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Abstract

Computer-based wildfire spread modeling has emerged during the past two decades as a pow-
erful tool for applications in both fire risk management and fire emergency response. However,
because the underlying dynamics feature complex multi-physics occurring at multiple scales,
our ability to accurately simulate the behavior of wildfires remains limited. The dynamics of
wildfires are determined by interactions between pyrolysis, combustion, flow dynamics as well
as atmospheric dynamics. These interactions occur at: vegetation scales that characterize the
biomass fuel; topographical scales that characterize the terrain and vegetation boundary layer;
and meteorological micro/meso-scales that characterize atmospheric conditions. The mathemat-
ical models proposed to simulate wildfire spread are limited because of their inability to cover
the entire range of relevant scales, because also of knowledge gaps and/or inaccuracies in the
description of the physics as well as knowledge gaps and/or inaccuracies in the description of the
controlling input parameters (i.e., the vegetation, topographical and meteorological properties).

Even though relevant insight into wildfire dynamics have been recently made via numeical
simulations at flame scales; those studies remain restricted to research projects and are not
compatible with real-time forecast operational objectives useful in fire emergency response. The
mathematical models proposed to simulate wildfire spread are limited because of their inability
to cover the entire range of relevant scales, because also of knowledge gaps and/or inaccu-
racies in the description of the physics as well as knowledge gaps and/or inaccuracies in the
description of the controlling input parameters (i.e., the vegetation, topographical and meteoro-
logical properties).Thus, cost-e�ective approaches imply numerous modeling simplifications and
approximations that make the prediction of wildfire spread complicated and uncertain.

A data assimilation approach appears as a new paradigm to overcome some of the current
limitations of regional-scale wildfire modeling. In the area of fire research, the idea of data
assimilation is particularly attractive given the large uncertainties associated with many of the
input variables, in particular in the representation of fuel sources. While still original in the field
of fire and combustion, data assimilation is an established approach in several scientific areas,
for instance in the field of numerical weather predictions.

This approach has been developed since 2010 at CERFACS and University of Maryland
during three previous internships and is also part of a PhD thesis ending by the end of 2013.
The previous studies were focused on developing a preliminary wildfire spread simulator limited
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to flat terrains and an ensemble-based data assimilation algorithm whose objective was to correct
modeling errors by reducing uncertainties in the input parameters of the wildfire spread-rate
model

This internship was divided into two steps:

• During the first period of the intership, based at CERFACS in Toulouse, the current data
assimilation framework has been modified to directly estimate the location of the fire front
instead of the model input parameters. Several synthetic-data experiments have then been
carried out to validate the new framework and test its performances and limitations

• During the second period, spent at the University of Maryland in the USA, the wildfire
spread model has been updated to take into account the contribution of the topography
in the determination of the fire front spread-rate and to be able to spread the fire over any
topographical distribution.
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Internship framework

This internship is the continuity of the project entitled "Forest Fire Modeling using Data As-
similation", carried out since 2010 within the collaboration between CERFACS and UMD. Both
institutions bring their own experience in scientific computing, CERFACS in CFD and data
assimilation, UMD in fire physics and fire modeling. Three previous interns and a PhD stu-
dent, Mèlanie Rochoux, Blaise Delmotte and Jean-Michel Bart, have worked on the project,
developing tools used as basis in this internship and a PhD thesis on the same subject is being
completed in 2013.

CERFACS, Toulouse, France
Since the end of the 1980s, CERFACS is a well-known international institute for high perfor-
mance computing, which aims at developing advanced methods for the algorithmic resolution
and numerical simulation of large scale scientific and technological problems. These problems
are of interest to both research and industry, and require the most powerful supercomputers
currently available.

CERFACS hosts interdisciplinary teams involved in several di�erent research fields as parallel
algorithms, code coupling, data assimilation, aerodynamics, combustion, climate and environ-
ment, and also electromagnetism and acoustics. The employees are physicists, applied mathe-
maticians, numerical analysts and software engineers and come from 10 di�erent countries. The
multidisciplinarity of this wildfire spread modeling project is then eased by the presence of such
a wide range of knowledge and expertise.

Although, two research teams intervine and mainly participate in this project:

• The GlobC team (Global Change and Climate modeling) focuses on understanding the
climate variability on regional to global scales. It aims to improving climate forecasts as
well as impact studies at seasonnal-to-decadal time scales. Notably, part of this team is
highly qualified in data assimilation. Four main areas of applications are presently explored
(atmospheric chemistry, oceanography, hydrolics), and one objective at CERFACS is to
widen the scope of applications, for instance to fire propagation.

• The CFD team (Computational Fluid Dynamics) and more precisely the Combustion
group is involved in all problems related to combustion with high performance computing,
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so as to apply LES (Large Eddy Simulation) techniques to model turbulent flows and
turbulent combustion. The AVBP (A Virtual Burning Project) solver has been jointly
developed by CERFACS and IFP, the French Institute of Petroleum, to perform parallel
compressible LES computations, and is specifically designed to simulate industrial gas
turbines, aero gas turbines, rocket engines, and laboratory burners.

Fire Protection Engineering Department, University Of Mary-
land, USA
Located at the border with Washington D.C. in College Park, in the state of Maryland, the
University of Maryland was founded in 1856 and was dedicated originally to agricultural studies.
With 112 graduate degrees spread over 13 di�erent colleges and schools, among whom the A.J.
Clark School of Engineering, it enrols about 37,000 students (including 10,000 postgraduates)
from more than 130 countries and is nowadays recognized as one of the top public North-
American universities.

Since 1956, the Fire Protection Engineering Department belongs to the School of Engineering
and o�ers the only full ABET-accredited (Accreditation Board for Engineering and Technology)
undergraduate program and one of the two graduate degree programs in the US. The department
researches focus on recent advances in material testing practices, fire detection, performance-
based design and modeling techniques to predict fire growth, smoke movement or the response
of building systems in design and fire investigation applications.

Through the BRE (Build Reseach Establishment) Centre for Fire Safety Engineering, its
current mission is to develop a real-time emergency response system for enclosure fires. This is a
challenging task as the most advanced technologies shall be used so as to limit the computational
cost to real-time.
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Outline

The content of this report is organized as follow: first, we present the wildfire spread simulator
designed to simulate the propagation of surface wind-aided fire on flat terrains. In a second
chapter, we present concepts and methods of data assimilation and a brief state-of-the-art of
data assimilation applied to wildfire spread modeling. Then, the third chapter is dedicated to
the implementation of the state estimation approach for the data assimilation algorithm. With
this approach, data assimilation is used to correct the position and the shape of the fire front.
Finally, the last chapter details the incorporation of the topography contribution in the wildfire
spread model.

The data assimilation part has been carried out in first place for several reasons. First, the
three first months of the internship were located at CERFACS in Toulouse where my supervisors
were specialized in data assimilation methods. Besides, results from previous internships are
limited to flat terrains simulations. Then, testing and validating the state estimation approach on
flat terrains allowed us to compare both results. Moreover, it was decided that the incorporation
of the topography was to be done when the data assimilation part was complete. Finally, the
modification of the model could more easily be done at University of Maryland where the
labaratory is highly-skilled in fire modeling.
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Chapter 1

The Wildfire Spread simulator
FIREFLY

The dynamics of wildfires are determined by multi-scales interactions between pyrolysis, com-
bustion, flow dynamics as well as atmospheric dynamics. These interactions occur at: vegetation
scales that characterize the biomass fuel; topographical scales that characterize the terrain and
vegetation boundary layer; and meteorological micro/meso-scales that characterize atmospheric
conditions. The understanding of the contribution of those environmental conditions in the
wildfire spread allow us to determine the local velocity of the fire, commonly named the rate of
spread (ROS). But the interactions of all those multi-physical processes over such a wide range
of temporal and spatial scales turn the modeling of wildfire behavior into a challenging problem
[1].

Real-time predictions of the direction and speed of a propagating wildfire has been identified
as a valuable research objective with direct applications in fire emergency management. A wide
range of models has been developed either for academic research projects or for operational ap-
plications. These models represent a continuous spectrum of possible modeling approaches, from
the purely physical model (based on the fundamental understanding of the fire physics) to purely
empirical model (based on phenomenological description of the fire and on parameterization of
the rate of spread).

This part aims at first providing a background of the processes involved in wildland fires to
understand the main components of wildfire spread mechanism. Then, a short review of wildfire
models developed for regional-scale applications will be presented. Finally, the last section will
be dedicated to the wildfire spread solver FIREFLY used in the context of this internship:
this Eulerian front-tracking solver has been developed at CERFACS since 2010 (see [2, 3, 4])
in order to simulate the propagation of surface wildland fires at regional scales and at a low
computational cost.
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Figure 1.1: Schematic of wildfire spread mechanism [3].

1.1 Fundamentals of fire and combustion
The combustion-related processes involved in wildfires are complex, due to the heterogeneous
nature of the vegetation (also referred to as vegetal fuel) and to the numerous physical pro-
cesses implied (chemical reactions in the gas and solid phases of the vegetation, heat transfers,
buoyancy-driven floaw, etc). Wildland vegetal fuel is composed of live and dead plant material
consisting primarly of leaf litter, twigs, bark, wood, grasses and shrubs, with a considerable
range of physical structures, chemical components, age and level of biological decomposition
[5]. Nevertheless, the primary chemical component of biomass fuel is cellulose (of chemical form
(C

6

O
5

H
10

)
n

). Figure (1.1) illustrates the main steps of the thermal degradation of cellulose
leading to the ignition of the vegetal fuel and therefore the spread of a wildfire.

When heat from a close flame or from sun radiation is applied to cellulose (see Fig. (1.1a)),
fresh vegetal fuel undergoes a series of chemical reactions called pyrolosis. First, the fuel de-
hydrates (see Fig. (1.1b)) with the increase of the temperature. The higher the fuel moisture
content, the longer the dehydrating and the slower the wildfire spread. Then, when the heating
continues, oxydable gases are released (see Fig. (1.1c)) and driven near to the flame by convec-
tion e�ects. Finally, the spread or the start of the wildfire (also called ignition, see Fig. (1.1d))
is induced by the rapid oxidation of thoses flammable gases.

From this quick description, we see that the predominant process involved in wildfire spread is
heat transfer. The physical processes allowing heat transfer are numerous: convection, radiation,
conduction [6]. Under low wind conditions, radiation from the close flame is the dominating
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process [7] while advection becomes predominant with significant positive wind conditions [8]. By
“positive”, it is implied that the wind blows in the direction of the propagation. The heat is then
carried by advection further towards the unburnt vegetal fuel and the thermal degradation of far
fuel is initialized earlier resulting in higher values of ROS. Added to these phenomena, the heat
released from the chemical reactions results in heated gases in the form of combustion products
or heated ambient air. Those heated gases have a reduced density compared to ambient air and
so rise by convection. The convection leads to the formation of smoke plume (made of hot gases)
which changes the local state of the atmosphere and locally pertubs the wind which, in return,
a�ects the wildfire spread. Therefore, while the fire impacts the local atmosphere conditions
by transferring heat and energy through convection and turbulence, changes in the ambient
meteorological conditions, such as wind speed, direction, air moisture, have also significant
impact on the state of the fuel and so on the behavior of the fire. Finally, the topography of the
terrain in which the fire is burning also plays an important part in the fire spread. When a fire
spreads in the upslope direction, the transfer of radiant heat to the fuel is increased because the
fuel is closer to the flame, resulting in a faster spread.

Relevant insight into wildfire dynamics has been obtained in recent years via detailed numer-
ical simulations performed at flame scales (i.e., with a spatial resolution on the order of 1 m).
For instance, FIRETEC [9] or WFDS [10] combine advanced physical modeling and classical
methods of Computational Fluid Dynamics (CFD) to accurately describe the combustion-related
processes that control the fire spread. Note that because of its high computational cost, flame-
scale CFD is currently restricted to research projects and is not compatible with operational
applications. The running of CFD simulations for such large fires is too expensive numerically
and especially the execution time is too long for real-time simulations in order to make pre-
dictions. In contrast, we adopt in the following a regional-scale viewpoint. At regional-scale,
wildfires size varies from the square meters scale to several square kilometers.

1.2 An overview of fire spread model at regional scale
1.2.1 Variables of interest at regional scale
For simulations of systems involving flames, several strategies for computing the flame are avail-
able. At regional scale, the most common approach is to model the flame as a discontinuity. This
approach relies on the assumption that a wildfire exhibits, at a macroscopic scale, a topology
that is similar to premixed flames [11]. A premixed flame is a flame in which the oxidizer has
been mixed with the fuel before it reaches the flame front. This creates a thin flame front with
burnt gases on one side, fresh gas reactants on the other side, and the front propagates towards
the fresh gases. Therefore, as illustrated in Fig. (1.2), the fire is considered as a propagating
interface between burnt area and non-burnt area. The main variable to determine here is the
local Rate Of Spread (ROS) of the fire front, called �. This variable is the velocity (defined
with respect to a fixed observer) at which the fire spreads in the normal direction to the fire
front. Besides, as briefly described in the previous section, the rate of spread depends on local
conditions of vegetation, weather and topography.
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Figure 1.2: Snapshots of wildland fires.

1.2.2 Classes of fire spread model
Three types of fire spread models can be distinguished:

• Physical model: A physical model is one that is based upon fundamental principles
of fluid mechanics (mass, momentum, heat conservation equations) and account for the
physics (advection, radiation, convection) and chemistry (dehydratation, pyrolysis, igni-
tion) of wildland behavior. Many are based on the same principles and di�er only in the
methodology of implementation or the purpose of use. Many are implemented only in
one or two dimensions in order to improve computational or analytical feasibility. Main
models in this category are FIRETEC [9] and WFDS [10]. A detailed overview of physical
models since 1990 is presented in [12].

• Semi-empirical model: A semi-empirical model is one that is based on a limited phys-
ical framework (heat conservation equation only) whose parameters are calibrated using
experimental observations and results. Because they rely on physical description (prin-
ciple of conservation of energy or heat balance), they can be extended from labaratory
experiments to field scale experiments (e.g. Australian field experiments of grassfires in a
range of wind speed conditions). Semi-empirical models are simple enough to be e�ciently
implemented for computational applications. One of the most well-known semi-empirical
model is due to Rothermel [13].

• empirical model: An empirical model is one that is based upon observation and ex-
periment only and not on theory. The focus of empirical modeling of wildland fire is the
determination of the key characteristics used to describe the behavior of the fire like the
rate of spread of the heading fire (wind spreading with the wind). A detailed overview of
empirical and semi-empirical models since 1990 is presented in [14].

Semi-empirical models are the dominant approach used in current operational wildfire spread
models, see for instance BehavePlus [15] and FARSITE [16] in the United States, the MacArthur
Fire Danger Meters [17] in Australia and the Forest Fire Behavior Prediction System (FBPS)
[18] in Canada. BehavePlus and FARSITE use a model due to Rothermel [13] to determine
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the ROS. Our wildfire spread simulator FIREFLY also relies on the semi-empirical Rothermel’s
model.

1.3 A front-tracking solver: FIREFLY
The Eulerian front-tracking solver, called FIREFLY, simulates the propagation of surface wild-
land fires at regional scales as illustrated in Fig. (1.3). The solver is currently limited to flat
terrains and problems with complex topography are investigated in chapter 4 of this report.
FIREFLY tracks the evolution of the fire front location using the following three components:

1. The Rothermel’s model to determine the ROS with respect to local environmental condi-
tions,

2. A Level-Set-based solver [19] to propagate the surface fire in 2D materialized as a progress
variable noted c = c(x, y, t). This flame marker is calculated as a solution of a 2D PDE:

• c = 1≠: the vegetation is burnt,
• 0+ Æ c Æ 1≠: the front zone,
• c = 0+, the vegetation is fresh.

3. An isocontour algorithm to extract from the 2D propagated field the fire front defined as
the isocontour c = 0.5.

1.3.1 Sub-model for the rate of spread: the Rothermel’s model
The quasi-empirical model of Rothermel is a reference in the fire community as it provides a
general expression to determine the ROS of the head of a fire as a function of vegetation (fuel)
properties associated with a pre-defined fuel category (i.e., the vertical thickness of the fuel layer,
the fuel moisture content, the fuel particle surface-to-volume ratio, the fuel loading and the
fuel particle mass density), topographical properties (i.e., the terrain slope) and meteorological
properties (i.e., the wind velocity at mid-flame height):

� = �(x, y, t) = �
1
”

v

, M
v

, M
v,ext

, �
v

, m
ÕÕ
v

, fl
p

, �h
c

, u
w

2
(1.1)

where input parameters are summarized in Table 1.1. Any of these parameters can be uniformly
or spatially distributed over the computational domain and also time-dependent or not. The
values of these parameters directly impact the velocity at which the fire spread.

1D original formulation

The Rothermel’s model is based on an energy (as heat) balance model in a unite volume of the
fuel layer, first proposed by Fransden [20]. It is based on data obtained from wind tunnel exper-
iments in artificial fuel beds of varying characteristics to correlate fire behavior with measured
input variables. For a control volume in the unburnt region, the ROS along the normal direction
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Name Symbol Unit
Fuel depth (vertical thickness of the vegetation layer) ”

v

m
Fuel moisture (mass of water divided by mass of dry vegetation) M

v

-
Fuel moisture at extinction M

v,ext

-
Fuel particle surface-to-volume ratio �

v

1/m
Fuel loading m

ÕÕ
v

kg/m2

Fuel particle mass density fl
p

kg/m3

Fuel heat of combustion �h
c

J/kg
Wind velocity vector at mid-flame height (projected into horizontal plane) u

w

m/s

Table 1.1: Input parameters in the Rothermel-based ROS model.

to the fire front is given by the ratio between the received energy (due to radiation/advection/-
conduction) I

p

and the necessary energy to ignite the fuel fl
b

‘Q
ig

:

� = I
p

fl
b

‘Q
ig

(1.2)

with:
• I

p

, the propagating flux in J.m≠2.s≠1,

• Q
ig

, the heat of preignition in J.kg≠1,

• ‘, the e�ective heating number (amount of fuel involved in the ignition process) and

• fl
b

the bulk density in kg.m≠3. The bulk density is the density of the porous medium, not
the density of the solid phase of the medium.

The propagating flux I
p

can be expressed as a proportion of the reaction intensity I
R

, i.e. the
burning gases energy released from the organic matter in the fuels:

I
p

= ›I
R

(1.3)
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with › the propagating flux ratio. It is the percentage of energy released by the pyrolysis which
is involved in the ignition of the fresh fuel. The ROS with no wind and no slope, denoted as �

0

therefore reads:
�

0

= ›I
R

fl
b

‘Q
ig

. (1.4)

Wind and slope contribution to the ROS have been determined in the Rothermel’s model in
the 1D case of heading and upslope fire. Heading fire implies that the wind is blowing in the
same direction as the propagation and upslope fire similarly implies that the fire is propagating
in the direct uphill direction. Therefore, wind and slope positively change the propagating heat
flux by exposing the potential fuel to additionnal convective and radiant heat. The dimensionless
coe�cients „ú

w

and „ú
s

represent the additional propagating flux produced respectively by the
wind and the slope. They have been evaluated from experimental data as function of the fuel
properties, wind velocity (for „ú

w

) and slope stepness (for „ú
s

). Inserting these terms in the
expression of the ROS (1.4) then gives the general expression of the ROS for heading upslope
fire:

� = �
0

(1 + „ú
w

+ „ú
s

) = ›I
R

(1 + „ú
w

+ „ú
s

)
fl

b

‘Q
ig

. (1.5)

Model adaptation for surface wildland fire spread

The original configuration of the Rothermel’s model is too restrictive for 2D wildland fire spread.
The following presents the 2D extrapolation adopted in FIREFLY in order to determine a wind-
dependent ROS in 2D direction. For that purpose, we need to define some characteristic angles
in the horizontal plane to represent the direction of the wind and the propagation of the fire
front: the angles are defined from the “North” direction (see Fig. (1.4)), namely the positive
y-coordinates and increasing in the clockwise direction. We thus define:

• The “flame” angle ◊(x, y, t) indicates the outgoing normal direction to the front. As the
fire front propagates in time and space, this angle is varying in time and space as well.
This angle is associated with the normal vector to the front nflame defined as:

nflame(x, y, t) =
A

n
x,flame

(x, y, t)
n

y,flame

(x, y, t)

B

=
A

sin(◊(x, y, t))
cos(◊(x, y, t))

B

(1.6)

• The wind angle ◊
w

indicates the direction in which the wind is blowing. For a given wind
velocity uú

w

, the wind vector is defined as:

uú
w =

A
uú

w

sin(◊
w

)
uú

w

cos(◊
w

)

B

(1.7)

As illustrated in Figure (1.4), the ROS highly depends on the wind condition but also on the
direction of spread: when the wind blows in the same direction as the propagation direction,
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Figure 1.4: Wind-dependent topology of the front

the wind constribution is optimal but at the opposite, when the wind blows against or across
the propagation, its contribution is minimal. A possible way of modeling this behavior is to
consider, in any spread direction ◊, the projected wind in that direction. In other terms, the
wind velocity u

w

in a direction ◊ is the general wind velocity uú
w

projected along this direction. It
is obtained by calculating the scalar product between the wind vector (1.7) and the ROS vector
(1.6). Nevertheless, to make sure that the velocity remains positive, the wind contribution is
also forced to 0 when the scalar product becomes negative (back of the fire):

u
w

(x, y, t) =
I

nflame(x, y, t).uú
w , If nflame(x, y, t).uú

w > 0
0 , If nflame(x, y, t).uú

w Æ 0 (1.8)

1.3.2 Level-set-based fire spread simulator
A great number of techniques dealing with infinitely thin interfaces is available in the literature.
Among them are front tracking methods, known for providing better accuracy such as Level-
Set methods. The method works as follows: starting with the current position of the interface
and its speed of propagation, the Level-Set solver computes the position at a later time (see
Fig. (1.3)).

The Level-Set is a front tracking method commonly used to model the evolution of a moving
interface. The central idea of this method has been developed by [21]. Nowadays widely used in
combustion [22] (especially for flame capturing), computer vision [23], or more generally front
tracking problems, the Levet Set method has been experimented on wildland fire propagation
by [19, 24] with promising results. By considering only advection, the interface c = 0.5 is
guaranteed, thanks to an accurate numerical integration, to propagate at the prescribed speed
� (see Fig. (1.5)). All the physics of the fire is contained in the ROS model, �.
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Figure 1.5: 1D Level-Set interface

Formulation

The Level-Set equation describes the front propagation:
Y
_____]

_____[

ˆc

ˆt

+ �.Òc = 0 , ’(x, y) œ �, t œ [0; T ]

c(x, y, 0) = c
0

(x, y) , ’(x, y) œ �

Òc(x, y, t).n
ˆ�

(x, y) = 0 , ’(x, y) œ ˆ�

(1.9)

with
� =

A
�(x, y, t)n

x,flame

(x, y, t)
�(x, y, t)n

y,flame

(x, y, t)

B

the local ROS in the normal direction to the front.

Implementation

Propagating an interface avoiding numerical di�usion or ensuring numerical stability requires
a specific treatment using high order numerical schemes. This section presents the method for
solving the Level-Set equation (1.9) as in [19]. The overall algorithm is described as follow:

• The gradient of the progress variable c is calculated using a central finite di�erence scheme,

• Using these di�erences, the fire front normal vector nflame and then � are computed,

• The monotonicity preserving the gradient Òc is calculated with a limiter scheme (Superbee
slope limiter [25]),

• Finally, the model is integrated in time using a second order Runge Kutta scheme.

For further details, the reader should refer to [3].

The summary of all the elements of the FIREFLY solver is presented in Fig. (1.6)
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Figure 1.6: Summary of the elements in FIREFLY solver.

1.4 Conclusion
Mathematical models proposed to simulate wildfire spread at a cost consistent with operational
framework remain limited because of their inability to cover the entire range of relevant scales.
A first limitation in those models is that the ROS model does not explicitly account for the
interaction of the fire and the atmosphere and has a domain of validity that is limited to
the conditions of the calibration experiments used during its original development. A second
limitation is that the input parameters that determine the ROS are often unknown or are only
known with limited accuracy.

To be able to develop an e�cient wildfire modeling tool capable of forecasting the fire spread
dynamics, the wildfire spread model has to be combined to a mathematical algorithm whose
objective is to minimize the uncertainties either in the input parameters or in the state of
the model and thus, provide more accurate predictions of wildfire behavior. Data assimilation
methodologies o�er such possibilities by using a set of observations to correct the parameters
and/or the state and therefore, allow to overcome some current limitations of the wildfire spread
models.
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Chapter 2

Data assimilation: concepts,
methods and applications

Computational wildfire spread models can be used for two purposes: in re-analysis mode, to
analyse the chemical and physical processes underlying physics in past events, and in forecast
mode; to predict future behavior of the fire at di�erent lead-times. Within the framework of this
internship, both aspects are investigated. In both cases, the model is subject to uncertainties
that translate into errors in the model outputs. The use of real-time measurements to constraint
the model is a way to reduce these uncertainties. The reduction of the uncertainties is achieved
through a data assimilation (DA) process.

The benefits of DA has already been greatly demonstrated in meteorology [26, 27, 28],
oceanography [29, 30]; more recently in hydrodynamics, oil and gaz pipeline models [31], wind-
turbine prediction and in our case, in regional-scale wildland fire spread modeling [32, 33, 34, 35].
A dynamical model describes the evolution in time of a physical phenomenon. Computer models
are used to predict a quantity of interest (temperature, pressure) in the future. However, multi-
scale and multi-physics phenomena (eg. fire flame propagation) are quite di�cult to model.
Also, the model is written using simplifications and numerical discretizations that generate other
sources of uncertainties to add up to those in the numerical model initial condition, boundary
condition and parameters. In parallel, the observations are imperfect due to instrumental errors,
and sparse in time and/or space and they may be undirectly related to the model variables. DA
allows to combine information from the model (called the background) with the observations
as they become available thus allowing to constrain the model and to reduce the uncertainty
in the simulated and forecast state. This constitutes an assimilation cycle. The variables that
the DA algorithms aim at correcting is called the control vector, it can gather model variables
also called state variables and/or some model parameters. In the fields of application for data
assimilation, the natures of the control variables can be for instance:

• In weather forecasting and oceanography, these variables are generally the model state
(temperature or pressure field). The optimized state is then used as the initial condition
for the model for the next assimilation cycle,
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Figure 2.1: General framework of data assimilation

• In hydrodynamics, the control vector gathers the state vector (water level and discharge)
as well as boundary conditions (upstream and lateral inflows) and model parameters
(bathymetry).

As illustrated in Fig. (2.1), the idea of DA is to use a set of observations (the measure-
ments) obtained by in-situ sensors, spaceborne and airborne images to correct an a priori value
(the background) of a set of control variables to produce an optimal description of the control
vector (the analysis). The resolution of this inverse problem consists in the minimization of a
cost function combining the di�erent sources of information and their respective uncertainties.
When the physical model is linear and the cost function quadratic, an optimal solution can be
determined (4DVAR,[36, 37], Kalman filter,[38]). These algorithms can be extended for non
linear problems: Extended Kalman filter [39, 40], Ensemble Kalman filter, 4DVar-Inc [28, 41].

First, the random variables that are commonly used in DA formalism are presented in section
11. Then, the classical algorithm are presented in section 2. For further details, the reader should
refer to [2, 3, 4, 42, 43]. Finally, section 3 aims at presenting a state-of-the-art for DA applied
to wildfire modeling and the research works this study is based on.

1

The denotation with capital letters is for random variables while lower case letters are for realization of those

random variables and determinist ones.

20



2.1 Data assimilation formalism
2.1.1 The data assimilation variables
The model operator and the state vector

The model operator M is the generally non linear operator representing the numerical algorithm
used to solve the set of equations describing the dynamics of the physical system. The state
vector gathers the model outputs, e.g the simulated field(s) defined at the grid points of the
computational domain.

The control vector

The control vector X contains all the variables that shoud be corrected by the DA algorithm.
The control vector can contain the state vector and/or the model parameters. Therefore, this
vector is not systematically in the same space as the state vector. The control vector gathers
the variables and parameters to which the model is the most sensitive to and that are most
respondible for uncertainty. The control vector defines the control space of size n. It is an
approximation of the true control vector xt, which represents the true values of these n variables
which are, in reality, unknown. The background vector is the a priori knowledge of the control
vector. It can results from a previous integration of the model (this provides the state) or from
the a priori knowledge of the mmodel parameters. DA aims at determining an optimal value
of the control vector, called the analysis and denoted by Xa which is closer to xt than the
background Xb.

The observation vector and the innovation vector

The observations give an incomplete description in space and time of the dynamical system. In
the most general case, the observations, gathered in the vector Yo , are of di�erent nature from
the state variables. The Observing System Simulation Experiment (OSSE) framework is used
to validate DA platforms and observations are synthetically generated.

As information from the background and the observations must be compared in the course
of DA, an operator H mapping the control space onto the observation space is defined:

H(X) = Y (2.1)

with X the control vector and Y the equivalent of X in the observation space. The di�erence
Y ≠ Yo can thus be computed.

In the framework of state estimation (when the control vector is composed of the model
variables) and if the observations are of the same nature of the model variables, H comes down
to a linear interpolation operator from the model grid points to the observation grid points. In
the framework of parameter estimation, the observation operator H is the composition of the
model operator M:

H = S ¶ M (2.2)
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mapping the control space to the state space with the selection operator S mapping from the
state space to the osbervation space. In this case, the observation operator is usually non linear
as the model is usually non linear.

In order to apply the classical DA algorithm to non linear cases, the observation operator is
generally linearized around a reference state or parameters Xg (usually chosen as the background
Xb). The non linear operator is noted2 H while it is noted H when it is linear. Its jacobian is
denoted by H:

H(Xg + ”Xg) = H(Xg) + ˆH
ˆX

----
Xg

”Xg + O((”Xg)2) (2.3)

with lim
”Xgæ0

O((”Xg)2)(”Xg)≠2 = 0 Hence,

H = ˆH
ˆX

----
Xg

(2.4)

H is called the linear tangent to H.

The innovation vector displays the di�erence between the observation vector and the back-
ground projection in the observation space:

d = Yo ≠ H(Xb). (2.5)

2.1.2 Definition and modeling of the errors
The background and observations vector only give an approximate description of the true control
vector:

• The background error ‘

b represents the di�erence between the true control xt and the
background control variables:

‘

b = Xb ≠ xt, (2.6)

• while the observation error ‘

o represents the di�erence between the observations and the
true state H(xt):

‘

o = Yo ≠ H(xt). (2.7)

‘

o is the sum of the measurement error ‘

m and the representativeness error ‘

r that is
linked to the incapacity of the model to represent the signal as it is observed (spatial,
temporal resolution as well as simplification of the physics).

The statistical description of these errors is given by the Probability Density Functions
(PDF). It describes the relative likelihood for these errors to occur at a given point in the
control or observation space. For some DA algorithms, in particular those used in the context of
this study, those PDFs are assumed Gaussian (see section 2) and therefore, can be fully described
by two characteristic variables, namely the expectation E and the variance Var.

2

The same notation system is applied to the model operator M and its linear tangent M.
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In DA applications, the vectors are composed of n one-dimensional continuous random vari-
ables: X =

1
X(1) . . . X(n)

2
T

. The error ‘ on those variables are also vectors of n one-

dimentional continuous random variables ‘ =
1
‘(1) . . . ‘(n)

2
T

. Their expectation and variance
are then defined as

E[‘] =

Q

cca

E[‘(1)]
...

E[‘(n)]

R

ddb , Var[‘] = E[(‘ ≠ E[‘])(‘ ≠ E[‘])T ]. (2.8)

In multi-dimensional case, the second-order moment is a matrix characterized as the covariance
matrix of size n ◊ n. Indeed:

Var[‘]
ii

= E
5
(‘(i) ≠ E[‘(i)])2

6
= Var[‘(i)],

Var[‘]
ij

= E
5
(‘(i) ≠ E[‘(i)])(‘(j) ≠ E[‘(j)])

6
= Cov[‘(i), ‘(j)]. (2.9)

To compare two dependant random variables, the covariance is defined as a measure of how much
two random variables change together. The interpretation of the error covariance matrix is not
straigthforward as the correlation and variance information are gathered in the covariance. It is
more adapted to work with the correlation matrix associated with it. The correlation between
two random variables ‘(i) and ‘(j) is defined as

fl(‘(i), ‘(j)) = Cov[‘(i), ‘(j)]
Ò

Var[‘(i)]
Ò

Var[‘(j)]
. (2.10)

It is a measure, between 1 and ≠1, of how linked the errors on two variables are. The correlations
can be interpreted as how a variable is a�ected by the variation of the others:

• A correlation equal to 1 means that it exists an increasing linear relashionship between
the two variables. If a correlation between two variables is equal to 1, it implies that when
one variable increases (respect. decreases), the other also increases (respect. decreases)
with the same amplitude.

• When the correlation is still positive but inferior to 1, the variation of one of the variable
will less a�ect the second variable but they will both vary in the same sense.

• A correlation equal to 0 means that the two variables are completely independant.

• In contrast, a correlation equal to ≠1 means that the linear relashionship between the two
variables is decreasing. It implies that when one variable increases (respect. decreases),
the other decreases (respect. increases). So when the correlation is negative but higher
then ≠1, they vary in opposite direction but with di�erent amplitude.
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Therefore, by applying the definition of the variance/covariance in Eq. (2.9) to the error vectors
‘

b and ‘

o, we can define the background and observation error covariance matrix B and R.
Also, by applying the definition of correlation in Eq. (2.10) to the error covariance matrix B,
we can define the associated correlation matrix C.

Since the true control vector xt is unknown, the errors and their statistics are also unknown
ans should be estimated. One way to estimate these statistics is to use a sample of N

e

inde-
pendant realizations. For one-dimensional random variable X

e

=
Ë
x[1] . . . x[N

e

]

È
, the sample

expectation and variance are calculated as

X
e

= 1
N

e

N

eÿ

l=1

x[l], Var[X
e

] = 1
N

e

≠ 1

N

eÿ

l=1

(x[l] ≠ X
e

)2. (2.11)

Identically, for random vector X
e

=
1
X(1)

e

. . . X(n)

e

2
T

, the sample moments can be defined as

X
e

=

Q

ccca

X(1)

e

...
X(n)

e

R

dddb , Var[X
e

] = 1
N

e

≠ 1

N

eÿ

l=1

(X
e

≠ X
e

)(X
e

≠ X
e

)T . (2.12)

This method will be exploited in this study when applying the EnKF.

In the framework of DA, the errors are assumed to be unbiased giving that their expectation
is equal to zero so the only quantities that remain to describe are the covariance matrices. These
matrices are respectively denoted by B, R and A for the background error covariance matrix,
the observations error covariance matrix and analysis error covariance matrix. Therefore, we
will consider in the following of the study that:

‘

b ≥ N (0, B), ‘

o ≥ N (0, R). (2.13)

2.1.3 Synthesis on the general data assimilation inverse problem
In the following, the statistics of the errors are described with covariance models and also, the
errors on the observations and prior information are assumed to be uncorrelated and to follow
a Gaussian distribution. The resolution of the data assimilation problem requires therefore four
components:

- observation vector of the physical system Yo and their associated errors statistics (‘o, R),

- a background estimation of the control vector Xb and its associated errors statistics (‘b, B),

- a model M describing the system dynamics,

- an observation operator H and its associated linear tangent operator with respect to the
control vector H if required.
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Figure 2.2: Interweaving of the di�erent components of the DA inverse problem in the case of
parameter estimation (a) and state estimation (b): the di�erence comes from the use of the
model operator M . For parameter estimation, the M is used within the observation operator
and for state estimation, the control is obtained from the integration of the model.

The DA problem can be formulated as an inverse problem: given Yo and Xb, the goal is to
approximate in an optimal sense the true control vector xt satisfying:

Xb = xt + ‘

b,

Yo = H(xt) + ‘

o. (2.14)

Figure (2.2) presents how each of these four components are imbricated for parameter and state
estimation. The main di�erence between the two approaches is when the model operator M is
used. In parameter estimation, the model operator is a part of the observation operator to map
from the control space (the parameters) to the state state (state variables). In state estimation,
it is used to evolve the control variables in time.

2.2 Data assimilation algorithms
2.2.1 Optimal estimation
To find an estimate of the true state, the idea is to determine the probability distribution of
the current control X conditionned by the measurements Yo. Under the assumption of linear
observation and model operator H and M , the Bayesian theory on probabilities give us that:

p(X|Yo)p(Yo) = p(Yo|X)p
b

(X) (2.15)

with p
b

the forecast PDF. In the data assimilation procedure, the measurements have been made
so the values are known giving p(Yo) = 1. The equation (2.15) becomes then

p
a

(X) = p(X|Yo) = p(Yo|X)p
b

(X) (2.16)
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with p
a

the analysis PDF.

Assuming that the PDFs of the background and observations errors are Gaussian, the prob-
ability density function of the current control can be written as:

p
b

(X) Ã exp
3

≠1
2(X ≠ Xb)T B≠1(X ≠ Xb)

4
. (2.17)

In the same way, the data Yo likelihood given the control X is defined by:

p(Yo|X) Ã exp
3

≠1
2(Yo ≠ H(X))T R≠1(Yo ≠ H(X))

4
, (2.18)

with H(X), the representing what would the data be if the control were exact. From Eq. (2.16),
we find that the posterior PDF is also Gaussian:

p
a

(X) Ã exp
3

≠1
2(X ≠ Xb)T B≠1(X ≠ Xb) ≠ 1

2(Yo ≠ H(X))T R≠1(Yo ≠ H(X))
4

. (2.19)

We want to find the control X that maximizes the probability p
a

, so:

max
X

p
a

(X) ≈∆ min
X

≠ ln (p
a

(X)) . (2.20)

Leading to the minimization problem defined as

min
X

J(X) = min
X

;1
2

1
X ≠ Xb

2
T

B≠1

1
X ≠ Xb

2
+ 1

2 (Yo ≠ H(X))T R≠1 (Yo ≠ H(X))
<

. (2.21)

Equivalently:
ÒJ(Xa) = B≠1(Xa ≠ Xb) ≠ HT R≠1(Yo ≠ H(Xa)) = 0 (2.22)

with Xa the analysis control vector. DA methods that focuses on solving Eq. (2.22) by using a
minimizer are commonly named variational methods.

However, another approach is possible by directly defining the analysis from Eq. (2.22) as:

Xa = Xb + K(Yo ≠ H(Xb)). (2.23)

Those methods are named filtering methods. The Bayesian update Eq. (2.23) is then the basis of
many filtering methods such as the Kalman filter (presented in the next section). The correction
term also called the analysis increment satisfies: ”Xa = K(Yo ≠ H(Xb)) = Kd, with K: the
gain matrix:

K =
1
B≠1 + HT R≠1H

2≠1

HT R≠1 = BHT

1
HBHT + R

2≠1

. (2.24)

Therefore, variationnal and filtering approaches di�ers from how equation (2.22) is solved. If
there are only a few variables to correct, e.g. as in parameters calibration, the filtering approach
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is more e�cient than the variationnal one. Calculating an analytic solution using a linear
approximation is indeed less costly than the evaluation of the cost function and its gradient at
each iteration. On the other hand, when the number of control variables increases and/or the
observation operator H is highly nonlinear, the cost function direct minimization may be less
costly and/or more precise to find a more optimal/realistic solution. However, if the observation
operator H is linear, the two approaches are completely equivalent. For more informations on
the formalism, please refer to [42, 43].

The application of Eq. (2.23) can lead to di�erent scenarii:

- In the most general case, the analysis is a linear combination of the background and the
observations. The contribution of each part is then weighted by the confidence, given by
the inverse of the errors, we have in each source of information.

- A perfect confidence in the backgound Xb leads to a zero matrix B and therefore a zero
matrix K. In this context the assimilation correction is zero and

Xa = Xb. (2.25)

- Conversely, if the confidence is total in the observations, R tends to the zero matrix. Then,
if H is invertible, K = H≠1. Thus Eq. (2.23) becomes

Xa = H≠1Yo. (2.26)

2.2.2 The Kalman filter (KF)
The Kalman filter was first proposed by R.E. Kalman in 1960 [44] and is the sequential version
of the least-squares analysis seen in previous sections under linear assumptions for the operator
H and M . In real-time data assimilation, the Kalman filter and its extensions are widely used
because they are adapted to sequential data assimilation where the observations are obtained
frequently in time (the green spot in Fig. (2.3)). In the Kalman filter community, the notation
di�ers from those used in the first part of this report. The subscript "b" for the background
value of the control variables is replaced by the subscript "f" for forecast as it is obtained by
propagating in time the optimal estimate from the previous assimilation step. Moreover, the
background (respec. analysis) error covariance matrix B (respec. A) is renamed Pf

(k)

(respec.
Pa

(k)

).

The two steps of the standard Kalman filter equations are defined as a prediction or forecast
step and an update or analysis step, as illustrated in Fig. (2.3).

1. The prediction step consists in, at time k, advancing the model in time using the analysis
from the previous step time as initial condition. In the same time, the background error
covariance matrix is calculated using the analysis error covariance matrix from the previous
time step:

Xf

(k)

= M
(k≠1)æ(k)

(Xa

(k≠1)

), Pf

(k)

= M
(k≠1)æ(k)

Pa

(k≠1)

MT

(k≠1)æ(k)

. (2.27)
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Figure 2.3: The Kalman filter is a two-steps algorihtm: 1. A prediction step during which the
model is forecasted in time, 2. An updating step where the analysis is estimated.
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Figure 2.4: Kalman Filter algorithm

Note that in the present study, we consider that the model is perfect. Usually, the definition
of Pf

(k)

in Eq. (2.27) is completed by the addition of a matrix Q defining the error
covariance matrix of the model itself, uncorrelated with from the error brought from the
previous iteration.

2. Then, the update step defines an optimized estimate of the true state Xa

(k)

and the asso-
ciated error covariance matrix Pa

(k)

based on equation (2.23) at time k :

Xa

(k)

= Xf

(k)

+ K
(k)

(Yo

(k)

≠ HXf

(k)

). (2.28)

Figure (2.4) shows how the KF variables are cycled within the two KF steps. Note that
for the KF algorithm, the model and observation operators are linear. Then, the linear
tangent operators, denoted by M and H and the original operators M and H are equal.

The extensions or equivalent of the Kalman filter are numerous [45]. Among them, some are
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based on the updating equations but get close from "smoother methods", referred to as Kalman
smoothing, see [46, 47]. Moreover, the first important limitation of the Kalman filter is that the
operator M and H are supposed linear (giving M and H) but, in most cases in DA, the model
is nonlinear and so are the operators. To overcome this problem, the Extended Kalman filter
(EKF) was introduced as an extention of the Kalman filter.

2.2.3 The Extended Kalman filter (EKF)
In the case of a nonlinear model M and of a nonlinear observation operator H, it is still possible
to apply the Kalman filter equations by taking the linear operators M and H as Jacobian matrix
of M and H respectively. Both operators are called the linear tangent:

M = ˆM
ˆX

----
Xg

H = ˆH
ˆX

----
Xg

. (2.29)

Commonly, the prior estimate Xf is chosen as the reference Xg.

The equations of the EKF are the same as the Kalman filter’s ones except that the nonlinear
form of the operators are used in the forecast step and to calculate the innovation. The linear
tangent versions are only used to determine the error covariance matrices such that:

• Prediction/Forecast step:

Xf

(k)

= M
(k≠1)æ(k)

(Xa

(k≠1)

), Pf

(k)

= M
(k≠1)æ(k)

Pa

(k≠1)

MT

(k≠1)æ(k)

, (2.30)

• Update/Analysis step:

Xa

(k)

= Xf

(k)

+ Pf

(k)

HT

1
HPf

(k)

HT + R
(k)

2≠1

1
Yo

(k)

≠ H(Xf

(k)

)
2

, Pa

(k)

=
1
I ≠ K

(k)

H
2

Pf

(k)

. (2.31)

Unlike the standard KF, the EKF is not an optimal estimator due to the use of the linear
tangent models. In addition, the EKF may quickly diverge if the prior estimate is far away from
the true state and generally, the estimated covariance matrices are underestimated. The linear
tangent is equivalent to a linear approximation of H (or M) in the vicinity of a given reference,
here Xg. The choice of Xg is then crucial to obtain a correct analysis control. An idea to find
the best reference control was used in [32]: as illustrated in Fig. (2.5a), an external loop over
the reference control Xg is introduced in the EKF algorithm (called as the BLUE box in the
figure). That allows then to correct the control several times at the same assimilation cycle by
updating the value of Xg at each iterations. The reference is initialized at Xf and updated with
the analysis Xa on the previous iteration in the loop until a convergence is reached.

As illustrated in Fig. (2.5b), an “optimal” value of the linear tangent is progressively esti-
mated using several iterations. Then, the analysis is found thanks to these successive quadratic
minimizations. If the cost function to minimize is not quadratic and no strictly decreasing, the
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Figure 2.5: Data Assimilation algorithm formulated as a BLUE iterative [32]: principle of the
converging loop for the EKF process.

external loop may encounter local minima or even diverges. The EKF linearizes, sometimes
unrealistically, the observation H (and also model M) operator based on local derivatives which
are often di�cult to compute reliably( because of di�cult analytical determination or expensive
finite di�erences approximations of the linear tangent). So, to better account for nonlinearities,
an ensemble-based DA approach can be used: ensemble forecasts stochastically characterize the
nonlinear response of models to variations in the input data. The Ensemble Kalman filter o�ers
then an ensemble-based version of the KF. Besides, apart from the nonlinearity limits of the
EKF, di�culties may be encountered to model the error covariance matrix because of storage
capacities. Numerous works have been done in order to determine the background error covari-
ance matrix: [48, 49] used wavelets transforms and their properties towards a�ne transforms
to represent covariances and correlation while [50] used a spectral diagonal approach. Many
other techniques can be used, with some described in [51]. The Ensemble Kalman filter, even
if it remains based on the Gaussian distribution assumption, suggests then an alternative as
to use Monte-Carlo-based approach to stochastically characterize the covariance matrix. The
stochastic approach allows to better take into account the nonlinearities of the physics while
also avoiding the storage of the matrix from one assimilation cycle to another.

2.2.4 The Ensemble Kalman filter (EnKF)
The Ensemble Kalman filter (EnKF) was first proposed by Evensen: in a prior study in [52]
and rigorously formulated in [53] as a Monte-Carlo implementation of the Bayesian update used
previously in the standard Kalman filter. The EnKF algorithm stochastically approximates the
forecast PDF of the control vector p

f

(X) by performing a series (an ensemble) of N
e

indepen-
dent simulations, thereby providing N

e

forecast estimates of the control vector. The ensemble
containing all the prior members is called the forecast ensemble:

Ó
xf,[1] xf,[2] . . . xf,[N

e

]

Ô
. (2.32)

The step in which the prior members are generated is the most important because the ensem-
ble needs to represent the control likelihood the best way possible giving sampling errors and
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approximations.

To be coherent with the stocastic approach, we need to consider the only observation vector
as a random variable. This is allowed by the use of the process of randomization of data [54]:
from the original measurement, N

e

observation vectors are generated by randomly pertubing it.
Using the estimated standard deviation on the observations ‡o, the observed data for the j-th
member is calculated by:

’j = 1 . . . N
e

, yo,[j] = yo + ‘o

j

, ‘o

j

≥ N (0, ‡o). (2.33)
The observation ensemble is then defined as:

Ó
yo,[1] yo,[2] . . . yo,[N

e

]

Ô
. (2.34)

The unknown background error covariance matrix Pf is now replaced by its stochastic ap-
proximation over the N

e

members Pf

e

. If there are n control variables, the size of the matrix is
n ◊ n. Is it calculated using the N

e

control realizations xf,[.] centered by their sample expecta-
tions, based on Eq. (2.12):

Pf

e

= 1
N

e

≠ 1NNT with N =
Ë
xf,[1] ≠ xf , xf,[2] ≠ xf , . . . , xf,[N

e

] ≠ xf

È
. (2.35)

The observation error covariance matrix R could either be modeled by its sample version
R

e

or either be modeled using the observation error standard deviation ‡o. According to KF
equations, R has to be invertible. By defining the matrix by its sample version using the
randomized data Yo

e

, this matrix will not necessarily be diagonal, meaning that the observations
are not independent and besides, the matrix can be singular and more expensive to invert.
So, the covariance matrix is based on uncorrelated observation errors: the matrix is diagonal,
positive, definite with each diagonal element equal to the observation error variance (‡o)2. For
p observations, the matrix is of size p ◊ p:

R = (‡o)2 ◊ I (2.36)
with I the identity matrix.

When all the required ensembles are built, the Ensemble Kalman filter can be applied to
produce an ensemble of analysis vectors

Ó
xa,[1] xa,[2] . . . xa,[N

e

]

Ô
such that the KF update

is applied to each member independently:

’l = 1 . . . N
e

, xa,[l]

(k)

= xf,[l]

(k)

+ Pf

e,(k)

HT

1
HPf

e,(k)

HT + R
2≠1

1
yo,[l]

(k)

≠ H(xf,[l]

(k)

)
2

. (2.37)

Ensemble-based methods like the EnKF o�ers more flexibility in the kind of computational
models and physical systems to associate with in DA applications. They have already been
used in the wildfire modeling community for temperature state correction. Before presenting
some existing research works about DA applied to wildfire modeling, it is important to quickly
introduce the notion of cycling, necessary for sequential DA.
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2.2.5 Cycling of the analysis
The description of the above algorithms is given at one particular observation time. Yet, those
algorithms and all DA algorithms in general are applied on several assimilation cycles. Therefore,
some particular treatments of the analysis may be required. Those treatments allow to generate
the model state corresponding to the current analysis control to be used as initial condition for
the next model integration:

• For parameter estimation, the analysis control vector at the time (k) is directly used as
background control vector at the time (k+1). But also, the model is re-integrated from the
time (k-1) to (k) using the analysis control vector. The model state at time (k) obtained
from this integration is then used as initial condition for the next model integration from
time (k) to time (k+1).

• For state estimation, the corrected state is directly used as initial condition for the next
model integration. The control vector may also be a subspace of the state vector. Thus,
some reconstruction algorithm are required to reconstruct the state vector from the control
vector.

Now that general DA algorithms have been introduced, the following presents an overview
of DA techniques applied in wildfire spread modeling.

2.3 Applying data assimilation to wildfire modeling
In wildfire spread modeling, given the large uncertainties in the input variables, the control
vector can be composed of either the Rothermel’s model parameters or the fuel distribution, the
temperature field or the fire front position or even all of them together. A first option, namely
parameter estimation, allows to improve the fire modeling performances by using feedback on the
physics of the problem to improve the calibration of the model parameters. The second option,
namely state estimation, is based on the fact that the model cannot be perfectly corrected due
to the multiple sources of uncertainties in the model parameters but also in the chaotic nature
of the system and the model formulation itself. Then, a direct correction on the model state
variables can provide insights in the magnitude of the uncertainties and especially on the model
error.

2.3.1 Parameter estimation
DA has been widely applied for model parameter estimation. In particular in hydrology [55] by
estimating the model input as run-o� coe�cient or characteristics of conceptual reservoirs; and
also in hydrodynamics [56, 57] by estimating river bathymetry or friction coe�cient. For wildfire
modeling, researches have been led in the framework of a collaboration between CERFACS and
UMD [2, 3, 4] and the results were published in [32, 33, 34].

In this work, the parameters that are estimated describe weather conditions eg. wind mag-
nitude and direction u

w

, topography information (slope) and fuel layer properties eg. moisture
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content M
f

, surface-to-volume ratio �. Thus, the control vector X is composed of a set of
two to eight parameters used in the calculation of the fire local rate of spread �, based on the
Rothermel’s model [13]:

X =
Ë
”

v

(x, y), M
v

, M
v,ext

, �
v

, m
ÕÕ
v

, fl
p

, �h
c

, u
w

(t)
È

, (2.38)

� = �(x, y, t) = P
1
”

v

(x, y), M
v

, M
v,ext

, �
v

, m
ÕÕ
v

, fl
p

, �h
c

, u
w

(t)
2

”
v

(x, y), (2.39)

where input parameters are summarized in Tab. (1.1). In the following, the wind velocity u
w

is treated as a time-dependent, spatially-uniform quantity; the fuel depth ”
v

is treated as a
time-independent, spatially-varying quantity; all other parameters are treated as constant and
uniform. The choice was made to consider uniformly-distributed parameters in order to limit
the size of the control vector and allow the use of a filtering algorithm where the correction is
explicitely calculated using Eq. (2.28). For a full description of the fire model FIREFLY, the
reader should refer to Chapter 1.

The DA algorithm uses a discretization of observed fire fronts as a set of No

fr

markers. The
observation vector at time t Yo

t

is defined as Yo

t

= [(xo

1

, yo

1

), . . . , (xo

N

fr

, yo

N

fr

)]. To map the
control space onto the osbervation space, the construction of the observation operator H is a
two-step operation. H(X) is the composition of the numerical model FIREFLY M

[t≠1,t]

(X) and
of a selection operator S(c):

H(X) = (S ¶ M)(X) (2.40)

with:

• The numerical model M
[t≠1,t]

(X) that integrates the physics on the assimilation time
window [t ≠ 1, t] using the control vector parameters X. It provides the simulated field of
the progress variable c associated to this particular control vetor.

• The selection operator S(c) that extract from c the isocontour c = 0.5 as a discretization
of the simulated front with No

fr

to match the observed front.

This observation operator is nonlinear and has to be estimated using a linear tangent model.
In the framework of EKF implementation in [33], the operator H is linearly estimated using
finite di�erences. In more recents studies based on the EnKF [32, 34], the use of a large number
of members allows good estimations but remains limited by the computationnal cost. In both
approaches, the results have to be interpreted with parsimony because the nonlinearities are
only treated locally.

This approach gives good estimates of the parameters and, at a large-scale, the simulated
front is found to properly represent the forecast trajectory. But, somes cases where the fire front
is locally deformed (due to unknown local fuel properties di�erent from the uniform description
used in the model), showed some limits. As illustrated in Fig. (2.6b-c) (EKF applied to two
parameters) and Fig. (2.7) (EnKF applied to four parameters) and from the same set of observed
data of a controlled grassland fire experiment in both simulations; applying a spatially uniform
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Figure 2.6: Comparison between simulated and measured fire front positions [32]. EKF applied
on two control parameters: the fuel moisture content M

v

and the fuel surface-to-volume ratio
�

v

.

correction of the parameter only allows a global correction of the fire front. The topology of the
front cannot be changed, meaning that local changes of the fire line are out of reach with this
approach.

In these case of parameter estimation, although the mean distance between the analysis fire
front and the observations is reduced compared to the mean distance to the prior fire front, the
front curvature at small-scales in not retrieved. To improve this correction, we have two options:

- Consider Rothermel’s model parameters as function of the two spatial coordinates as the
fuel layer thickness ” and the rate of spread �. With this approach, the size of the control
vector would be dramatically increased, causing very expensive resolution. Besides, we
would be correcting parameters values at some mesh nodes far away from the front or
within the burnt zone where there is no required correction. In a way, we would be able
to limit the size of the problem by applying DA algorithm only considering on mesh nodes
close to the fire. Still, spatially-distributed parameters are di�cult to validate: in real
cases, such high-resolution parameter distribution is not available and therfore there is no
mean of assessing if the analysis values are consistent with the physics.

- The second option will be to consider that, if it is not possible to identify and dissociate
the sources of uncertainty in the model, it is easier to deal with the consequences of those
uncertainties, ie. by considering the state variables as control variables, here the reaction
progress variable c. By directly correcting the state, the errors from the modeling are taken
into account with also other sources of errors like numerical aspects of the resolution, e.g.
discretization. Finally, this option leads to more general methods for state estimation
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Figure 2.7: Comparison between simulated and measured fire front positions. EnKF applied
on four control parameters: the fuel moisture content M

v

, the fuel surface-to-volume ratio �
v

and the wind magnitude and direction uw. Black-dotted line corresponds to the observed front,
blue-squared line corresponds to the mean forecast front and the red-squared line corresponds to
the mean analysis front. The ensemble-based approach allows to compare the standard deviation
of each points localization: horizontal and vertical lines around the front markers.

2.3.2 State estimation applied to the 2-D temperature field
Data assimilation applied to a state estimation problem is used by J.Mandel and J.Beezley [35].
Because they aimed at building a real-time coupled atmospheric-wildland fire modeling system,
the surface wildfire spread model is forced by the wind and radiated heat field. They formulate
the wildfire propagating as reaction-di�usion PDE where the temperature and the amount of
fuel are evolved in time.

In first works, DA consists in a standard EnKF implementation in which the control vector
includes the two fields Y (fuel) and T (temperature) at each mesh nodes. Randomization of
data is used to generate a wide range of prior and observation members where the state fields
are not only perturbed in magnitude, but also spatially shifted, as illustrated in Fig. (2.8).

The results obtained with this approach shows good agreement on the ensemble mean with
the reference solution they wish to recover even if the simulation ensemble was ignited intention-
nally far away from the reference ignition region. However, sometimes the ensemble is attracted
to reference solution, and sometimes not, depending on if there exists a good match to the data.
So the standard EnKF remains limited for several reasons:

• This approach correct mainly the field magnitude and less the localization of the fire flame.
This results, when simulated members are far away from the data, in non-physical state,
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Figure 2.8: Contour plots with 100K between contour lines. (a) A reference temperature profile
of a circular ignition region in the center of domain. (b) The same profile randomly perturbed
in magnitude and spatially, from Mandel.J et al. work [35]

• Above all, the EnKF relies on the Gaussian assumption when the PDFs of the temperature
fields are quasi-bimodal around the burning and fresh temperature.

This bimodal behavior motivates Mandel and Beezley to develop a new mathematical tool to
manipulate Gaussian variables within the EnKF implementation while still undirectly distorting
and deforming the state fields. The resulting algorithm is called the Morphing Ensemble Kalman
filter (MEnKF, [58]). This update of the EnKF is based on image processing techniques called
registration, i.e. the method of moving and streching an image to turn it into another (Fig. (2.9)).
The original idea is to project all the temperature fields in a same space to be able to compare
them. The Morphing Ensemble Kalman filter principle is then to apply the EnKF to the
ensembles of morphing application. While the PDFs of the temperature fields are bimodal, the
morphing applications were generated in a way that makes their PDF Gaussian.

In these two strategies, the main objective was to be able to correct the fire front position
under the constraint of correcting a whole 2-D field. By estimating the 2-D field amplitude,
we are able to correct the magnitude but not the location of the fire when the data and prior
members are too far away from each other. Even with the MEnKF that allows better correction
of the fire front positions, it still implies the correction of the whole 2-D field and an expensive
nonlinear optimization algorithm. A new strategy based on directly correcting the fire front
positions would avoid correcting the whole 2-D field magnitude. This is the subject of the
internship and is the subject of the next part.
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Figure 2.9: Example of morphing procedure in a one-dimensional case. The thin dash-dotted
lines in the horizontal plane connect the nodes x of the morphing grid with the values of nodes
after applying the registration mapping.

2.4 Conclusion
DA is applied in many fields of geosciences, from hydrology to atmospheric chemistry, and more
generally in all topics related to control theory. Its extension to wildfire propagation is the
long-term objective of this project.

DA allows to statistically treat a priori knowledge from a numerical model by combining
it to experimental measurements when they get available. The purpose of this technique is
to approach as accurately as possible the true state so as to decrease the uncertainties in the
predicted states. This can be done either by controling the initial condition like in weather
forecasting, or by controlling the physical properties and boundary conditions of the model.
Those two approaches have both advantages and limitations and so, data assimilation controlling
both state and parameters can be an interesting work as shown by Moradkhani in hydrology,
see [59].
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Chapter 3

Tracking the fire front location and
shape using the Ensemble Kalman
filter

The objective of this study is to develop a prototype for a data-driven wildfire simulation plat-
form capable of forecasting the fire spread dynamics. The prototype features the following main
components: a level-set-based fire propagation solver that adopts a regional scale approach,
treats wildfires as propagating fronts, uses a description of the local rate of spread (ROS) of the
fire based on Rothermel’s model, described in Chapter 1; a set of measurements of the real fire
front described in this current chapter 3 section 1.1 (paragraph Observations) ; and a data as-
similation algorithm based on an Ensemble Kalman Filter (EnKF). This study is a continuation
of our previous studies presented in Refs. [32, 34, 33] and an extension to the case of spatially-
varying vegetation properties and temporally-varying wind conditions. This extension is based
on a state estimation approach introduced in Chapter 2, illustrated in Figure (2.2) and inspired
in part by previous studies by Mandel et al. [35, 58]. In the present study, the control variable
is the fire front position and its related error is characterized by an approximate Gaussian PDF,
which allows for a straightforward application of EnKF. The position and the shape of the flame
front of a surface wildfire is directly represented by the x- and y-coordinates (for 2-D case) of
its discretization markers. In this present Chapter 3, we present the mathematical formalism
associated with the estimation of the fire front positions with a wildfire spread numerical model
in section 1. Section 2 describes how the ensemble for the EnKF is generated. Section 3 provides
some sensitivity study for the DA prototype as well as test case results showing how the ensem-
ble generation impacts the analysis. Section 4 is dedicated to more realistic experiments that
will emphasis some limitations of the EnKF algorithm correction, due to the incompleteness of
observations for instance. Finally, we will present a real-case study test as the assimilation of a
grassland controlled burning experiment.
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3.1 State estimation problem for wildfire spread
3.1.1 Identification of the main variables and parameters
Control vector for state estimation

The fire front is numerically discretized in N
fr

points over the two-dimensional computational
domain with each markers of the fire front represented using 2-D x- and y-coordinates (plain
line in Fig. (3.1)). The control vector includes the x- and y-coordinates of the N

fr

points in a
vector of size 2N

fr

elements:

X =
1
x

1

x
2

. . . x
N

fr

y
1

y
2

. . . y
N

fr

2
T

. (3.1)

In the following:

• Xf : "f" as "forecast" to denote a background fire front (prior values),

• Xa: "a" as "analysis" to denote a fire front obtained after an assimilation process (posterior
values),

• Xt: "t" as "true" to denote the reference front in synthetic-data experiment (where the
observations are generated from a reference “true” front),

Observations

There is a growing body of literature on recent technological developments for geo-referenced
wildfire front tracking [60, 61]. So far, spaceborne and airborne systems observe fires in the Mid-
dle InfraRed (MIR) region but only airborne platforms provide spatial and temporal resolution
suitable for real-time geo-location of active fire contours. For instance, Paugam et al. [60] show
that spatio-temporal variations of the rate of spread of the fire can be accurately retrieved using
a Fire Radiative Power (FRP) analysis on a thousand-meter-square controlled fire experiment.
As illustrated in Figure (3.1), the observed fire front is represented as a segmented line using
a pre-defined number No

fr

of equally-spaced markers (the observation points); the observation
vector, noted Yo, contains the two-dimensional coordinates (xo

i

, yo

i

) of the fire front markers.
The observation vector Yo is a vector of size 2No

fr

elements such that:

Yo =
1
xo

1

xo

2

. . . xo

N

o

fr

yo

1

yo

2

. . . yo

N

o

fr

2
T

. (3.2)

The FIREFLY solver uses a high-resolution computational grid that allows for a detailed rep-
resentation of the local conditions while observations of the fire front position are likely to be
provided with a much coarser resolution, thus we may expect No

fr

to be much lower than N
fr

.
In the following, we assume for simplicity that No

fr

= (N
fr

/r) where r is an integer taking values
larger than 1. The observation operator H may be defined in several ways (for instance using a
projection scheme) but preliminary tests have shown that a simple selection treatment taking 1
out of every r points provided reasonable results. The observation operator H is then reduced to
a selection operator that matches a subset of No

fr

markers among the N
fr

of the simulated front
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Figure 3.1: Formulation of the innovation vector as a distance between the observed and simu-
lated fronts.

with each one of those in the observed front, as illustrated in Figure 3.1. Finally, the innovation
vector is formulated as the distance between the markers of the observed front and the selected
one of the simulated front:

d = Yo ≠ H(Xf ). (3.3)

Background and observation error covariance matrices

The background error covariance matrix, Pf

e

is calculated from the ensemble of simulated fronts,
see Eq. (2.35). With the current control vector definition in Eq. (3.1), the background error
covariance matrix (and all covariance matrices in general) can be divided in 4 parts:

• The diagonal gathers the variances of the errors on each coordinate. The N
fr

first elements
of the diagonal are the variances of the x-coordinate and the N

fr

last are the variances of
the y-coordinate,

• the first diagonal bloc gathers the covariances of the errors on x-coordinate with the other
x-coordinates,

• the second diagonal bloc gathers the covariances of the errors on y-coordinate with the
other y-coordinates,

• and the extra-diagonal blocs gather the crossed-covariances between the errors on the x≠
and y≠coordinates.

The stochastic approach also allows to estimate Pf

e

HT and HPf

e

HT . Because the observation
operator H is a selection operator where points on the simulated fronts are selected every r points,
Pf

e

HT and HPf

e

HT are respectively defined by selecting from Pf

e

the columns and lines-columns
associated with the selected markers in the simulated front. Pf

e

is a matrix of size 2N
fr

◊ 2N
fr

while H is of size 2No

fr

◊ 2N
fr

; meaning that Pf

e

HT is of size 2N
fr

◊ 2No

fr

and HPf

e

HT of size
2No

fr

◊ 2No

fr

.
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(a) Example of prior front (b) Covariances for 200 members

Figure 3.2: Background characteristics when each discretization marker is independently per-
turbed: front with 100 discretization marker (a) and Pf

e

of size (2 ◊ 100) ◊ (2 ◊ 100) elements
determined with 200 members (b).

The observation error covariance matrix R, of size 2No

fr

◊2No

fr

, is a diagonal matrix defined
as in Eq. (2.36).

3.1.2 Implementation of the EnKF for the fire front correction
Generation of the ensemble

In the EnKF implementation, the first step is to generate the background ensemble for each con-
trol variable taking into account all sources of uncertainties. For front-tracking application, this
would mean taking each markers coordinate and generate the ensemble for each one separately:
from a reference front discretized in N

fr

markers, the position of each marker sould be randomly
perturbed adding a Gaussian noise with a zero expectation and a significant standard deviation
to the x- and y- coordinates. When each points is perturbed separately, the resulting has a
chaotic aspect (Fig. (3.2a)), and there is no smooth line that can link all the markers together
since by construction the error on one marker is uncorrelated with the error of its neighbors, as
illustrated in (3.2b). This method to generate the members is conflicting with the definition of
a fire line that has to be coherent with respect to the equation described in Part 1. With this
ensemble generation approach, the background members can not be considered as firelines and
it will make no sense to try to recover the true front from them.

Thus, another strategy to generate the members is required. The idea is to directly perturb
the model parameters as Rochoux [2], Delmotte [3] and Bart [4] did for parameter estimation:
the parameters of the ROS model are perturbed with a Gaussian noise. Figure (3.3) presents the
fire fronts shapes when the fire is spreading on an uniform fuel with a moderate wind blowing
from the South East direction, for di�erent conditions of fuel moisture content M

v

(3.3a), wind
velocity u

w

(3.3b) and ignition location (x
ign

, y
ign

) (3.3c).
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Figure 3.3: Examples of various fronts when varying only one control parameters: (a) the fuel
moisture content M

v

, (b) the wind velocity uw, (c) the ignition location (x
ign

, y
ign

)

The vector of all perturbed parameters will be denoted as p
m

:

p
m

=
Ë
x

ign

, y
ign

, ”
v

(x, y), M
v

, M
v,ext

, �
v

, m
ÕÕ
v

, fl
p

, �h
c

, u
w

(t)
È

(3.4)

- pt

m

holds for the true parameters used in synthetic-data experiments,

- pf

m

holds for the perturbed background parameters.

In the framework of OSSE experiments, a set of true parameters pt

m

is chosen and used to
generate the set of background and observation data so that the uncertainties are completely
controled. The implementation of the OSSE with FIREFLY is presented in Fig. (3.4). The set
of true parameters is used for two purposes:

• First, it is perturbed to generate the set of background parameters pf

m

. These parameters
are then input in the model integration code M

[t≠1,t]

to generate the set of prior frontsÓ
Xf

Ô
,

• second, it is directly input in the model integration code to generate the true fire front Xt.
The observed fire front Yo is then extrated from Xt by selecting No

fr

points (H(Xt)) and
adding noise (‘o).

In the framework of real-data experiment, whose general implementation is presented in Fig. (3.5):

• The set of parameters p
m

is known from an a priori value pf

m

and an estimation of the
uncertainty ‡pf

m

. The forecasted fire fronts are therefore generated from this a priori
information.

• Besides, the observed fire front Yo is already provided with an estimation of the uncertainty
‡o.
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Figure 3.4: OSSE algorithm to correct the ensemble of simulated fire fronts

For the two approaches, the ensemble of background fire fronts and the observation vector are
then similarly exploited with:

1. the randomization of the observed front {Yo},

2. the determination of the innovation vectors {d},

3. and finally, the computation of the EnKF update.

Implementation of the EnKF for FIREFLY

In the framework of this intership, the coupled execution of the front-tracking solver with the
di�erent instances of the EnKF is managed by the OpenPALM coupler [62, 63, 64] developed at
CERFACS and ONERA. Moreover, the OpenPALM functionality Parasol handles the paralell
execution of the independant integrations of each member.

OpenPALM The software OpenPalm [62, 63, 64] is a flexible and powerful dynamic coupler
developed at CERFACS since 1998. It was originally developed for the MERCATOR project
in the framework of operational oceanography forecast [65]. OpenPALM can be used to couple
di�erent numerical models; e.g an ocean model with an atmospheric model for climate modeling;
or to couple a physical model with a given algorithm; e.g. optimization or post-treatment algo-
rithm. Now, it is widely used by the scientific and engineering community for data assimilation
aplications such as the French project ADOMOCA (Assimilation de DOnnées pour les MOdèles
de Chimie Atmosphérique) in atmospheric chemistry data assimilation [66] or DA applications
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Figure 3.5: Real-data experiment algorithm to correct of the ensemble of simulated fire fronts

with the Saint-Venant code MASCARET for flood forecasting developed at SCHAPI [67]. Open-
Palm is also used as a model coupler by the CFD team at CERFACS with the software ELSA
in fluid structure applications [68, 69]. More recently, OpenPALM has been used in wildland
fire spread modeling [33, 34].

OpenPALM is a dynamic coupler: a coupled component can be launched and can release
resources upon termination at any moment during the simulation. Computing resources such
as the required memory and the number of concurrent processors, are handled by the Open-
PALM driver. An OpenPALM application can be described as a set of computational units
arranged in a coupling algorithm. The di�erent units are controlled by conditional and iterative
constructs and belong to algorithmic sequences called computational branches. A branch is
structured like a program in a high level programming language: it allows the definition of se-
quential algorithms. Inside a branch, the coupled independent programs, the units, are invoked
as if they were subroutines of the branch program. It is then possible to define communication
points between units from di�erent branches to exchange, send and receive data. OpenPALM
applications are implemented via a graphical user interface (GUI) called PrePALM. In this in-
terface, the programmer initially defines the coupling algorithm: number of components (units),
sequential (units within the same branch) and parallel (separated branches) sections, resources
management. Then, the actual commnications between communications are materialized by
points at the top of the unit box (meaning received data) or at the bottom (meaning dent data)
linked between units by dashed-line, see Fig. (3.6). For further information, the reader should
refer to [70].
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Figure 3.6: Snapshot of the G.U.I Prepalm

Parasol Parasol is an functionality of the OpenPALM software allowing to automatically
launch in parallel a certain number of instances of the same program. Its spawns n instances
of the same source code with di�erent inputs (and consequently outputs). The user sets the
number of allocated processors and then Parasol, executes in parallel the di�erent instances.
During the execution, it manages the gathering and the distribution of the output data in the
correct order. In the context of this internship, the Parasol functionality is applied to the
function, named Firefly_forward, that integrates the fire spread model in order to generate the
ensemble of background fire fronts.

Parasol creates two types of subroutines:

• A slave subroutine in charge of executing the function to “Parasol-ize”,

• A master subroutine which calls n instances of the slave subroutines and manage the input
and output parameters.

Figure (3.7) presents the general execution of the Parasolized function Firefly_forward:

1. First, the master gathers the set of all input parameters,

2. the master calls the slave subroutine using the slave processors that have been allocated
to it. For each call, it supplies a di�erent set of input parameters,

3. each slave instance calls and executes the function to Parasol-ize with their own input
parameters and returns the output parameters to the master,
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Figure 3.7: Palm unit master applied to the Firefly_forward function in the FIREFLY algorithm
with Parasol

4. the master sends the ensemble of outputs from all slave instances for the next step of the
algorithm.

3.1.3 Cycling of the analysis
After one assimilation cycle, analysis fire fronts described with N

fr

pairs of coordinates are avail-
able. To continue with DA at the next time window, the analysis fronts have to be propagated
until the next observation time. From Chapter 1, we recall that the level set solver produces
and takes as initial condition a two-dimensional full field of the progress variable c while DA
manipulates set of coordinates that represent the front. Fig. (3.8) presents the sequence of the
di�erent structures of the state variables during the assimilation. Then we need pretreatments
to map from one structure to another and conversely. In the first sense, an extraction function
build the fire front from the progress variable field. Therefore, an algorithm is required to con-
struct the progress variable field from the analysis fire front Xa. The reconstruction algorithm
to apply to each mesh nodes leans on vectorial analysis and is is detailled in Annexe A.

3.1.4 A posteriori diagnostics
To quantify the quality of the correction, we will use the Root Mean Square (RMS) distance
between the background/analysis fronts and a reference front:

• When the true front is taken as reference, the terms BMT - Background Minus True (resp.
AMT - Analysis Minus True) are employed for the comparison between the true front and
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the background (resp. analysis) fronts. This can only be applied for twin experiments and
is favored for this king of experiment,

• and when the observed front is taken, the terminology becomes BMO - Background Minus
Observation/AMO - Analysis Minus Observation. This one is used for real-data experi-
ment.

Statistics are defined as the pair (d, ‡) such that:

• d (m) is the mean over all the points along the front of the mean distance over the members
between points on the simulated fronts and corresponding points along the reference front:

d
BMT

= 1
N

fr

N

frÿ

j=1

d
BMT,j

(3.5)

with

’j = 1 . . . N
fr

d
BMT,j

= 1
N

e

N

eÿ

l=1

Ú
(xf,[l]

j

≠ xt

j

)2 + (yf,[l]

j

≠ yt

j

)2

It is similar for d
AMT

by taking (xa,[•]

• , ya,[•]

• ) instead of (xf,[•]

• , yf,[•]

• )

• ‡ (m) is the mean over all the points along the front of the standard deviation of the dis-
tance between points on the simulated fronts and corresponding points along the reference
front:

‡
BMT

= 1
N

fr

N

frÿ

j=1

‡
BMT,j

(3.6)

with

’j = 1 . . . N
fr

‡
BMT,j

=
ı̂ıÙ 1

N
e

≠ 1

N

eÿ

l=1

AÚ
(xf,[l]

j

≠ xt

j

)2 + (yf,[l]

j

≠ yt

j

)2 ≠ d
BMT,j

B
2

The assimilation produces a good-quality analysis when:

d
AMT

< d
BMT

(3.7)

meaning that, on average, the points from the analysis fronts are closer to the true front than
the points along the background fronts.

Besides, from an ensemble point of view, the EnKF is considered satisfactory when the
ensemble standard deviation is reduced:

‡
AMT

< ‡
BMT

(3.8)

meaning that the analysis fronts are close to each others and have similar curves in opposition
with the background ensemble where the background fronts can be far away from each other
and have a wide range of di�erent curves.
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Section Name Card(pm) Fuel type Nb cycle (AT/FT)1 N
fr

/No

fr

/N
e

‡o (m)
3.2.1 UNIF2_Pe_exp1 2 Uniform 1 (100 s/200 s) 100/1/25 1
3.2.1 UNIF2_Pe_exp2 2 Uniform 1 (100 s/200 s) 100/1/25 1
3.2.2 ZONE10_Deform 10 Zones 1 (150 s/300 s) 100/20/50 1
3.2.2 ZONE10_Ne 10 Zones 1 (150 s/300 s) 100/20/- 1
3.3.1 UNIF2_‡_o 2 Uniform 1 (100 s/200 s) 100/1/25 -
3.3.2 RAND2_Nfr_o 2 Random 1 (200 s/400 s) 100/-/25 1
3.3.2 ZONE10_Lim_MissingData 10 Zones 1 (150 s/300 s) 100/12/20 1
3.3.3 ZONE10_Lim_ForecastPerf 10 Zones 5 (150 s/600 s2) 100/20/20 1

Table 3.1: Description of the simulations. The names gather important information about the
simulations: the type of fule bed, the number of parameters used to generate the fire front and
the variables of interest for the particular simulation

3.1.5 Experiment settings
Now that the DA framework is settled, the following sections 2 to 4 of this part present the main
results and interpretation of the study. A series of synthetical-data experiments are studied to
emphasis the contribution of each features of the DA framework and to evaluate the performances
of the EnKF. For the following simulations, the fire is initialized as a circular front of radius 5m
and with a given ignition position (x

ign

, y
ign

) which corresponds to the coordinates of the center
of the initial circle. The details of all the run simulations are presented in Table (3.1).

3.2 Description of the background information
The objectives of these first experiments is to show the di�erent contributions and e�ects of the
background error covariance matrix on the DA analysis. In order to do so, we will carry out
OSSE experiments before moving on to real experiments.

3.2.1 Source of uncertainties in the stochastic estimate of the background
error covariance matrix

To begin with, we assume that the only source of uncertainty between the true front and the
simulated fronts is the localization of the ignition position, i.e.:

p
m

= {x
ign

, y
ign

} (3.9)

• The true front is then initialized with pt

m

= {100m, 100m} and has a circular shape,

• while the mean background values are chosen as pf

m

= {97m, 103m} with a standard
deviation of 10 m on each coordinate.

1

AT for “Analysis time”, i.e the time at which the analysis is performed. FT for “Free-run time”, i.e. the time

until which the model is integrated without any assimilation. The free-run fire fronts can be used to compare the

model performances with and without DA.

2

The use of the free-run times will be detailled in section 3.3.3.
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Theoretical and stochastic estimate properties of the background error covariance
matrix

The contribution of the background error covariance matrix is studied with a simple simulation
based on a uniform fuel distribution and with a simplified rate of spread as a function of the fuel
depth only. Because of the uniformly-distributed fuel, the rate of spread is therefore isotropic
and the simulated fire front keeps its initial circular shape. Therefore, all the forecast fronts can
be written as a function of the ignition location (x

ign

, y
ign

) such that

’l = 1 . . . N
e

Xf,[l] =

Q

ccccccccccccccccca

x[l]

ign

+ r
t

cos(◊
1

)
x[l]
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+ r
t

cos(◊
2

)
...

x[l]
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+ r
t

cos(◊
N

fr

)
y[l]
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t

sin(◊
1

)
y[l]

ign

+ r
t

sin(◊
2

)
...

y[l]

ign

+ r
t

sin(◊
N

fr

)

R

dddddddddddddddddb

(3.10)

with r
t

the radius of the circular fire front at the assimilation time t, identical for all the
members. Also, note that we assume here that markers along the fire line with the same index
on the simulated fire fronts are taken at the same location on the circle (meaning the same angle
◊

i

, i = 1 . . . N
fr

) for each member.

Then, the di�erence between each simulated fire fronts and the mean front sums up to a
di�erence between the perturbated ignition locations (x[l]

ign

, y[l]

ign

), l = 1 . . . N
e

and the mean
location one over the members (x

ign

, y
ign

) = ( 1

N

e

q
N

e

l=1

x[l]

ign

, 1

N

e

q
N

e

l=1

y[l]

ign

):

’l = 1 . . . N
e

’i = 1 . . . N
fr

Xf,[l] ≠ Xf = x[l]

ign

≠ x
ign

’i = (N
fr

) + 1 . . . 2N
fr

Xf,[l] ≠ Xf = y[l]

ign

≠ y
ign

(3.11)

Theoretically, the stochastically estimated background error covariance matrix is constant in
each quarter such that:
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5 q
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(3.12)
Finally, by applying the definition of correlation, Eq. (2.10), to the error covariance matrix in
Eq. (3.12), we can define the associated correlation matrix Cf

e,th

. The matrix is still composed

50



Forecast (curve)

Observation (marker)

Analysis (curve)

Observation (marker)
Correlation functions

Figure 3.9: Behavior of the analysis with respect to the forecast correlation functions.

by four constant quadrants such that
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with the interpretation of each bloc introduced in 3.1.1.

From the correlation matrix, one-dimensional correlation functions can be extracted (a col-
umn of the matrix) representing the correlation of one coordinate of a particular marker with
the x- or y-coordinate of any marker. In the present DA, the correlation functions indicate how
the error on one coordinate for one marker is correlated with the error on one coordinate for the
neighboring markers. This spatial impact is illustrated in Fig. (3.9):

• For the case (a-c-e): the correlation function point is narrow (c), meaning that the corre-
lation of neighboring points quickly decreases to 0. Then, a quite reduced vicinity of the
central point will be a�ected by the correction (e) and be moved close to the observation
(large black dot in (a) and (e)).

• For the case (a-b-d): the correlation function is wider (b). Then, the zone of influence of
the correction is also wider (d).

However, the matrices calculated by the Firefly-EnKF code, illustrated in Figure (3.10), are
sligthly di�erent from the theoretical ones in Eq. (3.12, 3.13) because they are not constant
per quadrants. Indeed, due to inaccuracies in the isocontour algorithm (introduced in Chapter
1) that allows to establish a correspondance between the points along the fire line within the
ensemble; it has been shown that there can be at the most an angular di�erence of 6 degrees
between markers from di�erent fronts with the same index i. The angles ◊

i

, i = 1 . . . N
fr

are
slightly di�erent from one member to another, resulting in the oscillating variations on each
quadrant of Pf

e,UNIF2_Pe_exp1

and so of Cf

e,UNIF2_Pe_exp1

as well.
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Figure 3.10: Experimental background covariance and associated correlation matrices. The
di�erence of variance between the x-variance (yellow, ≥ 80) and the y-variance (red, ≥ 120) is
due to sampling

Behavior of the analysis with respect to the background error covariance matrix

For this OSSE, uniform and circular test case, the analysis fire fronts are determined using
the theoretical background error covariance matrix at first and then the experimental matrix
Pf

e,UNIF2_Pe_exp1

. The ensemble is composed of N
e

= 25 members and the observed fire front
is described by No

fr

= 1 marker with an uncertainty defined by a standard deviation ‡o = 1 m.
Indeed, with the above description of the ensemble and the uniform settings, the EnKF provides
an isotropic correction over the circles, by shifting all markers together in a way that fits best
the observed front. Thus, it can be assumed that only one observation marker is enough to
correct the position of the fire front.

As illustrated in Fig. (3.11), the analysis fire fronts keep the circular shape of the background
fire fronts. In this particular case, tracking the true front is equivalent to tracking the center of
the initial location of the fire. Also, it is important to note that with this uniform definition of
the background ensemble, it is impossible to deform the fire front.

The results are similar with either the theoretical matrix or Pf

e,UNIF2_Pe_exp1

. With Pf

e,th

,
the information on the isotropy of the spread is completely contained in the diagonal blocks
and the correlation functions are identically equal to 1 for correlations between the same type
of coordinate and identically equal to 0 for correlations between di�erent type of coordinate.
For the simulation run with Pf

e,UNIF2_Pe_exp1

, the non-zero correlations in the extra-diagonal
quadrants compensate the correlations lower than 1 in the diagonal quadrants. The Figure
(3.12) presents the correlation function of the first marker with respect to the distance to the
other markers (note that because the fire front is circular, the markers are equally displayed at
each sides of the studied one; the positive distance is for the increasing-indexed markers and the
negative distance is for the decreasing-indexed ones):

• When the dashed-red line is lower than 1 (around 0.95), the x-coordinates of markers
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Figure 3.11: Results of an assimilation over 1 cycle with the true front (black line), the mean
background/analysis fire front (blue/red-dashed line) over the members and the observation
(green cross symbol).

far away are not changed with the same amplitude as the x-coordinate of the considered
marker, even though there are drawn in the same direction. But simultaneously, the
dotted-light blue line is at its highest (around 0.1). Meaning that when the y-coordinate
of the considered marker is changed, the x-coordinates of markers far away are sligthly
changed the same way.

• Similar comments can be done by comparing the orange line with the dashed-dotted blue
line.

To illustrate these compensation e�ects, another simulation is run with a particular back-
ground error covariance matrix: the diagonal blocks are normally generated while the extra-
diagonal blocks are forced to 0. The corresponding matrices are illustrated in Figure (3.13). Fig-
ure (3.14) compares the shape of an analysis fire front against a perfect circle when it is obtained
with Pf

e,UNIF2_Pe_exp1

(see Fig. (3.14a)) and with Pf

e,UNIF2_Pe_exp2

(see Fig. (3.14b)). We see
then that the analysis fire front keeps the circular shape when calculated using Pf

e,UNIF2_Pe_exp1

but does not keep it when calculated using Pf

e,UNIF2_Pe_exp2

. In the simulation UNIF2_Pe_exp2,
the compensation e�ect of the extra-diagonal block has been removed and then the analysis fire
fronts lose the circular shape.

We will now only considere the full experimental background error covariance matrix Pf

e,UNIF2_Pe_exp1

that we will simply denote as Pf

e

.

With these first basic simulations, we were able to emphasis the role of the error covariance
matrix and its associated correlation matrix in the correction process. The correlations translate
here the area of influence of each marker on the other markers. The isotropy (or anisotropy)
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Figure 3.12: Correlation functions associated to the first marker: x-coordinate w.r.t the
x-coordinates (dashed-red line), y-coordinate w.r.t the y-coordinates (plain-orange line),
x-coordinate w.r.t the y-coordinates (dashed-dotted-blue line), y-coordinate w.r.t the x-
coordinates (dotted-light blue line).
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Figure 3.13: Forced experimental background covariance and associated correlation matrices.
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Figure 3.14: Comparison of analysis member shape (plain-red line) with a perfect circle (dashed-
grey line): (a) analysis obtained using the full experimental matrix Pf

e,exp1

, (b) analysis obtained
using the forced experimental matrix Pf

e,exp2
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Input parameter True value Mean ensemble value Standard deviation
”

v,1

(m) 0.25 0.25 0.10
”

v,2

(m) 1.25 1.25 0.10
”

v,3

(m) 0.75 0.75 0.10
”

v,4

(m) 1.75 1.75 0.10
M

v

(%) 20 20 10
�

v

(1/m) 11500 11500 4000
u

w

(m/s, deg) (1.0, 315) (0.75, 315) (0.15, 45)
x

ign

(m) 350 350 20
y

ign

(m) 350 350 20

Table 3.2: Properties of the background parameters ensemble in the spatially-varying OSSE
test.

information in the spreading is included in the statistics of the matrices. To be able to stochas-
tically represent more complex fire fronts, it is important to consider non-uniform conditions
when generating the fire fronts.

3.2.2 Non uniform propagation test case: towards a full representation of
the uncertainties in the ROS model

Deformation of the fire fronts using spatially-distributed parameters

In the following simulation, we want to be able to deform the simulated fire fronts to obtain more
realistic analysis fire fronts. To do so, the idea is to consider all kind of uncertainties that can
a�ect the fire spread so that the propagation is anisotropic. The strategy adopted is to consider
spatially-distributed parameters. For example, the fuel is described as the 4 quadrants of the
square-shaped computational domain with di�erent value of depth. For the following series of
experiments, the previous set of parameters is extended to 10 parameters so that the sources of
perturbations during the propagation of the fire are extended as well:

pm = {x
ign

, y
ign

, ”
v,1

, ”
v,2

, ”
v,3

, ”
v,4

, M
v

, �
v

, uw} (3.14)

with their respective true and mean/standard deviation forecast values detailed in Table (3.2).

The observed fire front is described by No

fr

= 20 markers uniformly-distributed along the true
front and with an error standard deviation ‡o = 1 m. The ensemble is composed of N

e

= 50
members and the resulting simulated fire fronts (background/analysis) are presented in Fig.
(3.15). We see that thanks to the spatially-varying parameters such as the fuel distribution, we
are able to deform the simulated fire fronts and generate realistic analysis fronts close to the
observed front.
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Figure 3.15: OSSE test with anisotropic ROS. (a) Comparison between true (solid black line)
and forecasted (dashed blue lines) fire front positions for N

e

= 50. (b) Comparison between true
(solid black line) and analyzed (dashed red lines) fire front positions for N

e

= 50.

Statistics of the background ensemble

However, the spatially-distributed parameters only allow to deform the simulated fire fronts
but do not guarantee correct analysis fire fronts. Indeed, Figure (3.16a) shows the forecasted
and analysed fire fronts compared to the true and observed front for a low number of members
(N

e

= 2). We can see that the EnKF can barely find the shape of the fronts. This is due to
the poor representation of the statistics of the background ensemble. Then, while N

e

increases,
the EnKF is able to catch the shape and localization of the true fire front even if the forecasted
fire fronts are really di�erent and far from it (see Fig. (3.15) with N

e

= 50). This is also
demonstrated in Fig. (3.16b) that plots the RMS distance to the true front for the background
and analysis front with respect to the N

e

. We can see that the analysis gets closer to the true
front when N

e

increases.

From the entire section 3.2, we saw that to obtain good analysis fire fronts, we need a
complete background ensemble that reunites all kinds of uncertainties from the model and the
numerical settings to be able to generate deformed simulated fire fronts with enough spatial
variability. We also need an ensemble with enough members to calculate reasonable statistics.
In the next section, we focus on the result of the assimilation and its sensibility to the observed
data. We also care about the forecasting performances of the state estimation approach. The
following series of simulations are still OSSE experiments to be able to validate the algorithm
and test its limits.
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Figure 3.16: OSSE test with anisotropic ROS and varying N
e

. (a) Comparison between true
(black solid line), forecasted (dashed blue lines) and analysed (dashed red lines) fire front po-
sitions for N

e

= 2 (b) RMS distance between the true and forecasted fire front positions (blue
squares) and between the true and analyzed fire front positions (red squares) as a function of
the number of members N

e

.

3.3 Results of the assimilation
3.3.1 Sensitivity to the observation error standard deviation ‡o

As shown in section 3.2.1, for the uniform experiments UNIF2_Pe_exp1 and UNIF2_Pe_exp2
in uniform conditions, only one observation point is enough to correct the fire front given that
the ensemble is rich enough in term of members and uncertainties. Therefore, the quality of the
correction is only a�ected by the value of ‡o, the standard deviation of the error on the obser-
vations. Fig. (3.17a-c) presents the comparison between the true and the forecasted/analyzed
fire front positions. It can be noted that when several observations are used, the analysis still
features a circular shape but located at an optimal distance of the observations with respect to
the observations errors and the model errors (not shown here).

The results in Fig. (3.17b) were produced with a low value of the observation error standard
deviation, ‡o = 1 m compared to the circumference of the fronts while those in Fig. (3.17c) are
produced with a higher value, ‡o = 10 m. Fig. (3.17d) shows then the influence of this error
on the EnKF performance using the RMS formulation presented in section 1.4 as a function
of‡o. The vertical bars in Fig. (3.17d) give a graphical representation of the magnitude of
the standard deviations in the forecast and analysis ensembles. The figure shows that when the
observation error is small, the EnKF algorithm successfully drives the analysis ensemble towards
the true state; in contrast, when the observation error is large, the EnKF algorithm has reduced
e�ects and the analysis ensemble remains close to the forecast ensemble; for intermediate values
of the observation error, the EnKF algorithm produces optimized predictions lying between
forecast and observation. These di�erent regimes illustrate how DA combines information from
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both models and observations, and produces better results that those that would be obtained if
models or observations were considered separately.

In the following tests, the observation error is assumed to be small and the performance of
EnKF will be evaluated by its ability to track the observed fire front location.

3.3.2 Sensitivity to the resolution of the observed fire fronts
Sensitivity to the number of observations N

fr

o

The purpose of this simulation is to study the contribution of the number of markers No

fr

uniformly-distibuted along the observed front by taking No

fr

from 1 to 100 while N
fr

re-
mains at 100. Generally, the parameters properties are not uniformly-distributed leading to
anisotropic rate of spread and thus anisotropic propagation. In the following experiment, named
RAND2_Nfr_o, the fuel distribution is anisotropic. It is randomly distributed, meaning that
the fuel layer is composed of random pockets where the fuel thickness varies from 0 to 1 m,
see Fig. (3.18a). This implies that the true front and so the simulated/observed front are not
circular anymore (see Fig. (3.18b)).

When there is only one observation with a low uncertaincy, the simulated are corrected only
in the vicinity of the marker. As illustrated in Fig. (3.18c), the analysis fire fronts all gather
close to the observation point and remain separated away from it. Then in Fig. (3.18d), the
analysis fire fronts are more accurate and almost merged with the true front when the observed
front is described with more markers. This is shown in Figure (3.18e) with the RMS distance
as a function of No

fr

. The figure shows similar results as in Figure (3.17d). Moreover, when the
number of observations keeps increasing, the added markers are really close to each other and
some information gets repetitive. We can see in Figure (3.18e) that the analysis RMS is stable
from No

fr

= 20 to No

fr

= 100, implying that a too large number of observations compared to the
resolution of the simulated fronts is unnecessary.

In other words, the performance of the DA algorithm and its ability to capture the high-
resolution features of the fire front depend strongly on the density of the observation network;
where this density depends itself on the spatial variability of the fire front. Smooth observed
fronts does not need as many markers as chaotic and irregular ones.

Performances according to the repartition of the observed marker along the front

Directly following the results in previous section, we compare the performances of the EnKF
when first, the observation markers are uniformly-distributed, and second when the observed
front is incomplete.

The anisotropy of the propagation is now represented by a wide range of uncertainties in the
ensemble (see the forecast members in Fig. (3.19a)). Figures (3.19b-c) illustrates the forecast
correlation functions for the 70th marker in the fire fronts (localized as a pink squared marker
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Figure 3.17: OSSE test with constant ROS and one observation. (a) Comparison between true
(black solid line) and forecasted (dashed blue lines) fire front positions; the green cross symbol
is the observation. (b) Similar comparison between true (solid black line) and analyzed (dashed
red lines) fire front positions. (c) Averaged distance between the true and forecasted fire front
positions (blue squares) and between the true and analyzed fire front positions (red squares) as
a function of the observation error standard deviation ‡o.
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Figure 3.18: OSSE test with anisotropic ROS. (a) An example of random fuel disribution. (b)
Comparison between true (black solid line) and forecasted (dashed blue lines) fire front positions.
(c) Comparison between true (solid black line) and analyzed (dashed red lines) fire front positions
obtained with 1 observation (green cross symbol). (d) Similar comparison between true (solid
black line) and analyzed (dashed red lines) fire front positions obtained with 25 observation
(green cross symbols).(e) Averaged distance between the true and forecasted fire front positions
(blue squares) and between the true and analyzed fire front positions (red triangles) as a function
of the number of observation markers No

fr

.
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in the true front in Fig. (3.19a)). Those correlation functions presents a curve shape similar
with the forecast correlation functions obtained in Fig. (3.12) but their variations are more
pronounced. While studying correlations, we can measure the area of influence of a particular
marker by determining its correlation length scale at each of its side. In Fig. (3.19b), the
correlation length-scale correspond to the distance to the studied point (abscissa equals to 0)
where the correlation function is equal and higher than 0.5. In Fig. (3.12), this characteristic
length was “infinite” while here it is finite; e.g in Fig. (3.19b), the left correlation length scale for
the red curve is approximately equal to 20 m and the right one to 45 m. Therefore, the error in
the location of one observed point is only correlated with the error in the location of the other
adjacent points along the fire front.

As expected when the observed front is fully described, see Figure (3.20a), the analyzed front
positions feature a much reduced scatter in terms of fire front shapes and are located close to the
true front position. The DA algorithm translates the information coming from one observation
point into a correction restricted to the closets neighbors only. As a consequence, when several
observations are available, a non-uniform correction is obtained and the DA algorithm is then
able to change the shape of the fire front and more easily match the observations.

While Figure (3.20a) shows that the direct observation of the fire front position can overcome
various uncertainties in the wildfire spread model parameters, Figure (3.20b) illustrates that the
spatial distribution of the observations along the fire contour has a significant impact on the
analysis. This figure considers a practically relevant situation in which the observations are
limited to a certain section of the fire front (the informed section) and therefore provide an
incomplete picture. In this situation, while the EnKF algorithm produces an analysis that is
close to the true state in the informed section, the benefits of data assimilation are much reduced
in the non-informed sections.

It is worth pointing out, however, that despite a reduced level of performance, EnKF informed
by incomplete observations remains capable of improved performance compared to a stand-alone
forecast. It is here interesting to observe the forecast correlation functions of markers which are
far enough from the observations to not be a�ected by them; such correlations are presented in
Fig. (3.21). Indeed, for those markers, the only information used to correct their position is the
information contained in the correlation functions. The markers with observations facing them
are those at the largest distance from the studied marker (distance greater than 55 meters from
each sides). The correlations with those particular markers are all very low (around 0.3) excepted
for the correlation of the y-coordinate with respect to the other y-coordinates (orange line in
Fig. (3.21a)). Therefore, only the y-coordinate of the distant markers can be corrected. This is
actually verified in Fig. (3.20b): the analysed fire fronts are correctly positionned according to
the vertical coordinate and the horizontal dispersion of the markers opposed to the observations
is way more important.
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Figure 3.19: Spatially-varying OSSE test with uncertain ROS model parameters and uncer-
tain ignition location. (a) Comparison between true (black solid line) and forecasted (blue
dashed lines) fire front positions. (b-c) Correlation functions associated with the 70th marker
(pink squared-symbol in a): (b) x-coordinate w.r.t the x-coordinates (dashed-red line) and y-
coordinate w.r.t the y-coordinates (plain-orange line). (c) x-coordinate w.r.t the y-coordinates
(dashed-dottes-blue line) and y-coordinate w.r.t the x-coordinates (dotted-light blue line).
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Figure 3.20: Spatially-varying OSSE test with uncertain ROS model parameters and uncertain
ignition location. (a) Comparison between true ( black solid line) and analyzed (red dashed
lines) fire front positions; the green cross symbols are the observations. (b) See caption of
Fig.(a); case of an incomplete set of observations.
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Figure 3.21: Correlation functions associated with the 25th marker whose far awy from all obser-
vation marker in observed front in Fig. (3.20b): (a) x-coordinate w.r.t the x-coordinates (dashed-
red line) and y-coordinate w.r.t the y-coordinates (plain-orange line). (b) x-coordinate w.r.t the
y-coordinates (dashed-dottes-blue line) and y-coordinate w.r.t the x-coordinates (dotted-light
blue line).

3.3.3 Forecasting performances
We now consider multiple analysis cycles for the spatially-varying OSSE test and examine the
behavior of the forecast between successive observations or after the last observation was made.
The true fire front spread is simulated for time-varying wind conditions, whereas the forecast
ensemble is simulated for constant wind conditions, using the parameters presented in Table
(3.2).

The performance of the forecast is expected to deteriorate over time for two reasons. First,
because the impact of the fire front correction at a previous time decreases as the forecast lead
time increases. Second, because the present implementation of the EnKF does not provide any
correction for ROS modeling errors or any correction for uncertainties in the ROS model input
parameters (including the incorrect assumption of a constant wind). In this test, we apply the
EnKF algorithm over five successive analysis cycles. The complete assimilation window is of
600 s but each cycle is divided into four observation times at t

1

= 150 s, t
2

= 300 s, t
3

= 450 s
and t

4

= 600 s with the analysis update performed at t
1

= 150 s. To compare the forecast
performances, the analysis produced as t

1

of the current cycle is used as the initial condition for
the next assimilation cycle while the fire spread model integration is continued from the current
forecast at t

1

to t
4

.

Figure (3.22a) presents a comparison between the averaged forecast fire front positions,
the observations (considered to be close to the true state) and the averaged analysis fire front
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(b) EnKF performance versus time

Figure 3.22: Spatially-varying OSSE test with uncertain ROS model parameters and uncertain
ignition location; multiple analysis cycles. (a) Comparison between mean forecast (blue dashed
lines), observations (green crosses) and mean analysis (red solid lines) at times t

2

= 300 s and
t
4

= 600 s; the small circle in the center of the figure corresponds to the initial conditions. (b)
Averaged distance between the true and forecasted/analyzed fire front positions as a function
of the analysis cycle number; crosses correspond to a forecast with no update; circles, triangles,
diamonds correspond to a forecast with an update at t

1

= 150 s, t
2

= 300 s, t
3

= 450 s,
respectively; square symbols correspond to an analysis performed at times t

1

, t
2

, t
3

and t
4

.

positions at time t
2

= 300 s and t
4

= 600 s. Similar to the results obtained in previous OSSE
tests, the RMS distance to the true front is significantly reduced by EnKF, from 20 m for the
forecast to less than 1 m for the analysis (see also the curve with square symbols in Fig. (3.22b)).
Figure (3.22b) shows the typical cyclic evolution of the deviations of model predictions from the
true: during the update step of the analysis cycle n, the analysis provides a correction to the
front position and the distance between the true state and the forecast is significantly reduced;
the analysis ensemble at the end of cycle n provides the initial conditions for the next cycle
(n + 1); during the prediction step of cycle (n + 1), the wildfire spread model simulates the
fire evolution and the distance between the true state and the forecast increases significantly;
during the update step of the analysis cycle (n + 1), the distance between the true state and the
forecast is again reduced and the cycle is repeated. For instance, in Fig. (3.22b), the curve with
circles correspond to an averaged forecast that has been updated at time t

1

= 150 s, thereby
leading to a close approximation of the true state; without additional observations, this forecast
is seen to deviate from the true state (the RMS distance between the true state and the forecast
is approximately 80 m at time t

5

= 750 s).
In summary, these results show that in a state estimation approach, the EnKF updates have

to be performed at regular time intervals in order to allow for an accurate tracking of the true
fire front position.
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The ensemble of all OSSE simulations has shown that this data-driven prototype is capable of
e�ciently tracking the fire front location and local deformations. The state estimation approach
is the most e�cient for short-term predictions with a complete set of observations, but remain
exploitable in cases with partially-observed fire front. Finally, to validate this state estimation
approach for more realistic cases, the prototype will be evaluated on a set of data from a
controlled grassland fire experiment verifying the assumption that the observed data are frequent
enough and uniformly-distributed along the fire front.

3.4 Validation study: Application to a controlled grassland fire
experiment

We now evaluate the EnKF-FIREFLY prototype in a validation study corresponding to a
controlled grassland fire experiment. The experimental configuration corresponds to a small
(4 m x 4 m), flat and and horizontal, open-field grassland lot burning under moderate wind con-
ditions. The properties of the grass are (approximately) known and so are the wind conditions.
The fire spread is recorded during 350 s using a thermal-infrared camera; the thermal maps
are post-processed (the fire front is defined at the 600 K iso-temperature contour) and thereby
provide full fire contours at 14 s intervals; based on the spatial resolution of the camera, the
estimated standard deviation of the measurement error is ‡o = 0.05 m. An ensemble of N

e

= 50
forecasts is produced based on assumed uncertainties in the ROS input model parameters as well
as uncertainties in the initial conditions taken at time t

0

= 50 s. Moreover, the fire is ignited at
the bottom boundary of the domain. In terms of input parameters for the Rothermel’s model,
it means that the y-coordinate of the initial condition is known.

In this configuration, the vegetation and wind properties are assumed to be uniformly dis-
tributes, eventhough that is not perfectly true. Plus, from OSSE experiments, we know that the
simulated fire fronts can be properly deformed only if we settle spatial-distributed parameters.
Besides, the fire starts at the bottom of the domain; so the spread will be contained in only
two zones of the previous four-zones fuel distribution. To overcome this, a new version of the
four-zones fuel is introduced where the domain’s width is divided in four. This fuel distribution
should be able to deform more the simulated fire front. The input parameter y

ign

is not needed
anymore so pm reduces to a vector of 9 parameters as follows:

pm = {x
ign

, ”
v,1

, ”
v,2

, ”
v,3

, ”
v,4

, M
v

, �
v

, uw} (3.15)

with their respective true and mean/standard deviation forecast values detailed in Table (3.3).
Note that the variable x

ign

represents here a general shift of the initial condition along the
x-axis. Following the conclusions from the OSSE experiements this treatment is adopted in
order to generate a rich forecast ensemble with a wide range of simulated fire front shapes and
locations. Finally, in these simulations, N

fr

= 100 and No

fr

= 50.

Figure (3.23) presents a comparison between the averaged forecast fire front positions, the
observations and the averaged analyzed fire front positions, at time t

1

= 64 s, t
2

= 78 s, t
3

= 92 s
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Input parameter Mean ensemble value Standard deviation
”

v,1

(m) 0.06 0.04
”

v,2

(m) 0.08 0.04
”

v,3

(m) 0.1 0.04
”

v,4

(m) 0.12 0.04
M

v

(%) 22 6
�

v

(1/m) 11500 4000
u

w

(m/s, deg) (1, 307) (0.4, 45)
x

ign

(m) 2 0.65

Table 3.3: Properties of the ensemble forecast in the real-data test.

and t
4

= 106 s. Note that in Figure (3.23b-d), the mean forecast (blue dashed line) is initialized
at time t

1

, t
2

, t
3

by the analysis produced by the previous DA cycle (red solid line in Figure
(3.23)a-c) while the free forecast (cyan dashed-dotted line) is initialized at time t

0

, t
1

, t
2

and
does not use any analysis. In Figure (3.23), it is seen that the mean forecast significantly
underestimates the rate of spread of the fire; in contrast, the mean analysis provides accurate
estimates of the fire front position. The agreement between the analyzed and observed fire
front positions is improved compared to what was previously obtained in refs [32, 34, 33] using
a spatially-uniform parameter estimation approach for the same test case. In particular, the
analyzed fire fronts feature a topology that is very close to that of the observed front, a result
that requires an accurate and non-uniform correction of the locations of the fire front markers.

These results are similar to those obtained in Figure (3.22b) and suggest that while a state
estimation approach provides excellent forecasting performance at short lead times, this level of
performance is not persistent and needs to be renewed by frequent observations or parameter
correction.
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Figure 3.23: Validation test performed using data from a controlled grassland fire experiment:
comparison between initial conditions at previous time (t

0

= 50 s for cycle 1) (black open circles),
mean forecast (blue dashed line), observations (green crosses) and mean analysis (red solid line).
(a) time t

1

= 64 s; (c) time t
2

= 78 s; (b) time t
3

= 92 s; (d) time t
4

= 106 s.

67



3.5 Conclusion
Assuming that observations of the fire front position are available at frequent times but can
possibly provide an inaccurate and incomplete description of the fire front, the results indicate
that data-driven simulations are capable of correcting inaccurate predictions of the fire front
position and of subsequently providing an optimized forecast of the wildfire behavior. It was
demonstrated that in order to allow for a spatially-varying correction of the front position, the
generation of the EnKF ensemble should represent the anisotropy in fire propagation that results
from spatial variations in vegetation properties and from the presence of wind. This anisotropy
was implicitly introduced in EnKF by selecting spatially-dependent vegetation properties and
di�erent wind conditions between the members. Finally, because this DA implementation does
not act on the modeling errors, the results also indicate that the forecasting performance of a
state estimation approach is limited to near-term predictions (i.e., short lead times).
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Chapter 4

Insertion of the slope contribution in
the wildfire spread model

The most important current limitation of the wildfire spread model is its limitation to flat
terrain topography. To be applicable in real-life wildfire case, the fire spread model has to be
able to take into account any topographical description. The objective of the following part is to
extend the flat-terrain FIREFLY solver to 3D-topography FIREFLY solver. First, we describe
the 3D extrapolation strategy to incorporate the slope contribution in FIREFLY and validate
the model on a simple slope plane. Then, the 3D-FIREFLY solver is applied to more realistic
topography. Finally, a last simulation is performed to combine the 3D-FIREFLY solver and the
EnKF algorithm.

4.1 3-D extrapolation of the Rothermel’s model on a simple
slope plane

4.1.1 The slope variables
In the Rothermel’s model intial 1D formulation with wind and slope correction, the expression
of the ROS is given in uphill heading direction. This particular direction lies into a 3-D plane
defining the complete slope. This slope plane is characterized by two angles.

First, we define the orientation of the slope in the 3D space, currently called the aspect.
In rainfall studies [71, 72] and on numerous works focused on slope and wind contribution
on the ROS [73, 74], the aspect is set as the direction that the slope faces or also the downhill
direction. The aspect is therefore represented by an angle, named the aspect angle and illustrated
in Fig. (4.1), “

a

defined in the horizontal plane from the North direction in the clockwise sense,
and takes values between 0¶ (slope facing the North direction) and 360¶ excluded.

Then, we define the stepness of the slope plane; represented by the slope angle “
s

in Fig. (4.1):
from the “

a

+fi-direction in the increasing z-coordinate, “
s

takes values between 0¶ (flat terrain)
and 90¶ (vertical wall).
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Figure 4.1: Angles defining a slope plane.

Any slope plane can be characterized by a pair of aspect and slope angles (“
a

, “
s

). A
more detailed geometric description is presented in Appendix B. In a more general way, any
topography can be characterized by an ensemble of such pairs defining the slope characteristics
at some remarquable points. Before presenting some derived topography descriptions, we need
first to extend the 1D Rothermel’s formulation for a uphill-only wildfire spread, in any 2D
direction in the slope plane.

4.1.2 2-D extrapolation of the Rothermel’s model in the slope plane
A 2D extrapolation of the slope contribution in the Rothermel’s model when the wildfire does
not spread in the uphill direction (represented by the angle “

a

+ 180¶) was proposed by C.
Lautenberger [75]. Reconsidering the flame angle ◊ from Chapter 1, the slope correction is
based on the following assumptions:

• When the wildfire spreads in the uphill direction, i.e. ◊ = “
a

+ 180; the slope correction is
maximum giving: „

s

= „ú
s

1,

• When the wildfire spreads in the normal direction of the uphill/downhill one, i.e. ◊ =
“

a

±90; the wildfire remains at the same height while spreading and the slope contribution
is equal to 0, giving „

s

= 0,

• finally, for wildfire spread in downslope directions, ◊ œ [“
a

≠ 90; “
a

+ 90], the slope contri-
bution is negative in the ROS formulation. The Rothermel’s model was not established
for such spreading configurations. It is then assumed that the wildfire cannot spread at a
ROS lower than the ROS value without any wind and slope, namely �

0

. So, the ROS is
forced at �

0

.

Therefore, the 2D extrapolation of the Rothermel’s model with slope correction only is given by

� = �
0

max
3

1, 1 + cos(◊ ≠ “
a

≠ fi)„ú
s

4
. (4.1)

1

„

ú
w

as described in Chapter 1.
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Figure 4.2: Rate of spread � with slope correction with respect to the slope angle (abscissa
axis on the plot) and the aspect angle (colored curves) for a spread direction ◊ = 180¶. In the
configuration of the experiment, �

0

= 0.048m.s≠1.

Figure (4.2) presents the value of the ROS with respect to the slope angle “
s

and for di�erent
aspects “

a

with ◊ = 180¶. The tested values of “
a

are such that the fire goes up, so the e�ects
of the slope are positive. For “

a

= 90¶ (dark blue line), the fire is propagating across the slope,
so there is no change in the altitude and there is no contribution of the slope on the ROS. In
the opposite, when the fire propagates uphill (“

a

= 0¶, red line), the contribution of the slope is
maximal.

It is interesting to note that the wind correction proposed by C.Lautenberger was similar to
its slope correction, giving the flame angle ◊ and the wind angle ◊

w

. The ROS expression with
wind and slope correction was therefore

� = �
0

max
3

1, 1 + cos(◊ ≠ ◊
w

≠ fi)„ú
w

+ cos(◊ ≠ “
a

≠ fi)„ú
s

4
. (4.2)

This wind correction di�ers from the current wind correction implemented in FIREFLY. First
of all, the definition of the wind angle is di�erent: for FIREFLY, ◊

w

represents the direction
in which the wind blows while for C. Lautenberger, ◊

w

is the direction from which the wind
blows. In the literature, this last definition of the wind angle is the most widely used. Also, in
the current FIREFLY version, the ROS is projected on the wind vector and the resulting wind
velocity is used to determine the value of the wind factor „

w

. In C. Lautenberger’s formulation,
it is the other way around: the wind factor is calculated with the total wind velocity and the wind
contribution is projected on the flame vector. Figure (4.3) compares the two wind formulations
for a wind blowing from the South-West direction at a velocity 0.75 m.s≠1. For now on, we will
use Lautenberger’s definition of the wind angle and its wind correction in FIREFLY in order to
associate it with the slope correction presented in Eq. (4.1).
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Figure 4.3: Fire fronts profile every 100 s on a flat terrain with a wind blowing from the
South-West (◊

w

= 225¶ with the C.L definition): (a) FIREFLY wind correction, (b) CL wind
correction.

The slope correction in Eq. (4.1) gives the expression of the ROS in the slope plane. The
consideration of the third coordinate within the FIREFLY implementation can turn out to be
quite complicated and expensive. For the EnKF implementation, this would mean increasing
the size of all the variables (vectors and matrices) to take into account the z-coordinate which
besides, cannot be considered the same way as the x- and y- coordinates. Indeed, for a given
pair (x, y), the associated z-coordinate has to be equal to the corresponding height in the
topographical distribution. Therefore, we adopt here the same strategy as C. Lautenberger
where the 3D surface and so the flame vector are projected onto the horizontal plane. Thus,
the definition of the DA variables remains limited to the 2D x- and y-coordinates as they were
defined when the slope was not taken into account. Using space geometry properties, we define
the projected ROS at a given mesh node with aspect “

a

and slope “
s

by

�̃ = �
Ò

1 + tan2(“
s

) cos2(“
a

≠ ◊)
. (4.3)

The details of the determination of the projection coe�cient is presented in Appendix C.

This strategy is interesting because it does not imply important changes in the current im-
plementation of the FIREFLY solver. Moreover, it can be adapted for all types of topographical
configuration as long as we know the value of the angles “

a

and “
s

at each mesh node. Before
applying the algorithm for complex topography, we have to validate it on the simple case of a
slope plane.
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Fuel depth ”
v

1 (m)
Fuel moisture content M

v

15%
Surface-to-volume ratio �

v

11500 (1/m)

Table 4.1: Fuel characteristics

4.1.3 Validation of the slope correction in a simple slope case
Validation of the headfire ROS

The simulations are run on a fuel with uniform characteristics and no wind, see Table (4.1).
The terrain is a simple slope with slope angle “

s

= 15¶ and di�erent aspects “
a

: respectively
“

a,1

= 180¶, “
a,2

= 270¶ and “
a,3

= 225¶. The initial fire is a circle of radius 5 m in the center
of the square computational domain of size 600 m ◊ 600 m. The fire fronts are saved every 100
seconds over a spread of 1000 seconds. The results are presented in Fig. (4.4). The results show
that the fire front is faster in the uphill direction that in the downhill direction, for any aspect.
The topography implementation is then validated by comparing the ROS of the simulated head
of the fire and the theoretical one.

In the conditions of the simulation, we have the following constants:

�
0

= 6.82 ◊ 10≠2m.s≠1, „ú
s

= 2.9537. (4.4)

Given Eq. (4.1) and (4.3), the projected ROS at the head of the fire (i.e. ◊ = “
a

+ fi) is equal
to:

�̃(“
a

+ fi) = �̃
th

= �
0

(1 + „ú
s

)
Ò

1 + tan2(“
s

)
= 0.2608 m.s≠1. (4.5)

It is important to recall that, because all the fuel characteristics are uniformly-distributed, �
0

is
constant in time and in any direction ◊. The value of � depends only on the value of the aspect
angle “

a

.

To determine the rate of spread in a direction ◊, we have to determine the ratio of the covered
distance with the time during which the distance was actually covered. From the simulation, the
time between two fire fronts observations is of 100 seconds. The covered distance is determined
by taking in each front the marker with the same index, see Fig. (4.5).

Figure (4.6) compares the covered distance determined with the theoretical rate of spread
by plotting d

th

= �̃(“
a

+ fi)t (square-symboled red line) and the plot of the simulated covered
distance against observation times (dotted blue line) when “

a

= 180¶ and “
a

= 225¶. The
simulated rate of spread at the head of the fire is determined here by taking the mean over the
observation times of the ratios of the covered distance over the corresponding observation time:

�̃
exp,“

a,1

= 0.2622 m.s≠1 and �̃
exp,“

a,3

= 0.2637 m.s≠1 (4.6)
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Figure 4.4: Results for wildfire spread on a plane slope with slope angle “
s

= 15¶ and aspect
angle “

a,1

= 180¶ (a,d); “
a,2

= 270¶ (b,e); “
a,3

= 225¶ (c,f)
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Figure 4.5: Selected markers over the simulated fronts to determine the covered distance in the
direction ◊ = “

a

+ fi.
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Figure 4.6: Theoretical covered distance (m) (square-symboled red line) compared to the simu-
lated covered distance (m) (dotted blue line) with respect to the time in seconds.

Domain 600 m◊600 m, dx = dy = 1 m
Time 1000 s, dt = 0.5 s

Ignition config circular
Fuel depth ”

v

1 (m)
Fuel moisture content M

v

15 s%
Surface-to-volume ratio �

v

11500 (m≠1)
Wind velocity u

w

0 (m.s≠1)
Slope “

s

0¶

Table 4.2: Configuration for the simulation to validate an isotropic spread on a flat terrain.

The rates of spread agree with the theoretical rate of spread. However, the simulated rates of
spread slightly over-estimate the theoretical one because the selected markers to determine the
simulated covered distance are slightly shifted from one another and not perfectly aligned. The
simulated covered distance is then slightly greater than the real one, so is the rate of spread.

Validation on a flat terrain

FIREFLY was originally designed for flat terrains. If we consider the simulation configura-
tion presented in Table (4.2), the uniform-distribution of all the parameters should enssure an
isotropic spread at the ROS �

0

= 0.0559 m.s≠1, corresponding to the ROS with no slope and no
wind contribution given the fuel characteristics. The resulting fronts are illustrated in Figure
(4.7).

Visually, we verify that the spread is isotropic given the circular shape of the fronts. The
black circular markers in Fig. (4.7a) are the markers, with the same index over the fronts, used
to determine the ROS. The comparison of theoretical and experimental covered distances with
respect to time is presented in Figure (4.8). The mean experimental velocity is � = 0.0623 m.s≠1.
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Figure 4.7: Resulting fronts for a propagation on a plane with a zero-slope

This velocity is slightly above the theoretical one but this can be explained by the sequence of
markers used to determine the velocity. We can see in Fig. (4.7a) that the markers are clearly
not aligned then the covered distance is longer, giving a higher ROS.

We can then conclude that the results with a zero-slope terrain are equivalent to original
FIREFLY results for a flat terrain and identical fuel characteristics. This conclusion allows us
to validate the slope-correction algorithm for a simple slope. In the next section, we apply the
slope-correction FIREFLY solver on more complex topographical distributions. An intermedi-
ate topographical distribution between the simple slope plane and the random topographical
description is the canyon topography. Those simulations are presented in Appendix D.
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Figure 4.8: Comparison between theoretical and experimental velocities. red-squared line is for
the theoretical ROS and blue-dotted line is for the experimental ROS.

4.2 Wildfire spread on a complex topography
4.2.1 Implementation strategy
The source of information to describe any topography is given as altimetric data h(x, y), i.e. for
each point (x, y) the corresponding topographic elevation h. As proposed in [76], it is possible
to recover the slope from the field h by taking

tan(“
s

) =

Û3
ˆh(x, y)

ˆx

4
2

+
3

ˆh(x, y)
ˆy

4
2

. (4.7)

Also, the aspect is defined as direction indicating the negative gradient direction such that

≠1
Ú1

ˆh

ˆx

2
2

+
1

ˆh

ˆy

2
2

A
ˆh(x,y)

ˆx

ˆh(x,y)

ˆy

B

=
A

sin(“
a

)
cos(“

a

)

B

. (4.8)

To implement the gradient of h in FIREFLY, we use a basic centrale finite-di�erence scheme to
compute slope and aspect angles at each mesh node following Eq. (4.7) and (4.8).

Moreover, altimetric data may be defined on a coarser mesh grid than the FIREFLY mesh
grid. Therefore, we use a linear interpolation method with 3 points to interpolate the altimetric
data mesh grid on the FIREFLY mesh grid. Figure (4.9) presents the result of the interpo-
lation algorithm described above. The two grids are defined on a computational domain of
200m◊200m. The resolution of the altimetric data grid is dx

a

= dy
a

= 25 m while the reso-
lution of the finer grid is dx = dy = 5 m. The altimetric data are synthetically obtained by
randomly perturbing the altimetric data of a reference canyon with the reference angles defined
as ◊

c

= 30¶, “
c

= 5¶, “
s,1

= 35¶ and “
s,2

= 5¶.

77



0
20

40
60

80
100

120
140

160
180

200

020406080100120140160180200

�20

0

20

40

60

x (m)y (m)

(a) Reference data

0
20

40
60

80
100

120
140

160
180

200

020406080100120140160180200

�20

0

20

40

60

x (m)
y (m)

(b) Interpolated data

Figure 4.9: Interpolation of altimetric data (a) on a finer grid (b).

4.2.2 Numerical wildfire spread over a complex topography
The topography described in Fig. (4.9) is introduced in the wildfire spread numerical model. The
fire is initialized with a circular shape of radius 5 m and positionned at the center of the domain
(ie. (x

ign

, y
ign

) = (100 m, 100 m)). The wildfire spread over an uniform fuel distribution of
height ”

v

= 1 m, moisture content M
v

= 20 % and surface-to-volume ratio �
v

= 10000 m≠1. A
moderate wind of velocity u

w

= 0.75 m.s≠1 is blowing in the opposite direction of the important
slope, ie. ◊

w

= 135¶ (recall that the wind angle indicates the direction from which the wind
blows). The model is integrated over 1500 seconds with a time step of 0.5 s and the fire front,
described with N

fr

= 2000 markers is oberved every 75 seconds. Figure (4.10) illustrates the
growth of the burnt surface (dark red surface) over the computational domain along time while
Figure (4.11) similarly illustrates the spread of the corresponding fire front along time from
anther viewpoint.

Even if we do not have experimental data to enssure the validity of this numerical wildfire
spread, the observed results are coherent with the physics of wildfire spread. The wildfire spread
is the fastest when it reaches the steepest slope and spreads in the direct upslope direction. In
the other direction, the topography is almost plane so the spread is more moderate. In this
simulation, the wind is to weak to clearly a�ect the fire propagation. In a similar simulation
when a wind velocity is higher, i.e. u

w

= 1.5 m.s≠1, we can observe a fast spread in the opposite
direction to the slope at the beginning of the simulation and later, when the fire front reaches
the steepest slope, the spread accelerates in the slope direction as well.

Those results validate this prototype of wildfire spread model taking into account any to-
pography. The final step of the internship is to combine the 3D spread with the correction of
the EnKF.
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Figure 4.10: Numerical wildfire spread over a complex topography. Growth of the burnt area over time.

79



0
20

40
60

80
100

120
140

160
180

200

020406080100120140160180200

�20

0

20

40

60

x (m)

t=0 s

y (m)

(a) t = 0s

0
20

40
60

80
100

120
140

160
180

200

020406080100120140160180200

�20

0

20

40

60

x (m)

t=150 s

y (m)

(b) t = 150s

0
20

40
60

80
100

120
140

160
180

200

020406080100120140160180200

�20

0

20

40

60

x (m)

t=300 s

y (m)

(c) t = 300s

0
20

40
60

80
100

120
140

160
180

200

020406080100120140160180200

�20

0

20

40

60

x (m)

t=450 s

y (m)

(d) t = 450s

0
20

40
60

80
100

120
140

160
180

200

020406080100120140160180200

�20

0

20

40

60

x (m)

t=600 s

y (m)

(e) t = 600s

0
20

40
60

80
100

120
140

160
180

200

020406080100120140160180200

�20

0

20

40

60

x (m)

t=750 s

y (m)

(f) t = 750s

0
20

40
60

80
100

120
140

160
180

200

020406080100120140160180200

�20

0

20

40

60

x (m)

t=900 s

y (m)

(g) t = 900s

0
20

40
60

80
100

120
140

160
180

200

020406080100120140160180200

�20

0

20

40

60

x (m)

t=1050 s

y (m)

(h) t = 1050s

0
20

40
60

80
100

120
140

160
180

200

020406080100120140160180200

�20

0

20

40

60

x (m)

t=1200 s

y (m)

(i) t = 1200s

0
20

40
60

80
100

120
140

160
180

200

020406080100120140160180200

�20

0

20

40

60

x (m)

t=1350 s

y (m)

(j) t = 1350s

0
20

40
60

80
100

120
140

160
180

200

020406080100120140160180200

�20

0

20

40

60

x (m)

t=1500 s

y (m)

(k) t = 1500s

Figure 4.11: Numerical wildfire spread over a complex topography. Spread of the fire front over time.
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4.3 Final simulation combining wildfire spread over a complex
topography and correction using the EnKF

This final simulation aims at combining the 3D Firefly simulator developed within the framework
of this current chapter and the EnKF implementation. As a first simulation with synthetically-
generated observations combining the two algorithms, the topography description is the same
for the generation of the true and observed fire fronts as for the simulated (forecast/analysis) fire
fronts, namely a simple canyon whose angles are given in Table (4.3). The DA is performed over
one cycle of 2000 s: this final time t = 2000 s corresponds to the free-run time and the mid-time
t = 1000 s is the assimilation time when the EnKF is applied. The general characteristics of
the fuel distribution and wind conditions are given in Table (4.4) and the values of the variables
associated to the EnKF are given in Table (4.5). The resulting fire fronts are presented in Fig.
(4.12).

Angles name Value (deg)
◊

c

30
“

c

5
“

s,1

22
“

s,2

5

Table 4.3: Simulation with combined topography and EnKF: Angles defining the canyon topog-
raphy.

Input parameter Mean ensemble value Standard deviation True value
”

v,1

(m) 0.2 0.25 Random Fuel
”

v,2

(m) 0.25 0.25 Random Fuel
”

v,3

(m) 0.15 0.25 Random Fuel
”

v,4

(m) 0.1 0.25 Random Fuel
M

v

(%) 15 5 10
�

v

(1/m) 10000 4000 11500
u

w

(m/s, deg) (0.5, 135) (0.2, 90) (0.6,180)
x

ign

(m) 100 20 100
y

ign

(m) 100 20 100

Table 4.4: Simulation with combined topography and EnKF: Properties of the true and ensemble
forecast local conditions.
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EnKF variables Value
N

e

200
N

fr

300
No

fr

50
‡o (m) 1

Table 4.5: Simulation with combined topography and EnKF: Values of the EnKF variables.
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Figure 4.12: Resulting simulated fire fronts for a simulation combining the 3D-FIREFLY solver
and the EnKF DA algorithm. The plain black line is the true front, the green cross-symbols are
the observed data, (a) the blue lines are for the background fire front (b) the red lines are for
the analysis fire front.
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4.4 Conclusion
This chapter presents a prototype data-driven wildfire simulator capable of forecasting fire spread
dynamics induced by complex terrain topography for synthetic data assimilation experiments.

The strategy of projecting the 3-D terrain onto the 2-D horizontal plane is interesting here
because the general integration of the model remains the same. Therefore, the execution time
for the determination of the simulated fire fronts remains adapted for operational applications.
The update model is also easily combinable with EnKF instances : still only the two first
coordinates of the simulated fire fronts markers are corrected within the DA algorithm and the
third coordinate results from the topographical distribution. Here, a combined 3D-FIREFLY
and EnKF OSSE-simulation is run where there is an identical topography for the true/observed
fronts and the simulated ones. However, the terrain topography is not considered as a source of
uncertainties and therefore, the same topography description is used to generate the observations
and the simulation ensembles. The next step will be to modify the algorithm to perturb the
slope information similarly to ROS parameters contained in pm; to include the uncertainty on
the slope information in the correction process.
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Conclusion and perspectives

During this internship, we developed a prototype data-driven wildfire simulator capable of fore-
casting the fire spread dynamics. The prototype simulator is based on previous studies from
past years internships and a PhD thesis; and is updated by presenting, in a first step, a state
estimation approach based on data assimilation and, in a second step, a strategy to account for
complex terrain topography in FIREFLY.

For the validation of the state estimation EnKF implementation, the studies assume that
observations of the fire front position are available at frequent times but possibly provide an
inaccurate and incomplete description of the fire front. The evaluation of the prototype simulator
on synthetically-generated observations simulations and on real-data experiments showed that
this implementation is able to recover the shape and position of the fire front. However, this
approach remains limited to short-term predictions as the impact of the initial position of the
fire front becomes negligeable before the properties of the vegetation and the wind.

Future works aim at developing a dual state estimation/parameter estimation approach that
would overcome the limitations illustrated in the present study and past studies on parameter
estimation only. The parameter estimation approach could be extended to the case of coarse-
resolution spatial variations of the ROS model parameters. Assuming that the errors on the
parameters vary slowly in time, the correction provided by data assimilation can reasonably be
used for forecast, thus allowing for mid- to long-term forecast. In addition, the state estimation
approach could be used for short-term forecast in order to locally correct the shape of the fire
front.

Besides, the fire spread model was successfully extended to 3-D topographical description
and appeared to be easily combined with the EnKF algorithm. Future improvements in the
wildfire model include the application of the DA approach to a fire spread model coupled with
an atmospheric model (as in [77] with the Meso-NH/ForeFire coupling).

The ultimate goal of this research is to provide real-time fire forecasts using thermal-infrared
imaging data including a description of both wildfire dynamics and fire plume emissions.

This internship gave me the opportunity to strenghten my competences in programming,
modeling and data assimilation while also o�er me basic knowledge in fire modeling and geo-
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sciences. Besides, I could discover and experiment di�erent research environment by working in
two very di�erent labaratories. This was a very enriching personal and professional experience.
I ensure my interest for research and also for data assimilation and geosciences; and I will pursue
my journey with a PhD thesis on a French-American project using data assimilation.
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Appendix A

Algorithm to cycle the analysis

The following algorithm is required to construct the progress variable field from the analysis fire
front Xa. The reconstruction algorithm to apply to each mesh nodes leans on vectorial analysis
and is as follows: a mesh node N is located in the computational domain by its two-dimensional
coordinates within the domain frame N(x

N

, y
N

).

1. Fig. (A.1a): Calculate the set of distances d
N,j

, j = 1 . . .N
fr

between the current mesh
node N and all the points along the analysis front Xa we need to rebuild c from:

’j = 1 . . . N
fr

, d
N,j

=
Ò

(xa

j

≠ x
N

)2 + (ya

j

≠ y
N

)2

2. Fig. (A.1b): Choose the point along the front, denoted as A, which the associated distance
d

N,A

is the minimal among all the distances d
N,j

, j = 1 . . .N
fr

,

3. Fig. (A.1c): Pick the point along the front, this one denoted as B, "neighbor" to A in the
front, the closest to N . By "neighbor", it means the discretization point right after (or
right before) the considered point in the front description,

4. Fig. (A.1d): Determine the two-dimensional components of the vector passing through N
and orthogonally intersecting the line defined by the points A and B. The intersection
point between the line (AB) and this vector is denoted by O which coordinates can be
calculated using linear algebra properties,

5. Fig. (A.1e): Calculate the two-dimensionnal inner product between the vector ≠≠æ
ON and

the vector ≠æn
A

defined as the outgoing normal to the front at the point A. The sign of the
inner product will set if the mesh node N is or not in the burnt zone:

Y
__]

__[

≠æn
A

· ≠≠æ
ON < 0 ∆ N is inside the burnt area,

≠æn
A

· ≠≠æ
ON = 0 ∆ N is on the front,

≠æn
A

· ≠≠æ
ON > 0 ∆ N is outside the burnt area,
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Figure A.1: Details of the steps of the reconstruction algorithm for one mesh node N .

6. Fig. (A.1f): Calculate the value of c(N) with respect to the distance of N to the fire front
d

fr

. This distance is defined as the magnitude of the vector ≠≠æ
ON . If the distance is small

enough, the mesh node might be in the transitional part of the field which takes values
between 0 and 1. This transition is modeled by a hyperbolic tangent function scaled to
take values between 0 and 1 di�erent from the classical limits of the function (i.e. ≠1 and
1):

c(N) =

Y
__]

__[

0.5 ◊ (1 ≠ tanh(≠“d
fr

)) if ≠æn
A

· ≠≠æ
ON < 0,

0.5 if ≠æn
A

· ≠≠æ
ON = 0,

0.5 ◊ (1 ≠ tanh(“d
fr

)) if ≠æn
A

· ≠≠æ
ON > 0

with “ a scaling constant depending on the mesh grid to make sure that the decrease
between 0 and 1 is fast enough.
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Appendix B

Reference frames and rotation
matrices

This annexe details the description of the di�erent reference frames and remarquable planes used
in the description of the characteristic angles for the topography in Chapter 4 section 1.1. The
mathematical description of the axis and rotations is usefull for the calculation of the projections
and the definition of the characterization of the planes

The original frame R
0

is the classical R3 reference frame with the axis (x
0

, y
0

, z
0

). As
illustrated in Fig. (B.1a), x

0

indicates the East direction, y
0

indicates the North direction and
z

0

is the vertical direction in the increasing z-values.

B.1 From the original reference frame to the aspect frame
The aspect angle “

a

is the angle defined in the horizontal plane indicating the downslope direc-
tion. Using this angle, we define a second reference frame R

a

(x
a

, y
a

, z
0

) such that the second
axis y

a

indicates the upslope direction projected in the horizontal plane. This frame is therefore
obtained as the rotation of R

0

around z
0

by an angle fi ≠ “
a

in radians (see Fig. (B.1b)). The
associated rotation matrix Ra

0

is defined as

Ra

0

=

Q

ca
cos(fi ≠ “

a

) ≠ sin(fi ≠ “
a

) 0
sin(fi ≠ “

a

) cos(fi ≠ “
a

) 0
0 0 1

R

db . (B.1)
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Figure B.1: 3D reference frames to describe the slope variables
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B.2 From the aspect frame to the slope frame
The slope angle “

s

defines the stepness of the slope. A reference frame adapted to the slope
orientation is the one obtained as the rotation of R

a

around x
a

of an angle “
s

. As shown in Fig.
(B.1c), the final slope frame R

s

(x
a

, y
s

, z
s

) is set such that the axis y
s

is in the slope plane and
indicates the upslope direction and the axis z

s

is the normal direction to the slope plane. The
rotation matrix is defined as

Rs

a

=

Q

ca
cos2(“

a

) + sin2(“
a

) cos(“
s

) ≠ cos(“
a

) sin(“
a

)(1 ≠ cos(“
s

)) sin(“
a

) sin(“
s

)
≠ cos(“

a

) sin(“
a

)(1 ≠ cos(“
s

)) sin2(“
a

) + cos2(“
a

) cos(“
s

) cos(“
a

) sin(“
s

)
≠ sin(“

a

) sin(“
s

) ≠ cos(“
a

) sin(“
s

) cos(“
s

)

R

db . (B.2)

Therefore the unitary normal vector to the slope plane is given by the third column of the
matrix:

z
s

=

Q

ca
sin(“

a

) sin(“
s

)
cos(“

a

) sin(“
s

)
cos(“

s

)

R

db . (B.3)

Finally the slope plane (P
s

) is such that:

P
s

=
Ó

(x, y, z) œ R3, sin(“
a

) sin(“
s

)x + cos(“
a

) sin(“
s

)y + cos(“
s

)z = 0
Ô

(B.4)

Note that this definition of the plane is within a constant. With the above definition, we consider
that the plane contains the origin of frame defined as the triplet (0, 0, 0).
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Appendix C

Determination of the projection
coe�cient for the ROS

Let’s first recall the definition of some important vectors:

• n
flame,P

0

: in the flat terrain case, this vector indicates the normal direction to the fire front
so the spreading direction. In the 3D frame R

0

introduced in annexe B, its coordinates
are given by

n
flame,P

0

Q

ca
sin(◊)
cos(◊)

0

R

db . (C.1)

We recall that ◊ is the angle starting from the North direction and defined by turning in
the clockwise sense within the horizontal plane.

• n
flame,P

s

: this vector is the one we wish to determine here in order to find its projected
into the horizontal plane. This 3D vector is in the slope plane (P

s

) and is the unitary
vector indicating the spreading direction (as n

flame,P
0

) in the slope plane. Its coordinates
are of the form

n
flame,P

s

Q

ca
–

1

sin(◊)
–

2

cos(◊)
–

3

R

db . (C.2)

To determine the coe�cients –
1

, –
2

, –
3

, we proceed as follows:

1. We determine the 3D coordinates of the points Q
S

observed in Fig. (C.1) such that the
vector n

flame,P
0

is the projected of ≠≠≠æ
OQ

S

into the horizontal plane,

2. then n
flame,P

s

is determined by normalizing ≠≠≠æ
OQ

S

:

n
flame,P

s

=
≠≠≠æ
OQ

S...
≠≠≠æ
OQ

S

...
(C.3)
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Figure C.1: Visualization of the di�erent flame vectors implied in the determination of the
projected ROS

Let’s now determine the coordinates of Q
S

(x
Q

S

, y
Q

S

, z
Q

S

), using the following assumptions:

• Q
S

œ (P
s

) giving that

sin(“
a

) sin(“
s

)x
Q

S

+ cos(“
a

) sin(“
s

)y
Q

S

+ cos(“
s

)z
Q

S

= 0 (C.4)

• The point with the coordinates
1
sin(◊) cos(◊) 0

2
T

is the orthogonal projected of Q
S

into

the horizotal plane. This implies that Q
S

is in the line with orientation vector
1
0 0 1

2
T

containing the point with coordinates
1
sin(◊) cos(◊) 0

2
T

.

So we need to find the real t such that

sin(“
a

) sin(“
s

)x
Q

S

+ cos(“
a

) sin(“
s

)y
Q

S

+ cos(“
s

)z
Q

S

= 0
x

Q

S

= sin(◊)
y

Q

S

= cos(◊)
z

Q

S

= 0 (C.5)
(C.6)

We have then

sin(“
a

) sin(“
s

) sin(◊) + cos(“
a

) sin(“
s

) cos(◊) + cos(“
s

)t = 0
… ≠ sin(“

s

) (cos(“
a

) cos(◊) + sin(“
a

) sin(◊)) = cos(“
s

)t
… ≠ tan(“

s

) cos(“
a

≠ ◊) = t
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Therefore, the coordinates of the vector ≠≠≠æ
OQ

S

are

≠≠≠æ
OQ

S

Q

ca
sin(◊)
cos(◊)

≠ tan(“
s

) cos(“
a

≠ ◊)

R

db (C.7)

Also, ...
≠≠≠æ
OQ

S

... =
Ò

1 + tan2(“
s

) cos2(“
a

≠ ◊) (C.8)

We deduce then that the unitary vector n
flame,P

s

is defined as

n
flame,P

s

Q

cccca

sin(◊)Ô
1+tan

2

(“

s

) cos

2

(“

a

≠◊)

cos(◊)Ô
1+tan

2

(“

s

) cos

2

(“

a

≠◊)

≠ tan(“

s

) cos(“

a

≠◊)Ô
1+tan

2

(“

s

) cos

2

(“

a

≠◊)

R

ddddb
. (C.9)

And the 3D ROS vector in the slope plane is given by � = �n
flame,P

s

.

Finally, the projected ROS vector in the horizontal plane has to be of the form

Â� = Â�n
flame,P

0

(C.10)

The projected of n
flame,P

s

into the horizontal plane is given by

Ân
flame,P

s

Q

ccca

sin(◊)Ô
1+tan

2

(“

s

) cos

2

(“

a

≠◊)

cos(◊)Ô
1+tan

2

(“

s

) cos

2

(“

a

≠◊)

0

R

dddb = n
flame,P

0Ò
1 + tan2(“

s

) cos2(“
a

≠ ◊)
. (C.11)

Therefore, the projected ROS vector is

Â� = � n
flame,P

0Ò
1 + tan2(“

s

) cos2(“
a

≠ ◊)
, (C.12)

and the projected value of the ROS is

Â� �
Ò

1 + tan2(“
s

) cos2(“
a

≠ ◊)
. (C.13)
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Appendix D

Slope correction on a basic canyon

D.1 Mathematical and numerical description of a canyon
A canyon is the reunion of two non parallel planes with facing aspects. The two faces of the
canyon, denoted as (P

1

)/(P
2

), are characterized by one aspect angle each, “
a,1

/“
a,2

, and a slope
angle each, “

s,1

/“
s,2

. The intersection between the two planes is a line denoted as (d
c

) in the
3D-space. Its projection in the horizontal plane, denoted by (d

c

), is also a line pointing in a
direction defined by the angle ◊

c

. As for aspect or slope angles, ◊
c

is defined from the North
direction, by turning in the clockwise direction. The vertical direction of (d

c

) is defined by the
angle “

c

. To define these planes and lines equation, we need to fix a point S(x
S

, y
S

, z
S

) which
is contained by the two planes and the line. For a computational domain defined by the x- and
y-limits x

min

, x
max

, y
min

, y
max

, S is chosen to be the point defined by:

S(x
max

+ x
min

2 , 0, 0) (D.1)

A summary of these features is presented in Fig. (D.1).

The line (d
c

) in the set of points (x, y, z) such that:
Y
_]

_[

x = sin(◊
c

) cos(“
c

)t + x
S

, t œ R
y = cos(◊

c

) cos(“
c

)t
z = sin(“

c

)t
(D.2)

The plane (P
1

) is the of points (x, y, z) such that:

sin(“
a,1

) sin(“
s,1

)(x ≠ x
S

) + cos(“
a,1

) sin(“
s,1

)y + cos(“
s,1

)z = 0 (D.3)

Finally, (P
2

) is the of points (x, y, z) such that:

sin(“
a,2

) sin(“
s,2

)(x ≠ x
S

) + cos(“
a,2

) sin(“
s,2

)y + cos(“
s,2

)z = 0 (D.4)

To be sure to define realistic canyon in FIREFLY, the user has to choose the values of the
angles ◊

c

, “
c

, “
s,1

and “
s,2

given their subset of definition:

◊
c

œ ]≠90¶; 90¶[ “
c

œ [0¶; min(“
s,1

, “
s,2

)] “
s,1

/“
s,2

œ [0¶; 90¶[ (D.5)
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Figure D.1: Mathematical formalism associated with the definition of a numerical canyon.

Then, FIREFLY will determine the aspect angles “
a,1

and “
a,2

given these conditions and also
given that

◊
c

≠ fi Æ “
a,1

Æ ◊
c

and ◊
c

Æ “
a,2

Æ ◊
c

+ fi (D.6)

Given the hypothesis (D.5) and (D.6), (“
a,1

, “
a,2

) are solutions of the following systems:

• ◊
c

≠ fi Æ “
a,1

Æ ◊
c

and “
a,1

is solution of the system composed of equations (D.2,D.3),

• ◊
c

Æ “
a,1

Æ ◊
c

+ fi and “
a,2

is solution of the system composed of equations (D.2,D.4).

Note that it has been proven that it exits an unique pair (“
a,1

, “
a,2

) that verifies (D.5) and (D.6)
and are solutions of the above systems. The proof is presented in Annexe E.

D.2 Validation on a limit case
According to those previous definitions, the canyon configuration tends to a plane configuration
when “

s,1

and “
s,2

tends to “
c

. When these three angles are equal, the resulting topography is
a slope plane with slope angle “

s

= “
c

and aspect angle “
a

= ◊
c

± 180¶. We need then to verify
that the spread on this particular “canyon” configuration is equivalent to a spread on a slope
plane defined by the angles“

s

and “
a

seen above.

The simulation configuration with the di�erent angles is presented in Table (D.1) and the
resulting fronts are illustrated in Figure (D.2).

As illustrated in Fig. (D.2b), the topography presents a slope plane configuration and the
resulting fire fronts in Fig. (D.2a) are consistent with the fire fronts configuration obtained in
Fig. (4.4) when the wildfire is spreading on a simple slope plane. We need then to make sure
that the angles and the ROS are correct.
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Domain 600 m◊600 m, dx = dy = 1 m
Time 1000 s, dt = 0.5 s

Ignition config circular
Fuel depth ”

v

1 (m)
Fuel moisture content M

v

0.15 (%)
Surface-to-volume ratio �

v

11500 (m≠1)
Wind velocity u

w

0 (m.s≠1)
Canyon angles ◊

c

15¶

“
c

15¶

“
s,1

15¶

“
s,2

15¶

Table D.1: Configuration for the canyon validation
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Figure D.2: Resulting fronts for a propagation on a plane with a zero-slope
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Figure D.3: Comparison between the theoretical and experimental velocities. red-squared line
is for the theoretical ROS and blue-dotted line is for the experimental ROS.

From the execution, the calculated aspect angles for each side of the canyon were:

“
a,1

= ≠2.879 rad = ≠164.955¶ ƒ ◊
c

≠ 180¶ “
a,2

= 3.403 rad = 194.97¶ ƒ ◊
c

+ 180¶ (D.7)

The simulation was then able to determine the right aspect angle. The determination of the
ROS will help us verify the slope angle. In the upslope direction, the theoretical ROS is defined
as the optimal ROS with a slope of 15¶. Given the fuel characteristics, the projected ROS is
equal to �

th

= 0.2135 m.s≠1. The black circular markers in Fig. (D.2a) are the markers used
to determine the experimental covered distance. This latter is compared to the theoretical one
with respect to the time in the Figure (D.3). The mean experimental velocity is in accordance
with the theoretical velocity and equal to �

th

= 0.2166 m.s≠1.

D.3 Wildfire spreads on a canyon topography
For these simulations, the fuel characteristics are given in Tab. (D.2) and no wind is implied.
Three di�erent simulations are run, varying from the initial fire configuration to the values of
the angles that define the canyon, the details are given in Tab. (D.3). The resulting fronts are
presented in Fig. (D.4) with the fronts observed every 20 s. Visually, the highest ROS are in
directions corresponding to the aspect directions given in Tab. (D.3).

Domain 600 m◊600 m, dx = dy = 1 m
Time 200 s, dt = 0.5 s

Fuel depth ”
v

1 (m)
Fuel moisture content M

v

0.15 (%)
Surface-to-volume ratio �

v

11500 (m≠1)

Table D.2: Fuel characteristics for the simulations on a canyon topography.
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Simulation 1 Simulation 2 Simulation 3
Ignition config circular circular cone

◊
c

(degree) 0 0 0
“

c

(degree) 0 15 15
“

s,1

(degree) 25 25 25
“

s,2

(degree) 25 25 25
“

a,1

(degree) ≠90 ≠125.0721 ≠125.0721
“

a,2

(degree) 90 125.0721 125.0721

Table D.3: Angles characteristics for the simulations on a canyon topography.
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Figure D.4: Simulated fronts spreading in a canyon topography, observed every 20 seconds. (a-c)
represent the fronts projected in the horizontal plane and (d-f) represent the fronts in the 3D
domain.
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Appendix E

Existence and uniqueness of a pair
(“a,1, “a,2) to describe a canyon
topography

E.1 Recall on the numerical definition of a canyon topography
A canyon is made of two secant planes with facing aspects. The two slope planes (P

1

)/(P
2

) are
characterized by an aspect angles “

a,1

/“
a,2

and a slope angles “
s,1

/“
s,2

. Also, the two planes are
secant in a line (d

c

) with an orientation angle (in the horizontal plane) ◊
c

and a slope “
c

. It is
chosen that the two slopes are secant in a point with the coordinates:

S
3

x
max

+ x
min

2 , 0, 0
4

(E.1)

with x
max

and x
min

the limits of the computational domain along the x-axis. This particular
point is required to define an unique canyon. We have then:

≠fi

2 < ◊
c

<
fi

2 and ≠ fi

2 < “
c

<
fi

2 (E.2)

Also:

M(x, y, z) œ (d
c

) ≈∆ ÷t œ R

Y
_]

_[

x = cos(“
c

) sin(◊
c

)t + x
S

y = cos(“
c

) cos(◊
c

)t
z = sin(“

c

)t
(E.3)

To make sure to define realistic canyon, the user will choose the angle ◊
c

, “
c

, “
s,1

, “
s,2

respecting the following bounds:

• ≠fi

2

< ◊
c

< fi

2

,

• ≠fi

2

< “
c

< fi

2

,

• “
c

Æ “
s,1

Æ fi

2

,
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• “
c

Æ “
s,2

Æ fi

2

.

Then, a particular subroutine will determine the corresponding angles “
a,1

and “
a,2

knowing
that, according to the configuration in Fig. :

◊
c

≠ fi Æ “
a,1

Æ ◊
c

and ◊
c

Æ “
a,2

Æ ◊
c

+ fi (E.4)

First, we want to determine “
a,1

such that ◊
c

≠ fi Æ “
a,1

Æ ◊
c

and (d
c

) µ (P
1

) defined with
the slope angle “

s,1

œ #
“

c

, fi

2

$
. According to Eq. (E.3) and the definition of the plane P

1

, we
have that it exists a real t such that

Y
_____]

_____[

x = cos(“
c

) sin(◊
c

)t + x
S

y = cos(“
c

) cos(◊
c

)t
z = sin(“

c

)t
and also

sin(“
a,1

) sin(“
s,1

)(x ≠ x
S

) + cos(“
a,1

) sin(“
s,1

)y + cos(“
s,1

)z = 0

(E.5)

Eq. (E.5) gives us that:

cos(“
a,1

) = ≠ cos(“
s,1

) sin(“
c

) ≠ sin(“
a,1

) sin(“
s,1

) cos(“
c

) sin(◊
c

)
sin(“

s,1

) cos(“
c

) cos(◊
c

) (E.6)

In this expression, “
s,1

”= 0, else (P
1

) is flat and it unnecessary to determine “
a,1

. The same
expression is found to determine “

a,2

only the di�erence is the domain of definition of this other
angle.

Let’s now define the function f defined for x œ [◊
c

≠ fi; ◊
c

] as

f(x) = cos(x) + cos(“
s,1

) sin(“
c

) + sin(x) sin(“
s,1

) cos(“
c

) sin(◊
c

)
sin(“

s,1

) cos(“
c

) cos(◊
c

) (E.7)

“
a,1

is the solution of the equation
f(x) = 0 (E.8)

The following study will be to prove that the solution of the Eq. (E.8) is unique over the set
[◊

c

≠ fi; ◊
c

].

E.2 Study of the function f over [◊c ≠ fi; ◊c]
f is continuous and so di�erentiable over [◊

c

≠ fi; ◊
c

]. We have then that

f Õ(x) = ≠ sin(x) + tan(◊
c

) cos(x) f ÕÕ(x) = ≠ tan(◊
c

) cos(x) ≠ sin(x) (E.9)

The study of the sign of f Õ and f ÕÕ gives us that:

f Õ(◊
c

≠ fi) = 0 f Õ(◊
c

) = 0 f Õ(◊
c

≠ fi) > 0 f ÕÕ(◊
c

) < 0 (E.10)

So f is strictly increasing over [◊
c

≠ fi; ◊
c

]. We need then to verify if f changes its sign in the
studied interval by determining the sign of f(◊

c

≠ fi)f(◊
c

):
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f(◊
c

≠ fi)f(◊
c

) =
C

≠ cos(◊
c

) + cos(“
s,1

) sin(“
c

)
sin(“

s,1

) cos(“
c

) cos(◊
c

) ≠ sin2(◊
c

)
cos(◊

c

)

D

.

C

cos(◊
c

) + cos(“
s,1

) sin(“
c

)
sin(“

s,1

) cos(“
c

) cos(◊
c

) + sin2(◊
c

)
cos(◊

c

)

D

(E.11)

After developing the product in Eq. (E.11) and simplifying, we find that:

f(◊
c

≠ fi)f(◊
c

) = ≠ cos2(◊
c

) ≠ 2 sin2(◊
c

) ≠ sin4(◊
c

)
cos2(◊

c

) + cot2(“
s,1

) tan2(“
c

)
cos2(◊

c

)
≈∆ f(◊

c

≠ fi)f(◊
c

) = ≠1 ≠ sin2(◊
c

)
1
1 + tan2(◊

c

)
2

+ cot2(“
s,1

) tan2(“
c

)
1
1 + tan2(◊

c

)
2

≈∆ f(◊
c

≠ fi)f(◊
c

) = ≠1 ≠ sin2(◊
c

)
cos2(◊

c

) + cot2(“
s,1

) tan2(“
c

)
1
1 + tan2(◊

c

)
2

≈∆ f(◊
c

≠ fi)f(◊
c

) =
1
1 + tan2(◊

c

)
2 1

cot2(“
s,1

) tan2(“
c

) ≠ 1
2

(E.12)

From the beginning, we have supposed that 0 < “
c

< “
s,1

< fi

2

, then:

0 < cos(“
s,1

) < cos(“
c

) < 1 and 0 < sin(“
c

) < sin(“
s,1

) < 1 (E.13)

This implies that:
0 <

cos(“
s,1

)
cos(“

c

) < 1 and 0 <
sin(“

c

)
sin(“

s,1

) < 1 (E.14)

Then we find that:

0 < cot(“
s,1

) tan(“
c

) < 1 ∆ 0 < cot2(“
s,1

) tan2(“
c

) < 1 ∆ cot2(“
s,1

) tan2(“
c

) ≠ 1 < 0 (E.15)

Eq. (E.15), added to the fact that 1 + tan2(◊
c

) > 0 , gives us that

f(◊
c

≠ fi)f(◊
c

) < 0 (E.16)

We can conclude that there is an only real “
a,1

œ [◊
c

≠ fi; ◊
c

] such that f(“
a,1

) = 0 and also that
verifies Eq. (E.6). Then “

a,1

can be numerically determined by the bissection method with a
chosen precision.
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