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Abstract— Variational assimilation of in-situ data for the 
description of the salinity field in the Berre lagoon is 
explored. The Berre lagoon is a receptacle of 1000 Mm3 
where salty water from the Mediterranean Sea meets fresh 
water discharged by the hydroelectric plant at Saint-
Chamas and by natural tributaries. Its dynamics are 
represented by a 3D hydraulic model that simulates the 
mean tracer and current fields. This simulation should be 
further improved to allow for the optimization of the 
operation of the hydroelectric production while preserving 
the lagoon ecosystem. A 3D-Var FGAT data assimilation 
algorithm is used to correct the initial salinity state over a 
1-hour time window assimilating observations at three 
fixed buoys each equipped with 5 XBT sensors in the 
vertical every 15 minutes. The minimization is performed 
in a space spanned by vectors of the size of the observation 
vector in order to reduce both memory usage and 
computational cost. The background error covariance 
matrix for salinity is modelled using a diffusion operator. 
The sequential correction of the salinity state improves the 
representation of the strongly stratified salinity field over 
the assimilation window as well as in the short-term 
forecast. The sensitivity of the assimilation to the 
background error horizontal and vertical length scale was 
investigated in single observation experiments as well as in 
a real case study. 

I. INTRODUTION 
 The Berre lagoon is a receptacle of 1000 Mm3 where 
salty water from the Mediterranean Sea, through the Canal de 
Caronte, meets fresh water discharged by the hydroelectric 
plant at Saint-Chamas and by natural tributaries (Arc and 
Touloubre rivers). The Laboratoire National d'Hydraulique et 
d'Environnement (LNHE) aims at optimizing the operation of 
the hydroelectric production while preserving the lagoon 
ecosystem. To achieve this objective, improving the quality of 
the simulation and more specifically the description of the 
salinity state is essential. The hydrodynamics of the lagoon is 
modelled with a 3D resolution of the shallow water equations 
using the TELEMAC-3D (T3D) software developed by 
Electricité De France (EDF R&D) coupled with the water 

quality model DELWAQ developed by DELTARES. The 
proper representation of the stratified salinity and temperature 
fields as well as the 3D currents was identified as a valuable 
research objective with direct applications for both electricity 
production and ecological matters. These fields drive the time 
of residency for the water masses in the lagoon and thus the 
phytoplantonic bloom. Indeed, the haline stratification is 
intensified by the inflow of the salty waters from the 
Mediterranean Sea and of the fresh waters from the 
hydroelectric power plant. The deep waters are thus anoxied 
and the nutriments are trapped in the deep waters of the 
lagoon. When the wind blows, mixing occurs, the entire water 
column is oxigenized and the nutriments are consumed by the 
phytoplancton. Three fixed buoys in the lagoon and one in the 
Canal de Caronte are equipped with five XBT (eXpendable 
BathyThermograph) sensors along the vertical that measure 
the temperature and salinity every 15 minutes. These data are 
gathered by the GIPREB (Groupement d'Intérêt Public pour la 
Réhabilitation de l'étang de Berre) and allow, since 2005, the 
European Comission to ensure that France is applying the 
decree issued in 1987 to protect the Mediterranean waters 
against pollution. 
 
Preliminary studies on the calibrated 11 vertical plan T3D 
model [1] were carried out to quantify the difference between 
a reference simulation and the observations on a test period. 
Most uncertainty comes from the maritime, fluvial and 
meteorological boundary conditions. More specifically the 
fresh water input from the Touloubre and the Arc influents is 
under-estimated, some fresh water inputs from minor influents 
are neglected and the evapotranspiration is over-estimated. 
The temporal variability of these errors in fresh water inputs 
was partly corrected by adding an artificial input at Caronte 
ranging from 3.5 to 15 m3s-1. With this correction, the lagoon 
mean salinity drift was reduced by 30% over September-
December 2006. Still, the temporal intra- and inter-annual 
variability of this artificial correction is difficult to estimate 
and the hydraulics state simulated by the model remains 
imperfect: the currents tend to be under-estimated and the 
difference between the simulated salinity and the observations 
can reach up to several g/l. These uncertainties could be 
corrected with a data assimilation (DA) algorithm.  
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Significant advances have been made in recent years in 
hydraulic DA for water level and discharge prediction [2], as 
well as for parameter estimation [3], using in-situ as well as 
remote sensing data [4]. Recent studies have showed the 
benefits that  hydrology and hydraulics can draw from the 
progress of DA approaches using either variational methods 
[5], particle filtering [6], Extended Kalman Filter [7], 
Ensemble Kalman filter for state updating [8], or for dual 
state-parameter estimation [9]. Some studies are formulated in 
an operational setting and demonstrate the performance gained 
from DA for operational flood and inondation forecasting 
[10,11,12]. DA offers a convenient framework for integrating 
observations into a numerical model in order to provide 
optimal estimates of poorly known parameters and simulated 
model states and thus, to improve predictions. The key idea is 
that, when used alone, neither measurements nor numerical 
models can provide a reliable and complete description of the 
real state of the physical system. While the merits of DA have 
been largely demonstrated in the global and coastal ocean 
fields [13,14] they are yet to be fully taken advantage of in 
lakes and lagoon hydrodynamical modelling systems. 
 
In this paper, a collaborative work between LNHE and 
CERFACS (Centre Européen de Recherche et de Formation 
Avancée en Calcul Scientifique) is described to develop a DA 
algorithm for T3D that exploits the continuous in-situ salinity 
measurements at three locations in the Berre lagoon. Similarly 
to the meteorological and oceanographic approaches [15], the 
observations are used sequentially to update the hydrodynamic 
state. More specifically, a 3D-Var FGAT algorithm presented 
in Section 2, is used to correct the salinity state at the 
beginning of an assimilation window (or cycle) over which 
several observations are available. This incremental 
variational assimilation algorithm relies on the hypothesis that 
corrections to the model state are approximately constant over 
a chosen time window. Sensitivity experiments show that in 
order to cope with this constraint, the analysis time window 
should be at most 3h. With the current T3D Berre model, as 
the number of observations over an assimilation window is 
significantly smaller than the size of the model state vector 
(less than 100 observations compared to approximately 70000 
cells), the minimization is performed in a space spanned by 
vectors of the size of the observation vector. This allows us to 
reduce significantly both memory usage and computational 
cost [16]. The background error covariance matrix for salinity 
is modelled using a diffusion operator [17]. Preliminary 
results from the 3D-Var FGAT system are presented in 
Section 3. The sequential correction of the salinity state 
improves the representation of the strongly stratified salinity 
field over the assimilation window as well as in the short-term 
forecast. The sensitivity to the horizontal and vertical length 
scale was investigated in single observation experiments as 
well as in a real case study. 

II. VARIATIONAL DATA ASSIMILATION ALGORITHM  
3D-Var FGAT (3D variational method with First Guess at 
Appropriate Time) can be derived as a simplification of 4D-

Var in which the temporal dependence of the analysis is 
neglected. The 4D-Var algorithm formulates the difference 
between the numerical model outputs and the observations 
over the assimilation window [t0,tT] as a function of the initial 
state of the system x=x(t0), called the control vector (n-
dimensional). This cost function is regularized by a 
background term that penalizes the distance to the background 
state xb which is the model estimate of this initial condition 
(prior to the assimilation). The statistics of its errors are 
described by the background error covariance matrix B. The 
observation vector yo is a vector of size N that gathers the 
observations available in space and time over the assimilation 
window. The statistics of its errors are described by the 
observations error covariance matrix R (assumed to be 
diagonal in the following). The inverse of the background and 
observation covariance error matrices define the weighting 
matrices of the quadratic terms in the cost function  
     J(x) = 1

2
(x− xb )TB−1(x− xb )+ 1

2
(G(x)− yo )TR−1(G(x)− yo ).   (1)    

In order to compute the model equivalent of the observation 
vector, the initial state x is propagated over the assimilation 
window by the dynamical model Mt0,tT, then mapped to the 
observation space using the observation operator H. The 
composition of H and Mt0,tT is the generalized observation 
operator denoted by G; it is non linear as the dynamical model 
is non linear with respect to the control vector. The initial state 
that minimizes the cost function is called the analysis xa. It can 
be integrated forward in time to produce a forecast beyond the 
assimilation time window. 
 
The minimization of the non-quadratic cost function J is 
usually achieved as a sequence of minimizations of 
approximated quadratic functions where a local linearization 
of the generalized observation operator is used. This is the 
incremental formulation that aims at identifying a correction  
δx to the background state such that xa = xb + δxa. The 
generalized observation operator is linearized around a 
reference state, usually chosen as the background, that 
requires the formulation of the tangent-linear Mt0,tT and H of 
the nonlinear model Mt0,tT  and of the observation operator H 
with respect to x so that  
  G(x) =HMt0,tT .                                           (2) 
The incremental cost function Jinc reads: 
           Jinc (δx) =

1
2
δxTB−1δx+ 1

2
(Gδx−d)TR−1(Gδx−d)            (3) 

where d is the innovation vector that denotes the difference 
between the observation vector and the background trajectory 
integrated from the background state with Mt0,tT. The 3D-Var 
FGAT algorithm lies on the hypothesis that the tangent-linear 
Mt0,tT can be approximated by the identity matrix, meaning that 
the dynamics of a perturbation to the state vector is 
represented by a persistence model. The first reason for 
choosing this approach is that, as of today, the tangent-linear 
model of T3D with respect to the initial state is not yet 
available. The second reason is that the cost of the 3D-Var 
FGAT is much smaller than that of the 4D-Var while still 
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providing satisfying results (for instance in the fields of meteo 
and ocean) when the B is properly described.  
The exact solution of (3) is obtained by setting the gradient of 
Jinc to zero, which yields [18] 
  δx a= (B−1 +GTR−1G)−1GTR−1d.                    (4) 
Since the matrices in (4) are large and only available in 
operator form (i.e., as a matrix-vector product), an 
approximate solution is usually found by iteratively solving a 
linear system. The minimization of Jinc can either be solved in 
the primal space spanned by vectors of the size of the model 
control vector, or, using the Sherman-Morrison-Woodbury 
formula [19], in the dual space spanned by vectors of the size 
of the observation vector. The dual approach is advantageous 
in the present study since the size of observation space is 
significantly smaller than the size of the control vector. The 
analysis in the dual formulation reads  
  δxa = BGT (GBGT +R)−1d                          (5) 
which is solved iteratively with a conjugate gradient method 
applied to the N*N linear system  
         (GBGT +R)λ = d         and     δx = BGTλ.                      (7) 
This linear system can be preconditioned by R-1 in order to 
accelerate the convergence. The algorithm is known as PSAS 
[20]. A prohibitively large number of iterations may be 
required to obtain an acceptable solution with PSAS. [21] 
proposed an alternative way to solve this problem while 
ensuring that during the minimization process the current 
iterate is the same as the one found when minimizing in the 
primal space with a conjugate gradient algorithm 
preconditioned by B. The details and the implementation of 
this algorithm called RBCG are given in [16]. 
 
The B operator is described by the integral equation 
  B(ς (z)) = B(z,z ' )∫ ς (z ' ) dz '             (8) 

with z=(z1, z2, z3) representing the spatial directions and B(z,z') 
the covariance function for any variable ζ(z). The modelling 
of the covariances is usually separated into two operators: one 
for the variance and one for the correlations. The correlation 
operator is modelled using an implicitly formulated 3D 
diffusion equation. This method and its implementation with 
an implicit scheme are presented in [22]. In the present 
framework, the correlation functions are described applying 
the diffusion operator with different diffusion coefficents in 
the vertical and horizontal directions that relate to the vertical 
and horizontal correlation length scales. Ad-hoc estimates 
(isotropic and homogeneous) for these length-scales are used 
here but objective estimates should be further investigated 
with an ensemble approach.  

III. RESULTS  

A. Single observation validation experiment 
In order to validate the 3D-Var FGAT algorithm, a single 
observation is assimilated at the closest grid point to SA1 
(point A), at -5m deep for January 1st 2008 with a diagonal B 
matrix. Here,  the DA procedure comes down to computing a 
weighted average where the background and observation 

weights are given by the background and observation error 
variances. When these are both arbitrarily set to 0.25 psu2, and 
given that the observed salinity is equal to 26.434100 psu 
while the simulated salinity is 26.6386 psu, the analysis 
increment given by the RBCG (Restricted B-preconditioned 
Conjugate Gradient) minimization is δx =-0.1022501 psu, 
which is, as expected half of the BmO (Background Minus 
Observation computed for salinity) value. It should be noted 
that the RBCG converges in one single iteration and it was 
also verified that when the variances are modified, the analysis 
changes accordingly: it remains close to the background when 
the observation error variance increases and gets closer to the 
observation when the background error variance increases.  
 
When the B matrix is not diagonal, the difference between the 
simulated and observed salinity at the observation points 
translates into a correction at the neighbouring points. The 
horizontal and vertical spatial repartition of the information is 
prescribed by the background error correlation functions; 
more specifically by the horizontal and vertical correlation 
length-scales Lh and Lv. Fig. 1 presents the horizontal 
correlation function for point A when Lh=600m. It should be 
noted that the 0.5 isocontour plotted in white describes a circle 
of radius equal approximately to 600m, centered in A. It 
should also be noted that the maximum correlation in A is not 
exactly equal to 1 (as it should be in theory) because of a 
normalization procedure within the diffusion operator method 
that is beyond the scope of this paper. 
 

 
Figure 1: Correlation function (dimensionless) prescribed for point A with 
Lh=600m over the Berre Lagoon area where SA1 is located.  

 
Similarly, the vertical repartition of the increment relates to Lv 
that prescribes the shape of the vertical correlation function. 
The increment is presented in Fig. 2 when Lv=0.5m. 
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Figure 2: Salinity increment (in psu, on the y-axis) for the single observation 
experiment, plotted at point A along the vertical (in m, on the x-axis). 
 
 

 
a- 

 
b- 

Figure 3: Salinity (in psu) at the 5 observation points at SA1 along the vertical 
for Lh=200m, a- Lv=0.5m and b- Lv=2m over 24 assimilation cycles of 1 hour. 
Only the observation at 5m deep are assimilated. 

 
In the following, the observations are used at their real 
measurement location (generally, not at a grid point), meaning 
that the computation of BmO implies a spatial interpolation 
(horizontal and vertical) that represents the observation 
operator H presented in Section 2.  
 
The observations at SA1, at 5 m deep are now assimilated 
every 15 minutes with an assimilation window of 1 hour, 
meaning that a correction to the initial salinity state is 
computed from the 3D-Var FGAT algorithm using 4 
observations in the minimization process. This analysis is 
cycled over 24 hours and the results are presented in Fig. 3a- 
for Lh=200 m and Lv=0.5 m and in Fig. 3b- for Lh=200 m and 
Lv=2 m. For each panel, the salinity is represented at SA1, at 
different vertical depths that correspond to the 5 XBT sensors 
positions, as a function of time over 24 h, at observation times 
only. The observations are represented in red, the T3D Free 
Run (no assimilation) is plotted in black, the background (for 
the current cycle) is plotted is green and the analysis is plotted 
in blue. First, it should be noted that at 5 m deep (where the 
observations are assimilated), the salinity is significantly 
improved and brought closer to the observations (the 
background and observation errors variances are set to 4 psu2). 
The difference between the analysis and the observation is 
systematically reduced at the beginning of the assimilation 
window when the correction is applied, then the model is 
integrated over 1 hour and deviates from the observations. The 
analysis salinity value at the end of the assimilation window is 
the background initial salinity state for the following cycle. 
The 1-hour integration of the background state can thus be 
considered as a 1-hour prevision following the 1-hour 
assimilation window. It should then be noted that the 3D-Var 
FGAT algorithm improves the salinity over the assimilation 
period as well as over a forecast period of 1 hour. 
 
When Lv=0.5 m (Fig. 3a-), the assimilation of the observations 
at 5m deep has no impact on the rest of the water column at 
SA1 where no observations are assimilated. On the contrary, 
when Lv=2 m (Fig. 3b-), the salinity is corrected over the 
entire water column. Whether this correction improves or not 
the salinity depends on the coherence between the spatial 
correlation of the errors in the simulated salinity field and the 
correlation function prescribed in B. It also depends on the 
dynamics of the increment injected at the initial time, this 
issue will be addressed in the next subsection. Finally, it 
should be noted that the minimization for each cycle now 
converges in a small number of iterations, the cost function Jinc 
(3) is reduced and its gradient is brought to zero. 

B. Real-case study: Assimilation of all SA1 observations  
Fig. 4a- displays the results of the assimilation of all the 
observations at SA1 for the 5 vertical levels, over 24 hours 
with a 1-hour assimilation window when Lh=200m and 
Lv=0.5 m. At each level, the salinity is brought closer to the 
observations over the assimilation and the forecast period. 
Still, it should be noted that the effect of the increment applied 
at the beginning of the cycle can lead to an over-correction as 
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observed at 1m deep for t in [54000 s, 72000 s]  where the 
forecast (the background plotted in green) exceeds the Free 
Run so that the distance to the observation is increased by the 
DA procedure. This might be due to the too simple description 
of Lv that is here constant along the vertical and too large 
close to the surface as the salinity errors in the mixed layer 
(down to 3 or 4 m deep) are weakly correlated with the 
salinity errors in sub-surface where the stratification is strong. 
Under the mixed layer, as the salinity errors are strongly 
correlated, the correction from the assimilation at one level 
has a positive impact on the other levels. In order to account 
for the spatial variability of the salinity errors in the DA 
process, on-going developments aim at allowing for an 
inhomogeneous description of the correlation length scales. 
Preliminary tests showed that the spurious correction at 1m is 
significantly reduced when Lv=0.25 m, but on the other hand, 
the improvement for deeper level is slighlty reduced as 
illustrated in Fig. 4b-.  
 
The 3D-Var FGAT salinity increment for the first assimilation 
cycle at 1 m deep is shown in Fig. 5a- for Lh=600 m and 
Lv=0.25 m and the resulting corrected salinity field at the t=0 s 
is shown in b-. The pink triangle represents the T3D grid 
element that contains the observation point SA1. As expected, 
the spatial repartition of the correction is prescribed by the 
correlation length scale, still the evolution of this increment 
when the model is integrated from the corrected initial 
condition should be further investigated as spurious changes 
to other variables as the pressure, temperature and current 
could occur thus leading to over corrections. A common way 
to limit these effects is to spread the correction over the 
assimilation window instead of applying it, at once, at the 
initial time for the cycle. This procedure, called IAU 
Incremental Analysis Updates), was implemented with a basic 
division of the correction in equal increments applied at each 
time step over the 1-hour assimilation window. It allows to 
significantly reduce the over-correction at 1m deep (not 
shown here) and the shape of the repartition function should 
be further investigated.  
 
 

 
a- 

 
b- 

Figure 4: Salinity (in psu) at the 5 observation points at SA1 along the vertical 
for Lh=200m, a- Lv=0.5m and b- Lv=0.25m over 24 assimilation cycles of 1 
hour. All observations at SA1 are assimilated. 
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Figure 5: Salinity increment (in psu) for the first assimilation cycle a-
Lh=600m and Lv=0.25m, b- analysis salinity field (in psu) for Lh=600m and 
Lv=0.25m. 

CONCLUSION 
A 3D-Var FGAT algorithm was implemented in the dual 
space in order to improve the salinity field description 
assimilating in-situ salinity observations with a T3D model for 
the Berre lagoon. The analysis is achieved over a 1-hour  
window and is applied sequentially every hour. It was shown 
that the corrected field is closer to the observations over the 
assimilation and 1-hour forecast periods at the assimilation 
points. The horizontal and vertical spread of the correction 
around the observation point depends on the correlation 
length-scales prescribed in the background error covariance 
matrix modelled using an implicit 3D diffusion operator. The 
impact of the vertical length scale was studied and it was 
shown that in order to avoid spurious correction between the 
vertical assimilation locations, the correlation length scale 
should be depth-dependent.  This could be achieved using a 
ensemble-based estimate of the correlation length-scales, 
eventually with a temporal variability. In further work, the 
evolution of the salinity increment over time should also be 
investigated in order to verify that the balance between the 
other state variables (temperature, currents) is preserved.  
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