2 < 0. We turn to the third angle γ = 2θ.



8 F. CHATELIN AND M. M. RINCON-CAMACHO

When γ = π
2
, the third optimality result concerns the surface of the triangles OMC and OM ′C ′.

In the spectral plane we have the following result.

Lemma 3.5. When M describes Γ and a 6= 0, the surface of OMC is maximum and equal to
1
2
|a|e iff γ = π

2
.

Proof. Clear since the surface of OMC is the unsigned area 1
2
|a|e sin γ with |a|e = 1

4
|λ′2 − λ2|.

The maximum is achieved for M at (a, e) so that OM =
√
a2 + e2, see Figure 5 (a) and (b). If

a = 0, OMC is degenerate.
�

Spectral plane

δ
γ

β

α

λ λ ′O C = (a, 0)

M

e

Γ

δ
γ

β

α

λ λ ′O C = (a, 0)

M

e

Γ

(a) λ′λ > 0, γ = π
2

(b) λ′λ < 0, γ = π
2

Invariant plane

{q}

{q ′}

a√
2

a√
2

α

β

θ

γ

av̂

Av̂

O

B v̂

M ′

C ′

{q}

{q ′}

a√
2

a√
2

θ

α

β

γ

av̂

Av̂

O

B v̂

M ′

C ′

(c) λ′λ > 0, v̂ midvector (d) λ′λ < 0, v̂ midvector

Figure 5. Maximal surface, γ = π
2
, g2 6= 0

Now we define the set of four midvectors (see Figure 5 (c) and (d))

D̂ =

{
v̂ : v̂ = ŵ(εq + ε′q′), ŵ =

1√
2
, ε = ±1, ε′ = ±1

}
,

and we consider γ = ∠(−au,Bu) for a 6= 0.

Lemma 3.6. The minimum value 0 is achieved for cos γ, a 6= 0, at v̂ = 1√
2
(q + q′).

Proof. 〈au,Bu〉 = ae〈u, ũ〉 = 0 ⇔ θ = π
4
⇔ cos θ = sin θ = 1√

2
⇔ γ = π

2
.

�

Theorem 3.7. When a 6= 0, the 4 triangles OM ′C ′, v̂ ∈ D̂, have the maximal surface 1
2
|a|e.

Proof. The surface of the triangle OMC is Σ(u) = 1
2
|a|e sin γ which achieves its maximum for

u = v̂ ⇔ γ = π
2
.

�
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We leave it to the reader to check that for V̂ = [v̂+, v̂−] with v̂± = 1√
2
(q′ ± q), the matrix P

in Section 1.2 satisfies P = V̂ TAV̂ , V̂ T V̂ = I2.
If for a symmetric positive definite matrix A we couple the extreme pair (λ1, λn) we can eas-

ily deduce that the midvectors associated to the eigenvalues λ1, λn yield the maximum surface
a∗e∗ = 1

4
(λ2n − λ21) for OM ′C ′.

Let us consider in R3 the vector product of u = (cos θ, sin θ, 0)T and ũ = (− cos θ, sin θ, 0)T :
u ∧ ũ = (0, 0, 2 sin θ cos θ = sin 2θ)T . The quantity 2Σ(u) measures the vector product
K = au ∧ Bu = au ∧ Au = Au ∧ Bu = aeu ∧ũ which lives in M⊥. The vector K is the
vector product of any two adjacent sides in OM ′C ′; it represents the action of the coupling
outside the invariant plane. Its direction is fixed in M⊥; if n = 3, it is but the third eigendi-
rection. The norm ‖K‖ = |a|e sin γ is called the influence of u outside its plane of evolution.
In other words, the vertices of OM ′C ′ are submitted to an equal torque as the triangle rotates
about O. The torque is nonzero when OM ′C ′ is non degenerate (u /∈ {±q,±q′} and ae 6= 0).
The subtle role of −λ shows in the fact that there is disconnection (K = 0) if the eigenpair is
either double (λ = λ′ = a) or opposite (λ = −λ′ = −e)

When comparing D± and D̂, we observe that the vectors v̂ are independent of the values
λ < λ′. These vectors are called midvectors since they are the bisectors of the eigenvectors.
They have the largest influence |a|e: the larger the product |a|e, the tighter the bond between
the pair (λ, λ′) and the rest of the spectrum. Moreover Lemma 2.1 tells us that the maximal
surface |a|e is precisely the norm of Fu− e2u for any u ∈ (C). By comparison the influence of
v+ is eg and that of v− is |ag|.

Remark 3.2. The generic concept of a midvector is absent from Gustafson’s theory which
focuses on α when g2 > 0. The notion only appears in a statistical setting under the guise of
an “inefficient” vector, see Section 5 and [Gustafson, 2012, p. 190].

3.4. Case g2 = λ′λ = 0, |a| = e > 0. Let us study the case |a| = e. The triangle OMC is
isosceles with α = β, see Figure 6 (a). It is right-angled at C (γ = π

2
) with maximal surface

1
2
e2 if M is at (a, e) and α̂ = β̂ = π

4
(tan α̂ = tan β̂ = 1). The triangle OMC is equilateral if

α = β = γ = π
3
, δ = π

6
, see Figure 6 (b). It is degenerate as OC when α = β = π

2
, γ = 0.

Thanks to Corollary 2.3 we can transfer these results on the spectral plane to the invariant
plane where now M ′ describes the segment [−λ′, λ′] if λ = 0 < λ′ = 2a, see Figure 6 (c) and
(d). Let N ′ = (2a cos θ, 2a sin θ). It is clear that M ′ is the orthogonal projection of N ′ on
the vertical axis spanned by q′. Hence OM ′ = ‖Au‖ = 2|a sin θ|. When θ = π

6
, ‖Au‖ = |a|,

confirms that OM ′C ′ is equilateral. If λ = 2a < 0 = λ′, M ′ corresponds to an orthogonal
projection on {q}.
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Spectral plane

δγ

β

α

λ = 0 λ ′O C = (a, 0)

M

e

Γ

δγ

β

α

λ = 0 λ ′O C = (a, 0)

M

e

Γ

(a) α = β (b) α = β = γ = π
3

Invariant plane

{q}

{q ′}

α

β

θ

γ

au

Au

O

Bu

M ′

C ′

N ′

δ

{q}

{q ′}

α

β

θ

γ

au

Au

O

Bu

M ′

C ′

N ′

δ =
π
6

(c) α = β (d) α = β = γ = π
3

Figure 6. λ = 0 < λ′ = 2a

3.5. Summary. The congruence between the triangles OMC in the spectral plane and OM ′C ′

in the invariant plane is a key property for symmetric matrices. It allows the dynamics of
eigenvector coupling to be reflected in the spectral plane without any loss of information. The
triple nature of the optimal results when g2 6= 0, a 6= 0 is summarised in Figure 7.

γ = π
2

Maximal surface =
1

2
|a|e

midvectors v̂

α = π
2

βmax = ψ

cosψ = |g|
|a| , sinψ =

|a|
e

= cos γ

antieigenvectors v−

β = π
2
, αmax = φ

cosφ = g
|a| , sinφ =

e

|a| = cos γ

catchvectors v+

λλ′ < 0 λλ′ > 0

Figure 7. Right angles for optimality, λ < λ′, ag2 6= 0, K = R

From the point of view of information theory, the eigenvectors q and q′ define the reference
frame in M ∼= R2 for the dynamics of spectral coupling. They serve to define the midvectors

which are independent of ±λ and λ′. The numerical data |a| = |λ′+λ|
2

and e = λ′−λ
2

are sufficient
to describe the evolution in M specific to the pair (λ, λ′). When ae 6= 0, the 3 numbers λ,
−λ, λ′ are distinct. Thus the primary angle in the data processing is γ = ∠(−au,Bu) with
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B = A− aI which is well-defined. The associated functional cos γ is 0 for γ = π
2
. This signals

that triangles with maximal surface are realised by midvectors v̂ such that K̂ = av̂ ∧ Bv̂ in R3

has maximal length |a|e. Whichever ratio e
|a| or |a|

e
is less than 1 yields the value cos γ associated

with the optimality of the secondary angles: αmax = φ, β = π
2

or βmax = ψ, α = π
2

respectively.
Now the associated maximisers, either v+ or v−, do depend on the values λ and λ′.

4. Variational principles, K = R or C

Now let us turn to the variational principles that are associated to the catchvectors and
antieigenvectors (and possibly to the midvectors) presented in the previous Section with the
extension to the ground field K = C, when A is an arbitrary hermitian matrix, A = AH ∈ Cn×n.

For any hermitian matrix Y , the ratio xHY x
‖x‖‖Y x‖ is real in [−1, 1] for any 0 6= x ∈ Cn. When

x ∈ Rn, the ratio can be interpreted as cos](x, Y x) thanks to Cauchy’s inequality. Because
x defines a real direction, the angle Y(x) = ](x, Y x) is a direction (or rotation) angle defined
mod 2π between the directions spanned by the real unit vectors x

‖x‖ and y = Y x
‖Y x‖ . Such a

geometric interpretation is not readily available for A hermitian since x ∈ Cn. In particular

the number Arcos |〈x,y〉|‖x‖‖y‖ in [0, π
2
] which is commonly referred to as angle(x, y) is of an analytic,

rather than geometric, nature. The question is discussed further in Section 6.
To avoid any ambiguity we use two distinct notations to represent an “angle” according to

K:
• K = Rn, Y(x) = ](x, Y x) ∈ [0, 2π] with geometric and analytic meaning,
• K = Cn, angle(x, y) ∈ [0, π

2
] with analytic meaning only.

4.1. A preparatory Lemma. Let us start with a preparatory lemma which will allow us to
set some of the results of Section 3 in terms of variational principles. Let be given two hermitian
matrices Y and Z, the product Y Z is hermitian iff Y and Z commute. We consider the real
functional

(4.1) c(x) =
xHY Zx

‖Y x‖‖Zx‖ ∈ R, 0 6= x ∈ Kn \ (Ker Y ∪Ker Z)

where Y and Z are hermitian and commute: Y Z = ZY . Thus |c(x)| = cos(angle(Y x, Zx)) if
K = C or c(x) = cos](Y x, Zx) if K = R.

Lemma 4.1. The Euler equation for (4.1) is given for 0 6= x ∈ Kn \ (Ker Y ∪ Ker Z),
〈Y x, Zx〉 6= 0 by:

(4.2)
Y 2x

‖Y x‖2 −
2Y Zx

〈Y x, Zx〉 +
Z2x

‖Zx‖2 = 0.

Proof. When K = R and Y = I, Z = A symmetric positive definite, the proof is easily adapted
from that of Theorem 3.2 on p. 36 in [Gustafson, 2012]. For the sake of completeness we
present below the proof for the general case Y Z hermitian, K = C.

In order to find (4.2), one looks for those x in Cn \ {0} which make the directional derivative

dc(x)

dy
(ε = 0) = lim

ε→0

1

ε
(c(x+ εy)− c(x)), ε ∈ C, 0 6= y ∈ Cn

vanish for all directions y ∈ Cn \ {0}. We consider for ε > 0 small enough

c(x+ εy)− c(x) =
(x+ εy)HY Z(x+ εy)

‖Y (x+ εy)‖‖Z(x+ εy)‖ −
xHY Zx

‖Y x‖‖Zx‖ =
N

D
, x /∈ Ker Y ∪Ker Z
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with

N = (〈Y Zx, x〉+ 2Rε〈Y Zy, x〉+ |ε|2〈Y Zy, y〉)‖Y x‖‖Zx‖
−〈Y Zx, x〉(‖Y x‖2 + 2Rε〈Y x, Y y〉+ |ε|2‖Y y‖2)1/2(‖Zx‖2 + 2Rε〈Zx,Zy〉+ |ε|2‖Zy‖2)1/2

D = (‖Y x‖2 + 2Rε〈Y x, Y y〉+ |ε|2‖Y y‖2)1/2(‖Zx‖2 + 2Rε〈Zx,Zy〉+ |ε|2‖Zy‖2)1/2‖Y x‖‖Zx‖.
Clearly D → (‖Y x‖‖Zx‖)2 as ε → 0. In order to find limε→0

1
ε
N , we consider limited series

expansions in ε for the terms in N to be subtracted:
1) ‖Y (x+ εy)‖ = (‖Y x‖2 + f(ε))1/2 = ‖Y x‖+ 1

2
1
‖Y x‖f(ε)− 1

8
1

‖Y x‖3f
2(ε) + . . . = ‖Y x‖+ r(ε),

2) ‖Z(x+ εy)‖ = (‖Zx‖2 + g(ε))1/2 = ‖Zx‖+ 1
2

1
‖Zx‖g(ε)− 1

8
1

‖Zx‖3 g
2(ε) + . . . = ‖Zx‖+ t(ε).

Here f(ε) = 2Rε〈Y x, Y y〉 + |ε|2‖Y y‖2 and g(ε) = 2Rε〈Zx, Zy〉 + |ε|2‖Zy‖2 are functions
which depend on ε taken sufficiently small relative to ‖Y x‖ and ‖Zx‖ respectively. Thus

N = (〈Y Zx, x〉+ 2Rε〈Y Zs, x〉+ |ε|2〈Y Zs, s〉)‖Ax‖‖Zx‖
−〈Y Zx, x〉(‖Y x‖+ r(ε))(‖Zx‖+ t(ε))

= (2Rε〈Y Zy, x〉+ |ε|2〈Y Zy, y〉)‖Y x‖‖Zx‖ − 〈Y Zx, x〉(‖Y t‖t(ε) + ‖Zx‖r(ε))
= (2Rε〈Y Zy, x〉+ |ε|2〈Y Zy, y〉)‖Y x‖‖Zx‖ − 〈Y Zx, x〉(1

2
‖Y x‖
‖Zx‖g(ε) + 1

2
‖Zx‖
‖Y x‖f(ε))

= (2Rε〈Y Zy, x〉+ |ε|2〈Y Zy, y〉)‖Y x‖‖Zx‖
−〈Y Zx, x〉[‖Y x‖‖Zx‖ (Rε〈Zx,Zy〉+ 1

2
|ε|2‖Zy‖2) + ‖Zx‖

‖Y x‖(Rε〈Y x, Y y〉+ 1
2
|ε|2‖Y y‖2)]

and
N
ε

= (2R〈Y Zy, x〉+ ε̄〈Y Zy, y〉)‖Y x‖‖Zx‖
−〈Y Zx, x〉[‖Y x‖‖Zx‖ (R〈Zx, Zy〉+ 1

2
ε̄‖Zy‖2) + ‖Zx‖

‖Y x‖(R〈Y x, Y y〉+ 1
2
ε̄‖Y y‖2)].

Finally we have

lim
ε→0

1

ε

N

D
=

2R〈Y Zy, x〉
‖Y x‖‖Zx‖ − 〈Y Zx, x〉

(
R〈Zx,Zy〉
‖Y x‖‖Zx‖3 +

R〈Y x, Y y〉
‖Y x‖3‖Zx‖

)
=

1

‖Y x‖‖Zx‖R〈y, V 〉, where V = 2Y Zx− 〈Y Zx, x〉
(

Z2x

‖Zx‖2 +
Y 2x

‖Y x‖2
)
∈ Cn.

The variational calculus imposes that R〈y, V 〉 = 0 for any 0 6= y ∈ Cn. Indeed, if V Hy = ib,
then V H(iy) = −b ∈ R should also be 0. Therefore R〈y, V 〉 = 0 for all y 6= 0 ⇔ V = 0 ⇔ x
satisfies (4.2).

�

By making appropriate choices for Y and Z, we shall obtain below an Euler equation corre-
sponding to either catchvectors (g2 > 0) or antieigenvectors (g2 < 0).

4.2. Catchvectors. When we choose Z = A and Y = I, equation (4.1) becomes

(4.3) c(x) =
xHAx

‖x‖‖Ax‖ = cos(angle(x,Ax)) ∈ R, 0 6= x ∈ Kn \Ker A

and its corresponding Euler equation (4.2) is

(4.4) A2x− 2
‖Ax‖2
〈x,Ax〉Ax+

(‖Ax‖
‖x‖

)2

x = 0

for 〈x,Ax〉 6= 0, x ∈ Cn \Ker A.

In order to solve (4.4) we set ‖Ax‖
2

〈x,Ax〉 = k(x) = k and
(
‖Ax‖
‖x‖

)2
= l(x) = l > 0. Then with

A = QDQH , y = QHx, ‖y‖ = ‖x‖, (4.4) can be written

(D2 − 2kD + lI)y = 0, y = (yi) ∈ Cn,
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that is, with D = diag(µi):

(4.5) (µ2
i − 2kµi + l)yi = 0, i = 1, . . . , n.

We consider the quadratic equation µ2
i − 2kµi − l = 0 whose coefficients k and l depend on

x = Qy. Observe that the discriminant is k2 − l = ‖Ax‖2
(
‖Ax‖2
〈x,Ax〉2 − 1

‖x‖2

)
: its sign is that of

(‖x‖‖Ax‖− |〈x,Ax〉|) ≥ 0 by Cauchy’s inequality. Eq. (4.4) is obviously satisfied when x is an
eigenvector: Ax = λx. Let us assume that x and Ax are independent. Eq. (4.5) entails yj = 0
for all j such that µ2

i − 2kµi + l 6= 0 and vice versa.
Since at most two different µj, µ

′
j can satisfy µ2

i − 2kµi + l = 0, i = 1, . . . , n, for any given
x = Qy, a vector x which is a solution of (4.4) is a linear combination of at most two eigenvectors
qj and q′j: x = yjqj +y′jq

′
j. Moreover this shows explicitly why the quadratic equation (1.1) and

the matrix A are intimately connected through spectral coupling. Thus, if λ < λ′ are the two
distinct roots {µj, µ′j} of the quadratic equation, x is a solution of (4.4) iff k(x) = a = λ′+λ

2

and l(x) = g2 = λλ′, 0 ≤ g2 < a2.
Let q, q′ be two orthonormal eigenvectors associated with λ < λ′ which span the invariant

subspace M with 4 real dimensions when K = C. The unit sphere (S) in R4 passing through
q and q′ consists of vectors u = zq + z′q′, |z|2 + |z′|2 = 1. When are the conditions k(u) = a,
l(u) = g2 > 0 satisfied for u ∈ (S)?

Proposition 4.2. The solutions of Euler’s equation (4.4) which are not eigenvectors are the
catchvectors v+ = eiξw+q + eiξ

′
w′+q

′, ξ, ξ′ ∈ [0, 2π[ corresponding to all couplings λ < λ′ such
that g2 = λλ′ > 0. They yield the critical value c(v+) = g

a
= sgn(a) cosφ.

Proof. For u = zq+ z′q′, ‖u‖ = 1, set |z|2 = τ , |z′|2 = 1− τ . k(u) = a ⇔ 2λ
2τ+λ′2(1−τ)
λτ+λ′(1−τ) = λ+ λ′

entails τ = λ′

λ+λ′
= w2

+ and 1− τ = λ
λ+λ′

= w′2+, hence u = v+. One checks that l(v+) = g2 > 0.

The conclusion follows from c(v+) = 〈v+,Av+〉
‖Av+‖ , 〈v+, Av+〉 = g2

a
= h 6= 0. Thus |c(v+)| = cosφ.

�

Corollary 4.3. If A is positive definite, the extreme coupling {λ1 = λmin, λn = λmax} yields

the global minimum (resp. maximum) cosφ(A) = 2
√
λ1λn

λ1+λn
(resp. sinφ(A) = λn−λ1

λn+λ1
).

Proof. Clear.
�

WhenK = R, this is one of the major theorems in Gustafson’s approach. Diverse applications
are presented in [Gustafson, 2012, chapters 4 to 8]. When K = C the global minimum for c(x)
equals g∗

a∗
= c(v+,∗), a value which, coincidentally, equals cosφ(A) displayed in the spectral

plane by the triangle OMC with the choice (λ1, λn), see Figure 3 (a).

4.3. Antieigenvectors. When A is indefinite, Section 3.2 with K = R suggests to choose
Z = A, Y = B, so that c(x) = cos](Bx,Ax) reduces to cos β when x belongs to the invariant
plane M. Thus, in this case equation (4.1) becomes

(4.6) c(x) =
xHABx

‖Ax‖‖Bx‖ ∈ R, 0 6= x ∈ Cn \ (Ker A ∪Ker B)

and the Euler equation is

(4.7) A2x− 2
‖Ax‖2
〈Bx,Ax〉ABx+

(‖Ax‖
‖Bx‖

)2

B2x = 0,

for 〈Bx,Ax〉 6= 0. We set k′(x) = ‖Ax‖2
〈Bx,Ax〉 , l

′(x) = ( ‖Ax‖‖Bx‖)
2. Using A = QDQH , B = Q(D −

aI)QH , y = QHx, ‖y‖ = ‖x‖, equation (4.7) can be written

[D2 − 2k′(D2 − aD) + l′(D − aI)2]y = 0, y = (yi) ∈ Cn,
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with D = diag(µi):

[(1− 2k′ + l′)µ2
i + 2a(k′ − l′)µi + l′a2]yi = 0, i = 1, . . . , n,

We consider now the quadratic equation

(4.8) (1− 2k′ + l′)µ2
i − 2a(l′ − k′)µi + l′a2 = 0.

The discriminant is 4a2(k′2 − l′) = 4a2‖Ax‖2
(
‖Ax‖2
〈Ax,Bx〉2 − 1

‖Bx‖2

)
: its sign is that of

(‖Ax‖‖Bx‖ − |〈Ax,Bx〉|) ≥ 0 by Cauchy’s inequality. We assume that 2k′ 6= 1 + l′ so that
(4.8) has degree 2. Hence at most two different µj, µ

′
j satisfy µ2

i − 2Kµi + L = 0, i = 1, . . . , n,

K = a(l′−k′)
(1−2k′+l′) , L = l′a2

(1−2k′+l′) , for any given x = Qy, a vector x which is a solution of (4.7)

is a linear combination of at most two eigenvectors qj and q′j: x = yjqj + y′jq
′
j. Thus, if we

denote λ < λ′ the two distinct roots {µj, µ′j} of the quadratic equation, x is a solution of (4.7)

iff K(x) = a and L(x) = g2, g2 = λλ′ < 0. We have the following result.

Proposition 4.4. When A is indefinite, the solutions of Euler’s equation (4.7) which are not
eigenvectors are the antieigenvectors v− = eiξw−q + eiξ

′
w′−q

′, ξ, ξ ∈ [0, 2π[ corresponding to all
couplings {λ, λ′} such that λ < 0 < λ′, g2 < 0, and λ′ 6= −λ. They yield the critical value
c(v−) = cosψ < 1.

Proof. 1) Let u = eiξq, Au = λu, Bu = −eu, 〈Bu,Au〉 = −λe and (4.7) is obviously satisfied:
(λ2 − 2λ2 + λ2)q = 0.

2) When u ∈ (S) is not an eigenvector, u may satisfy (4.7) iff K(u) = a and L(u) = g2

together with 2k′(u) 6= 1 + l′(u). This is always possible when g2 < 0 if e2 > −g2 ⇔ a 6= 0 ⇔
λ′ 6= −λ.

When g2 < 0, it is easy to check that u = zq+z′q′ should be such that τ = |z|2 = λ′

λ′−λ = w2
−.

Therefore u is any of the antieigenvectos v− which satisfy 〈Av−, Bv−〉 = −g2 < 0. Direct
computation shows that the antieigenvectors are the only solutions which are not eigenvectors.

3) c(v−) =
vH−BAv−
‖Bv−‖‖Av−‖ = − g2

e|g| = |g|
e

= cosψ < 1 for a 6= 0, which is the algebraic version of

the geometric condition O 6= C, that is OMC 6= OM .
�

We shall go back to the exceptional case a = 0 later in Section 4.5.

4.4. Midvectors. Section 3.3 with K = R suggests to use Y = −I, a 6= 0, Z = B = A − aI
in order to obtain the midvectors through (4.1). However the corresponding Euler equation for
this choice cannot yield the midvectors v̂ = 1√

2
(eiξq + eiξ

′
q′), ξ, ξ′ ∈ [0, 2π[ because (4.2) is not

defined for x = v̂ since 〈v̂, Bv̂〉 = e
2
〈eiξq + eiξ

′
q′,−eiξq + eiξ

′
q′〉 = 0. It turns out that these

vectors can be characterised in another way when A is invertible.

Proposition 4.5. When A is invertible, the solutions x ∈ Kn, ‖x‖ = 1 distinct from eigen-
vectors, of the equation

(4.9) A2x− 2
〈x,Ax〉
‖x‖2 Ax+

〈x,Ax〉
〈x,A−1x〉x = 0

are midvectors v̂ associated with all couplings λ < λ′ such that λ 6= −λ′ ⇔ a 6= 0.

Proof. 1) It is easily checked that 〈v̂, Av̂〉 = 1
2
(λ+λ′) = a. Because λλ′ 6= 0, A−1v̂ = 1√

2
( 1
λ
eiξq+

1
λ′
eiξ
′
q′) is well-defined, thus 〈v̂,Av̂〉

〈v̂,A−1v̂〉 = a
a
g2 = g2 when a 6= 0. The equality (A2−2aA+g2I)v̂ = 0

follows.
2) Direct computation shows that the midvectors v̂ are the only solutions in (S) which are

not eigenvectors.
�
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The case a = 0 is studied in Section 4.5. The equation (4.9) is called the balance equation
since its (non eigenvector) solutions are the midvectors v̂ independently of the nonzero values
λ < λ′ 6= −λ because the balance equation is defined only if A−1 exists. However the above
formula for v̂ is well defined even if λλ′ = 0 or λ′ = −λ, since it does not depend on λ and λ′.

If we set y = A−1x, Eq. (4.9) takes the remarkable form:

A3y

〈A3y, y〉 − 2
A2y

〈A2y, y〉 +
Ay

〈Ay, y〉 = 0.

This expresses a linear combination between the 3 vectors Ay, A2y, A3y computed from any
given y 6= 0.

Moreover, the midvectors can be indirectly related to the preparatory Lemma 4.1 when A is
definite thanks to the square root Y = A1/2 (resp. (−A)1/2) when A is positive (resp. negative)
definite. We suppose below that A is positive definite, so that 〈x,Ax〉 = ‖A1/2x‖2 > 0 for
x 6= 0. Then with Y = A1/2, Z = A−1/2, Y Z = I, equation (4.1) becomes

c(x) =
‖x‖2

‖x‖A‖x‖A−1

∈ R, x ∈ Cn \Ker A

where ‖x‖A = 〈x,Ax〉1/2 = ‖A1/2x‖ denotes the elliptic norm defined by A. The corresponding
Euler equation (4.2) takes the form

(4.10)
Ax

〈x,Ax〉 − 2
x

‖x‖2 +
A−1x

〈x,A−1x〉 = 0.

Multiplying (4.10) by A, we rewrite it in the equivalent form

A2x− 2
〈x,Ax〉
‖x‖2 Ax+

〈x,Ax〉
〈x,A−1x〉x = 0,

which is precisely the balance equation (4.9) of Proposition 4.5. Thus we have the following
result.

Proposition 4.6. When A is positive definite, (4.9) is the Euler equation associated with

minx 6=0
‖x‖2

‖x‖A‖x‖A−1
which represents either

(4.11) min
06=x∈Rn

cos](A−1/2x,A1/2x) or min
06=x∈Cn

cos angle(A−1/2x,A1/2x).

The solutions of the Euler equation (4.10) which are not eigenvectors are the midvectors v̂ =
1
2
(eiξq+eiξ

′
q′), ξ, ξ′ ∈ [0, 2π[ corresponding to all couplings λ < λ′ such that g2 = λλ′ > 0. They

yield the critical value c(v̂) = g
a

= sgn(a) cosφ

Proof. It is easy to check that ‖v̂‖2A = λ+λ′

2
= a and ‖v̂‖2A−1 = λ+λ′

2λλ′
= a

g2
.

�

Clearly, we can see that the global minimum is achieved for the extreme pair {λ1 = λmin, λn =

λmax} and a pair of associated midvectors at the value 2
√
λ1λn

λ1+λn
= cosφ(A).

We observe that when coupling λ < λ′, g2 = λλ′ > 0, the critical value of the functional (4.3)
( g
a

= sgn(a) cosφ) is the same as that of (4.11). It turns out that some of the real variational
approach of Section 4.4 on vectors x in Rn, ‖x‖ = 1, can be extended to rectangular matrices
X in Rn×p, 1 ≤ p ≤ n, such that XTX = Ip which define, when A is symmetric positive
definite, the positive functional X → Jp(X) = det[(XTAX)(XTA−1X)] for which a maximum
is sought. We obtain a generalisation of Proposition 4.6 which involves spectral chaining, that
is the simultaneous consideration of p spectral couplings, p < n. For more, see Section 4.6 in
[Chatelin and Rincon-Camacho, 2015b].

All this points to a relation between catchvectors and midvectors which is applied to Numer-
ical Analysis in Section 5.4 and to Statistics in Section 5.5.
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4.5. The exceptional case a = 0. Because a2 = e2 + g2, the case a = 0 may occur only for
g2 = −e2 < 0, λ′ = −λ = e = |g|: ±e are eigenvalues of A = B. Moreover, Lemma 2.1 entails
A2u = e2u for u ∈M, ‖u‖ = 1. Therefore A2

�M = e2I2: M is an eigensubspace for A2 associated

with e2 = −g2 > 0. Let us look at what the equations (i) (4.9) and (ii) (4.7) have to tell us
when a = 0.

(i) If a = 0 and x = v̂ ∈ D̂, the coefficient of v̂ in (4.9) takes the indeterminate form ag
2

a
.

In the limit a → 0, Eq (4.9) becomes A2v̂ + g2v̂ = 0 which represents a particular case of
A2u+ g2u = 0 valid for any u ∈M.

(ii) If a = 0, A = B and (4.7) becomes tautologic: A2x− 2A2x+ A2x ≡ 0, with k′ = l′ = 1.
So that (4.8) yields also 0 ≡ 0, Neither (4.7) nor (4.9) convey any information about c(x) =
xHA2x
‖Ax‖2 = ‖Ax‖2

‖Ax‖2 ≡ 1 for Ax 6= 0. We observe that, when λ′ = −λ = e, w2
− = w′2− = 1

2
so

that D− = D̂. And v− = v̂ yields the maximal value c(v−) = 1 which actually holds for all
x ∈ Cn \ Ker A. The global tautology is beyond the reaches of the spectral plane where the
triangle OMC is reduced to the segment CM (α + γ = π, β = 0).

Unless otherwise stated, we assume below that ae 6= 0, so that M is not an eigenspace for
A2, and OMC is not degenerate into OC or CM .

5. More on midvectors, K = R or C

We observe that the variational principles related to the midvectors presented in Section
4.4, when A is definite, do not indicate how one could extend from K = R to C the maximal
surface property (Σ(v̂) = maxu∈(C) Σ(u) = 1

2
|a|e) described in Section 3.3. However, Lemma

3.5 remains valid since the spectrum of a hermitian matrix is real. Thus, given λ < λ′, any
midvector in D̂ contains the spectral information which defines in the spectral plane the triangle
OMC with maximal surface 1

2
|a|e, see Figure 5. We shall see in Section 5.4 that in numerical

analysis, equality in the well-known Wielandt, Kantorovich and Greub-Rheinboldt inequali-
ties are attained by the midvectors when coupling the extreme pair {λ1 = λmin, λn = λmax},
[Horn and Johnson, 1985, pp. 441-445, 452]. This Section shows why the reason for these re-
sults can be traced to spectral coupling. By considering α, β, γ, we understand the nD-geometry
which underlies inequalities in R+.

5.1. Midvectors as bisectors. When coupling λ < λ′, clearly the midvectors v̂ ∈ D̂ are the
bisectors of the angle between the eigenvectors directions {q} and {q′}. If K = R, this can be
seen geometrically, v̂ = ε cos π

4
q + ε′ cos π

4
q′, ε = ±1, ε′ = ±1 and ](q, v̂) = ](v̂, q′) = π

4
, see

Figure 8. If K = C, the analytic definition only remains valid (angle(q, v̂) = angle(v̂, q′) = π
4
).

When A is invertible, A and A−1 share the same eigenvectors. Let us assume first that λ
and λ′ are positive and K = R or C. If we consider the catchvectors v+ and v̊+ respectively
associated with the arbitrary couplings (λ, λ′) for A and ( 1

λ′
, 1
λ
) for A−1, we have that the

midvectors bisect the angle between the directions of the catchvectors v+ and v̊+.

Proposition 5.1. When λ and λ′ are positive, the catchvectors v+ and v̊+ are symmetrically
placed with respect to the corresponding midvectors v̂. They envelop the same observation angle
0 ≤ φ < π

2
.

Proof. Without loss of generality, we may assume that v+ = wq+w′q′ in D+ and v̂ = 1√
2
(q+q′)

in D̂. By inversion, the catchvector v̊+ is defined by ẘ = (λ′( 1
λ′

+ 1
λ
))−1/2 =

√
λ

λ′+λ
= w′ and

ẘ′ = w. Thus v̊+ = w′q+wq′ is the symmetric of v+ with respect to the (real or complex) axis

spanned by v̂. It is colinear with the image Av+. Indeed Av+ = λwq+λ′w′q′ =
√
λλ′̊v+ = gv̊+.

�

5.2. Midvectors and catchvectors. As announced at the end of Section 4.4, the coupling of
λ < λ′, λ′λ > 0 yields, when A is positive definite, a relation between the catchvectors and the
midvectors given by the
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Lemma 5.2. Let v̂ be a midvector, and h = g2

a
be the harmonic mean. Then v+ =

√
hA−1/2v̂

is a catchvector, Av+ =
√
hA1/2v̂ and 〈A−1/2v̂, A1/2v̂〉 = 1

h
〈v+, Av+〉 = 1 = ‖v̂‖2.

Proof. By straightforward calculation: 〈v+, Av+〉 = h.
�

If A is symmetric (K = R), direction angles are well-defined. Since cos](A1/2v̂, v̂) =

cos](A−1/2v̂, v̂) =
√
λ′+
√
λ

2
√
a

, then ](v+, v̂) = ](v̂, Av+), the midvector v̂ bisects the angle

φ = ](v+, Av+), see the triangle OM ′C ′ on Figure 8 (a): OP ′ = h.
Lemma 5.2 indicates a non trivial algebraic connection between the roots of the quadratic

equations (4.4) and (4.9) which are not eigenvectors and are defined by pairs of positive eigen-
values (λ, λ′) in the associated invariant (real or complex) plane M.

5.3. Midvectors and antieigenvectors. The global connection in Lemma 5.2 based on A1/2

for A definite is replaced by a necessarily local one when A is indefinite. We restrict A to be
2× 2: A0 = A�M and B0 = A0 − aI2 : M→M.

When λ < 0 < λ′, A0 is indefinite as well as B0. However, the eigenvalues of F0 = A0B0 are
positive, being {−eλ, eλ′}. Observe the resurgence of −λ.

The relation between antieigenvectors v− and midvectors v̂ when λ < 0 < λ′ is given by the
following local analogue of Lemma 5.2 based on F0:

Proposition 5.3. When g2 < 0, let v̂ be a midvector. Then v− = |g|F−1/20 v̂ is an antieigen-

vector, F0v− = |g|F 1/2
0 v̂ and 〈F−1/20 v̂, F

1/2
0 v̂〉 = − 1

g2
〈v−, F0v−〉 = 1 = ‖v̂‖2.

Proof. Straightforward calculation. See the triangle OM ′C ′ on Figure 8 (b) valid when K = R:
v̂ bisects ψ = ](v−, F0v−) and v−, Av− are orthogonal (α = π

2
).

�

q

q ’

w+

w ′

+
v+

av+

Bv+

Av+

1

a
F0v+

M ′M ′

P ′

O

C ′

φ

β

θ+

v̂

q

q ’

w
−

w ′

− v
−

av
−

Bv
−

Av
−

F0v−

a
e2
F0v−

M ′

O

C ′

α

ψ

ψ

θ
−

v̂

(a) g2 > 0, a > 0, , β = π
2

(b) g2 < 0, a > 0, α = π
2

Figure 8. Midvectors as bisectors in M when K = R

We observe that when a = 0, e = |g| and F0 = e2I. Therefore v̂ = v−. Thus is established
the following

Corollary 5.4. The midvectors v̂ satisfy v̂ = 1
g
(aA0)

1/2v+ = ( 1
h
A0)

1/2v+ when g2 > 0 and

v̂ = 1
|g|F

1/2
0 v− when g2 < 0.
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Since F0 depends on the local parameter a = λ+λ′

2
, it is clear that the global optimisation

expressed in Proposition 4.6 can only be replaced by the following local one:

min
u∈M,u6=0

‖u‖2
‖u‖F0‖u‖F−1

0

= cosψ =
|g|
e

where ψ = ](F
−1/2
0 v̂, F

1/2
0 v̂) = ](v−, F0v−), if K = R.

5.4. Numerical Analysis. Here we consider the case where A is a positive definite hermitian
matrix with eigenvalues 0 < λ1 ≤ . . . ≤ λn. A relation between the maximal turning angle
φ(A) and the Wielandt angle θW related to the condition number of a matrix has been given
in [Gustafson, 1999]. However considering the three angles α, β, γ sheds more light on the
geometrical picture. Here we consider the coupling of the extremal pair of eigenvalues {λ1, λn},
with D̂∗ the corresponding set of midvectors.

The condition number of A
1
2 in the euclidean norm is cond(A

1
2 ) =

√
λn
λ1

= cot∠(q, v+,∗) =

cot θ+. The angle θW appearing in Wielandt’s inequality is defined in the first quadrant by

cot( θW
2

) = cond(A
1
2 ) so that θ+ = θW

2
and θW = π

2
− φ(A) = γ(A), see Figure 9. Thus,

Wielandt’s inequality for any pair of orthogonal vectors x, y ∈ Kn and A
1
2 is given by

(5.1)
|〈A 1

2x,A
1
2y〉|

‖A 1
2x‖‖A 1

2y‖
=
〈x,Ay〉
‖x‖A‖y‖A

≤ cos θW = cos γ(A) = sinφ(A) =
λn − λ1
λn + λ1

.

The angles γ(A) and φ(A) are complementary, thus if the turning angle φ(A) is large the
angle θW = γ(A) is small which indicates that the matrix A is ill-conditioned.

The equality is attained if x and y are precisely orthogonal midvectors in D̂∗. The case
K = R is illustrated in Figure 9 with v̂1 = 1√

2
(qn + q1) and v̂2 = 1√

2
(qn − q1), where q1

and qn are eigenvectors associated with the eigenvalues λ1 and λn of A. Figure 9 shows the
complementarity between γ(A) and φ(A). The smaller the angle γ(A) = ](A

1
2 v̂1, A

1
2 v̂2) =

](Av+,1, Av+,2), the closer the vectors A
1
2 v̂1, and A

1
2 v̂2 are to be dependent.

In [Horn and Johnson, 1985, p. 444], Kantorovich’s inequality is derived from Wielandt’s
inequality (5.1). However, Kantorovich’s inequality

(5.2)
‖x‖2

‖x‖A‖x‖A−1

≥ 2
√
λ1λn

λ1 + λn
= cosφ(A)

is equally a direct consequence of Proposition 4.6 where equality is attained if x is any midvector
v̂ in D̂∗. In Figure 9 the geometrical meaning of the angles φ(A) and θW = γ(A) when K = R
is illustrated: ‖v̂‖2

‖v̂‖A‖v̂‖A−1
= cos](A−1/2v̂, A1/2v̂) = cosφ(A). See also [Gustafson, 2012, p.188].
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√
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√
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√
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γ
2

v̂1v̂2

Figure 9. A midvector pair in D̂∗, K = R

The Greub-Rheinboldt inequality was introduced in 1959 as a generalisation of the Kan-
torovich inequality (5.2) [Horn and Johnson, 1985, Chapter 7, Problem 10, p. 452]. Let us
assume that the commuting matrices Y and Z in Section 4.1 are positive definite such that
A = Y Z. If the eigenvalues of Y and Z, ordered by increasing magnitude, are denoted by yi
and zi, i = 1 to n, then λi = yizi are the eigenvalues of A = Y Z. Then the Greub-Rheinboldt
inequality can be written

(5.3) c(x) =
xHY Zx

‖Y x‖‖Zx‖ ≥ 2

√
λ1λn

λ1 + λn
= cosφ(A).

Greub and Rheinboldt tell us that the (analytic) angle between the directions Y x and Zx
may equal, at its maximum, the turning angle φ(A) for the matrix product A = Y Z. This
is but an easy consequence of Corollary 4.3. Following [Gustafson, 2004, Theorem 1] with

y = Zx, c(x) = yHY Z−1y
‖Y Z−1y‖‖y‖ ≥ cosφ(Y Z−1) ≥ cosφ(A) since the eigenvalues yi

zi
for Y Z−1 may

not be ordered by magnitude. We discuss the final remark in Horn and Johnson (Problem
10): when is equality achieved in (5.3)? Given a catchvector v+ ∈ D+∗ for A, the equality

vH+Av+ = g2

a
= h requires that ‖Y v+‖‖Zv+‖ = ‖v+‖‖Av+‖ = g for A = Y Z. Computation

shows that necessarily one factor is rI, the other 1
r
A with r > 0 arbitrary: r = 1 is precisely

the choice made in Section 4.2. Other choices for Y and Z cannot yield other maximisers, but
can achieve equality.

5.5. Statistics. When K = R some of the matrix identities that are used in statistics and
econometrics [Gustafson, 2002, 2012, chapter 6], [Wang and Chow, 1994] can benefit from the
light provided by Sections 4.4 and 5.2. As a consequence of Lemma 5.2 we get, for A positive
definite, the equality:

(5.4) cos](A−1/2v̂, A1/2v̂) = cos](v+, Av+) =
g

a
,

see Figure 9. This equality finds an interesting application in Statistics for the measure of the
efficiency of least squares proposed in [Bloomfield and Watson, 1975] as

min Jp(X)−1 = [det(XAX)(XA−1X)]−1, XTX = Ip, p ≤
⌊n

2

⌋
where A is the noise covariance matrix. Bloomfield and Watson have shown that the worst
regressors consist of pairs of midvectors associated to the nested sequence of p eigenvalue pairs
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(λ1, λn), (λ2, λn−1), . . . (λp, λn−p) for the covariance matrix. On the other hand [Gustafson, 2002,
pp. 147-150] and [Gustafson, 2012, Theorem 6.1, p. 93] relate the worst regressors to catchvec-
tors. Equality (5.4) is the reason why the two points of view are equivalent. For more along
these lines, the reader is referred to [Chatelin and Rincon-Camacho, 2015b, Section 4.6]. The
potential domains of application are many, from econometrics to computational inverse prob-
lems and machine learning.

6. The 4D-invariant subspace when K = C

6.1. Angles between complex lines in real geometry. When x and y are nonzero com-
plex vectors, the angle between the complex directions that they define is a subject that
is rarely treated, even in advanced textbooks on linear algebra [Scharnhorst, 2001]. Since
Cn ∼= R2n two complex lines define two real planes in a space of at least 4 real dimensions.
Generically two Jordan (canonical) real angles are necessary to specify the relative position
of two arbitrary real planes [Jordan, 1875]. In the present context where A is hermitian,
there is a vast geometric simplification. One can show that the two Jordan angles are equal
[Kwietniewski, 1902, Maruyama, 1950, Wong, 1977, Theorem 1.7.4]. See also [Gustafson, 2012,
chap. 9, Section 9.2, p. 186].

6.2. Angles between real planes in M. We consider the coupling λ < λ′ and the associated
4D-subspace M spanned by the respective eigenvectors q and q′. Any u = zq + z′q′ belongs
to the unit sphere in 4 dimensions (S) = {(z, z′), |z|2 + |z′|2 = 1, z, z′ ∈ C}. When u is not
an eigenvector and a 6= 0, the three complex vectors au, Au, Bu define three real planes all
passing through O. It is not an easy matter to interpret in 4D the angles α, β and γ which are
Jordan canonical angles between the 3 planes. It is clear that the triangle OM ′C ′ which lies in
the 2D-plane M when K = R and the trigonometric information it provides (Fig. 2) have no
general counterparts when K = C. Hence no known trigonometric interpretation is available
to us in 4D. However, the properties of the triangle OMC in the spectral plane (Fig. 1) cover
both cases K = R and C. Therefore a 2D-trigonometric interpretation involving ordinary
angles remains available in the spectral plane.

6.3. The distinguished sets D±, D̂ in R3. We recall that the cartesian product of two circles
S1 × S1 ⊂ C2 is homeomorphic, in topology, to a torus in R3. The three distinguished subsets
D±, D̂ of the unit sphere (S) = S3 ⊂ R4, which signal orthogonality in M ⊂ Cn between 2 of
the 3 complex vectors u, Au, Bu, can therefore be interpreted as tori in R3. Indeed

i) D+ = w+S
1 × w′+S1, 1 > w2

+ > w′2+ > 0, g2 > 0,
ii) D− = w−S

1 × w′−S1, w2
− 6= w′2− in ]0, 1[, g2 < 0,

iii) D̂ = ŵS1 × ŵS1, ŵ = 1√
2
.

In case i) or ii) with a 6= 0 the radii w and w′ are distinct and yield a ring torus. And in
case ii) with λ = −λ′ or iii) the equal radii 1√

2
yield a horn torus, see Figure 10.
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r
R

R = r

(a) i) or ii) a 6= 0 (b) iii) or ii) a = 0
R = w′− and r = w− if w′− > w− R = r = ŵ = 1√

2

R = w± and r = w′± if w′± < w±

Figure 10. Distinguished tori in R3 when K = C

6.4. Invariance and derived optimality. Because of the difference in dimension, the transfer
of information from the 4D invariant subspace M to the 2D spectral plane is not as conservative
as it is when K = R: it provides only an image of the 4D real evolution.

The dimension reduction has an important impact on the functional 1
e
〈x,Bx〉 when x ∈ Cn,

‖x‖ = 1. Whereas it is still true that 〈v̂, Bv̂〉 = 0 implies that cos γ = 0, i.e. the triangle OMC
has maximal surface, this R2−property tells us nothing about the geometric configuration in
R4. This is confirmed by the fact that the balance equation (4.9) which characterises v̂ in D̂
when detA 6= 0 does not express a variational principle in Cn when A is indefinite. And when
it does (A definite, Proposition 4.6), the functional cannot be interpreted in terms of a planar
surface. Accordingly, there is no analogue to the connexion vector K(u) when u is considered
in R4 (no vector product). But it remains true that, if a = 0, M is the complex eigenplane for
A2 associated with e2.

When the ground field is complex, the above theory allows us to state the following

Theorem 6.1. When ae 6= 0, the triangle OMC in the spectral plane carries exact information
about local evolution in the invariant subspace M in the following 3 orthogonality cases

(i)〈x,Ax〉 = 0, (ii)〈Bx,Ax〉 = 0, (iii)〈x,Bx〉 = 0

when 0 6= x ∈ Cn \Ker A ∪Ker B. More precisely, the following 3 statements hold:
(i) OMC is right-angled at O, that is α = π

2
when g2 < 0: this signals that x is an antieigen-

vector v− in D−, ‖Av−‖ = |g| and 〈Bv−,Av−〉
‖Bv−‖‖Av−‖ = |g|

e
= cosψ is minimum when x ∈M.

(ii) OMC is right-angled at M , that is β = π
2

when g2 > 0: this signals that x is a catchvector

v+ ∈ D+, ‖Av+‖ = g and 〈v+,Av+〉
‖v+‖‖Av+‖ = g

|a| = cosφ is minimum when x ∈M.

(iii) OMC is right-angled at C, that is γ = π
2

when g2 6= 0: this signals that x is a mid

vector v̂ in D̂, ‖Av̂‖ =
√
a2 + e2.

Proof. Clear from the above discussion. We recall that the ordinary φ or ψ are not readily
related to the Jordan canonical angles between 2 complex lines in at least 4 real dimensions.

�

A comparison between Corollary 2.3 for K = R and Theorem 6.1 for K = C indicates that
the price for greater freedom in real evolution, from 2 to 4D, is paid by a global loss in geometric
intelligibility. However, more can be said in the complex case. We first turn to Lemma 2.1 which
remains valid for K = C. We recall that B = A− aI, F = AB, and we define G = 1

e
F − eI.
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Proposition 6.2. For any u in M, ‖u‖ = 1, the norms of the colinear vectors 1
a
Bu and 1

e
Gu

are invariant with value e
|a| and |a|

e
respectively.

Proof. Direct consequence of Lemma 2.1 where cos θ and sin θ are replaced by z and z′. The
R-dependent vectors f1(u) = 1

a
Bu = e

a
ũ and f2(u) = 1

e
Gu = a

e
ũ describe the spheres e

|a|(S) and
|a|
e

(S) respectively.
�

The relation a2 = g2 + e2 entails one of the two possibilities: (i) g2 > 0, ( g
a
)2 + ( e

a
)2 = 1 and

cosφ = g
|a| , (ii) g2 < 0, ( |g|

e
)2 + (a

e
)2 = 1, and cosψ = |g|

e
.

The complexification of the ground field has put into full light the difference in signification

for the ratios between |a|, e and |g|. Both ratios e
|a| and |a|

e
are new invariants for M which

represent ‖f1(u)‖ and ‖f2(u)‖ as u describes the unit sphere. By contrast, only one of the

ratios g
|a| or |g|

e
can be achieved on the distinguished subset D+ or D− inside M. Proposition

6.2 tells us that there is much more geometric signification for e
|a| or |a|

e
than the simple sine

interpretation they may acquire from optimisation of the quadratic forms xHAx (g2 > 0) or
xHABx (g2 < 0). For example, the end points of f1(u) and f2(u) are inverse in the unit sphere
(S) centered at O.

6.5. Confinement to the real 2D-subspace of M. When the components z and z′ for u
in M are kept real, uR = cos θ q + sin θ q′ describes the unit circle in the real plane MR which
is the real 2D-subspace of the complex invariant plane M. In this section, all underscripts R
refer to the real evolution in M under A which is clearly confined to the plane MR. It follows
readily that the real analysis presented in Section 2 and 3 applies when uR and MR replace the
former u and M. This is true in particular for Figures 3 (b), 4 (b), 5 and 6 (c-d). The triangle
OM ′C ′ provides an exact image for the real version of the complex evolution.

The result remains valid in any rotated plane eiξMR associated with eiξuR = eiξ cos θ q +
eiξ sin θq′, where z and z′ are R-dependent. This dependence between z and z′ is precisely the
reason why there exists an exact 2D-image. Such a representation vanishes when z and z′ are
R-independent.

7. Conclusion and perspective

The report has advanced our understanding of the dynamics of a general hermitian matrix
A by structural coupling associated with λ < λ′ in the following directions:

1) The matrix A need not be definite, so that the spectral distributions λ < 0 < λ′, λ = 0 or
λ′ = 0 are acceptable.

2) In addition to λ and λ′, the value −λ also plays a role. This is a surprising fact when
a 6= 0, λ′ 6= −λ and −λ may or may not be an eigenvalue of A.

3) When a 6= 0, the matrices B = A − aI and AB − A2 − aA play a significant role. For
example the R-dependent vectors f1(u) = 1

a
Bu and f2(u) = 1

e2
ABu − I have inverse constant

norms e
|a| and |a|

e
for any normalised u in the invariant (real or complex) plane M (isomorphic

to R2 or R4). This leads to geometric inversion in the unit (real or complex) circle.
4) The real (resp. complex) evolution in R2 for K = R (resp. R4 when K = C) can be

exactly (resp. partly) interpreted by the geometry/trigonometry of a triangle expressing that
Bu = Au− au in M.

5) Each of the 3 ordinary angles α, β, γ in the triangle has its own raison d’être. It is
unexpected that their being right angles signals three kinds of optimal property taking place
in Kn. For example, the fact γ = π

2
is achieved by midvectors having the remarkable property

that they do not depend on the chosen couple (λ, λ′). They are the common midvectors for all
matrices with varying spectra and fixed eigenbasis.
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6) There exists a unique generic variational principle in Kn(K = R or C) which can be
specialised into the three different principles expressing orthogonality between lines (K = R)
or planes (K = C) in the invariant subspace inside Kn.

The report only represents a first step towards a systematic treatment of spectral coupling
for a general hermitian matrix. Many questions remain open which suggest future directions for
research. Spectral chaining is one new direction. It was presented by invitation at the AMS Re-
gional Meeting at CSU Fullerton, CA in October 2015 [Chatelin and Rincon-Camacho, 2015a].
The other direction currently under investigation is, for K = C, the confinement of u to R×C
so that the connection vector K(u) = au ∧Bu can be defined. More generally, we aim at fur-
thering our understanding of the differences between K = R and C.
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