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in shaping the Pacific decadal variability, models display-
ing realistic ENSO amplitude and teleconnections should 
be preferentially used to perform decadal prediction 
experiments.
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1 Introduction

The El Niño-Southern Oscillation (ENSO) is the lead-
ing mode of global interannual climate variability (e.g. 
McPhaden et  al. 2006). El Niño manifests itself in the 
central and eastern tropical Pacific Ocean as a widespread 
Sea Surface Temperature (SST) warming (Fig.  1a), that 
enhances deep atmospheric convection and tropospheric 
diabatic heating over the central Pacific. This diabatic 
heating drives an atmospheric planetary wave response, 
resulting in global-scale impacts through atmospheric tel-
econnections (e.g. Alexander et  al. 2002). This response 
is indeed channelled toward higher latitudes by the zonal 
mean circulation, acting to deepen the extra-tropical low 
pressure systems and strengthen the westerlies over the 
North and South Pacific (see Fig. 1a, e.g. Alexander 1990; 
Lau and Nath 1994, 1996; Alexander et  al. 2002). ENSO 
also affects the rest of the tropics via zonal shift of the 
Pacific Walker circulation (e.g. Klein et al. 1999; Lau and 
Nath 2000). The atmosphere thus acts like a bridge link-
ing the tropical Pacific variability to sea-level pressure and 
surface wind variations in other oceanic regions, leading to 
clear heat flux and SST signature of El Niño outside the 
tropical Pacific (e.g. Zhang et al. 1997), resulting in posi-
tive SST anomalies in the central equatorial Pacific sur-
rounded by anomalies of opposite polarity in the western 

Abstract Emerging decadal climate predictions call for 
an assessment of decadal climate variability in the Cou-
pled Model Intercomparison Project (CMIP) database. In 
this paper, we evaluate the influence of El Niño Southern 
Oscillation (ENSO) on Pacific Decadal Oscillation (PDO) 
in 10 control simulations from the CMIP3 and 22 from 
the CMIP5 database. All models overestimate the time 
lag between ENSO forcing and the PDO response. While 
half of the models exhibit ENSO-PDO correlation which 
is close to that in observation (>0.5) when the time lag is 
accounted for, the rest of the models underestimate this 
relationship. Models with stronger ENSO-PDO correlation 
tend to exhibit larger PDO-related signals in the equatorial 
and south Pacific, highlighting the key role of ENSO tel-
econnection in setting the inter-hemispheric Pacific pattern 
of the PDO. The strength of the ENSO-PDO relationship 
is related to both ENSO amplitude and strength of ENSO 
teleconnection to the North Pacific sea-level pressure vari-
ability in the Aleutian Low region. The shape of the PDO 
spectrum is consistent with that predicted from a combina-
tion of direct ENSO forcing, atmospheric stochastic forc-
ing over the North Pacific and the re-emergence process 
in 27 models out of 32. Given the essential role of ENSO 
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tropical Pacific extending poleward into the central North 
and South Pacific (i.e. the well known “horseshoe” pan-
Pacific SST pattern of El Niño) as seen in Fig. 1a.

ENSO exhibits it’s most energetic fluctuations at inter-
annual time scales but also displays lower-frequency fluc-
tuations at decadal/multi-decadal time scales (Fig.  1b, 
c). Recent studies have illustrated a “pacemaker” role of 
ENSO on global SST at both interannual and decadal time 
scales. The global surface warming slowdown during the 
last decade (Easterling and Wehner 2009), often referred 
to as a “hiatus” in global warming, has indeed been attrib-
uted to natural climate variability associated with decadal 
ENSO variations (e.g. Meehl et al. 2011; Kosaka and Xie 
2013; England et  al. 2014), arising through an increased 

heat uptake of the tropical Pacific Ocean, associated with 
the more frequent occurrence of La Niña events over the 
last 15 years. The influence of ENSO on the low-frequency 
evolution of global temperature clearly illustrates the need 
to better understand the global impacts of ENSO, espe-
cially at decadal time scales.

The most prominent structure of decadal SST variabil-
ity in the North Pacific is named the Pacific Decadal Oscil-
lation (PDO; e.g. Zhang et  al. 1997; Mantua et  al. 1997). 
This SST pattern largely results from fluctuations of the 
North Pacific Aleutian Low (Pierce et al. 2000; Alexander 
et  al. 2002), either intrinsic or modulated by ENSO forc-
ing through the aforementioned atmospheric bridge (Alex-
ander 1990; Lau and Nath 1994, 1996; Alexander et  al. 
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Fig. 1  El Niño Southern Oscillation defined as a the leading empiri-
cal orthogonal function (EOF) of monthly SST anomalies over the 
tropical Pacific (120°E–80°W; 20°N–20°S, red frame) for HadISST 
dataset over the 1871–2010 period, its b associated principal com-
ponent (PC) time series (black curve) and corresponding decadal 
(>7yrs) component (red curve) and c its (normalized PC) power 
spectrum. The EOF pattern is normalized by its spatial root mean 
square (RMS) so that the PC is a measure of the ENSO amplitude. 
The spatial pattern is obtained globally by regressing the SST anoma-
lies (color), wind-stress anomalies (vectors) and mean sea-level pres-

sure anomalies (contours) on to the PC. d–f Same as (a–c) but for 
Pacific Decadal Oscillation defined as the leading EOF of monthly 
SST anomalies over the North Pacific (110°E–110°W; 20°N–60°N, 
red frame on (d)). Monthly SST anomalies are calculated by remov-
ing the mean seasonal cycle and a 5-month running mean is applied 
on this SST anomalies. Global mean SST time series and a linear 
trend are further removed from each grid point before computing the 
EOFs. SST spatial pattern and spectra are unit less while SST time 
series are in °C and wind vectors have N.m−2  C− 1 units. See Sect. 2.4 
for details of the power spectrum calculation
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2002). The influence of ENSO translates into a ~0.6 corre-
lation between ENSO and PDO time series (Fig. 1b, e) in 
observation, with ENSO leading the PDO evolution by 1–2 
months. As a result, the pan-Pacific expression of the PDO, 
known as the Inter-decadal Pacific Oscillation (Power et al. 
1999; Folland 2002), bears a strong resemblance with that 
of ENSO, except for a stronger weighting in the North 
Pacific relative to the tropical Pacific (Fig.  1a, d). The 
North Pacific SST anomalies resulting from the combined 
influence of ENSO and stochastic forcing in the North 
Pacific are detrained from the mixed layer at the end of 
each winter and persist in the seasonal thermocline through 
summer, isolated from the atmospheric influence. Part of 
those anomalies “re-emerge” through entrainment into 
the mixed layer during the following winter (Namias and 
Born 1974; Alexander and Deser 1995; Deser et al. 2003). 
Thus the long-term integration of the atmospheric forc-
ing by the ocean (e.g. Frankignoul and Hasselman 1977; 
Vimont 2005) results in an increase of the PDO variance in 
the low frequency part of its spectrum, i.e. at decadal and 
multi-decadal time scales (Fig. 1e, f). Newman et al. (2003) 
showed that the observed PDO spectrum is compatible with 
that obtained from a simple auto-regressive model account-
ing for ENSO influence, stochastic atmospheric forcing and 
re-emergence process. In this paradigm, the PDO can be 
described as a reddened response to both ENSO and atmos-
pheric stochastic forcing over the North Pacific. There are 
however evidences that the North Pacific gyre anomalies 
and local air-sea coupling processes also contribute to the 
Pacific climate variability at multi-decadal time scales (e.g. 
Deser and Blackmon 1995; Wu et al. 2003; Schneider and 
Cornuelle 2005; Qiu et al. 2007; Di Lorenzo et al. 2008), 
leading other authors to suggest that the PDO may not be 
explained from a single physical mode but rather the sum 
of several phenomena (Schneider and Cornuelle 2005; Liu 
2012; Newman 2013; Newman et al. 2016).

Projections of the climate system response to anthro-
pogenic forcing are generally derived from the analysis 
of simulations from the Coupled Model Intercomparison 
Project (CMIP) database (Meehl et  al. 2007; Taylor et  al. 
2012). The aforementioned importance of Pacific dec-
adal variability for hiatus periods in observations stresses 
the need to evaluate how these models capture the inter-
nal decadal climate variability (Meehl et  al. 2014). Some 
of the previous studies concluded that, most of the mod-
els from the CMIP3 database reproduce the spatial pattern 
of the PDO in the North Pacific reasonably well, despite a 
large diversity in its amplitude (Furtado et al. 2011; Kwon 
et al. 2012; Park et al. 2013; Yim et al. 2014). However it 
has also been reported that the influence of ENSO on the 
PDO is considerably underestimated or even non-existent 
in most CMIP simulations (Newman 2007; Oshima and 
Tanimoto 2009; Furtado et al. 2011; Deser et al. 2012; Park 

et al. 2013). For instance, Furtado et al. (2011) concluded 
that only one-third of the CMIP3 models display signifi-
cant (but underestimated) correlation between ENSO and 
the PDO. While Furtado et  al. (2011) suggested that this 
mismatch arises from a weak projection of ENSO atmos-
pheric teleconnection onto the Aleutian Low (AL) due to 
a misrepresentation of its geographic location in most of 
the models, Park et al. (2013) pointed towards the model’s 
deficiency in simulating ENSO amplitude and centres of 
actions. In contrast, Lienert et  al. (2011) showed that the 
simulated amplitude of ENSO-related signals in the North 
Pacific as well as the time-lag between PDO and ENSO 
were overestimated in these models possibly because of an 
overestimated mixed layer depth and underestimated air-
sea feedbacks in the North Pacific.

In the present paper, we extend the analyses of New-
man (2007), Oshima and Tanimoto (2009), Furtado et  al. 
(2011), Deser et  al. (2012) and Park et  al. (2013) to the 
CMIP5 database, which is used in the fifth Intergovern-
mental Panel on Climate Change (IPCC) assessment report. 
Section  2 describes the selected models (10 from CMIP3 
and 22 from CMIP5), the observational (reference) data-
sets, and the analysis methods. Section 3 discusses the large 
diversity in the ENSO-PDO relationship in CMIP models 
and its consequences on the Pan-Pacific PDO patterns. The 
reasons behind the diversity in the ENSO-PDO relationship 
in CMIP models are addressed in Sect.  4. Section  5 pro-
vides a summary of the results and a discussion in the con-
text of other relevant studies.

2  Data and methods

2.1  Observational data

As our goal is to describe interannual to decadal SST varia-
tions in the Pacific Ocean, we considered only those obser-
vational datasets, which span at least the entire twentieth 
century. To infer the robustness of our conclusions regard-
ing PDO characteristics in observations, we analysed three 
gridded SST products. Our baseline dataset is the HadISST 
dataset available from 1870 onwards. It is based on blended 
in-situ and satellite data sources after 1981 and sparse ship 
datasets before (Rayner et al. 2003), with an optimal inter-
polation to fill the gaps in data-sparse oceanic regions. We 
compared the results obtained from HadISST with two 
other SST reconstruction products that also use blended in-
situ and satellite data and statistical techniques to fill the 
gaps: ERSSTv3 available from 1854 (Smith et  al. 2008) 
and Kaplan-v2 available from 1856 (Kaplan et  al. 1998). 
We also used surface wind stress, mean sea-level pressure 
(SLP) and precipitation fields from the twentieth century 
(20th C) reanalysis (Compo et al. 2011). This atmospheric 
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reanalysis, available from 1870 to 2012, assimilates sur-
face and SLP observations from the International Sur-
face Pressure Databank station component version 2 
(Yin et  al. 2008), from the International Comprehensive 
Ocean–Atmosphere Data Set (ICOADS, Woodruff et  al. 
2011) and from the International Best Track Archive for 
Climatic Stewardship (IBTrACS; Knapp et  al. 2010). To 
allow for a fair comparison, all these data are interpolated 
onto a common 2.5° x 2.5° horizontal grid (i.e. the regular 
NCEP grid) and are analysed at monthly resolution over 
their common period, i.e. 1871–2010.

2.2  CMIP models

We analysed models from both CMIP3 (Meehl et al. 2007) 
and CMIP5 (Taylor et al. 2012) archives in this study. To 
avoid potential aliasing of the natural variability by anthro-
pogenic forcing, we focused on multi-century pre-industrial 
control simulations, with a constant  CO2 concentration of 
about 280 ppm. As the focus of the present study is on dec-
adal variability (~8 to 30 years periods), we analysed only 
those models that provide at least 250 years of simulations 
to ensure statistical robustness of the spectral characteris-
tics of modelled decadal variability. This criterion has lead 
to the selection of 10 CMIP3 and 22 CMIP5 simulations 
which are listed in Table 1. Our analyses are based on out-
puts of monthly-mean SST, wind, SLP and precipitation 
fields, interpolated onto a common 2.5° x 2.5° horizontal 
grid.

2.3  Climate indices definition

Following Zhang et  al. (1997) and Mantua et  al. (1997) 
seminal papers, PDO-related literature usually defines the 
PDO from the leading EOF of monthly SST anomalies 
over the North Pacific after removing the global mean SST 
time series. We used a similar method in the present study. 
SST anomalies are calculated by removing the monthly 
climatology. The global mean SST and a linear trend are 
then removed from each grid point and a 5-month run-
ning mean is applied before performing the EOF analysis. 
Note that the results in this study are insensitive to avoid-
ing this 5-month smoothing and that a similar kind of time 
series smoothing has been applied in other studies (e.g. a 
3-month smoothing in Newman et al. 2003). For the PDO, 
the EOF is performed over the 110°E–110°W; 20°N–60°N 
region. Similarly, ENSO variability is defined as the lead-
ing EOF of the monthly SST anomalies over the tropical 
Pacific (120°E–80°W; 20°N–20°S) as defined in (Newman 
et al. 2003). The first EOF over the North (tropical) Pacific 
and corresponding principal component are used to define 
the PDO (ENSO) pattern and time evolution. The EOF spa-
tial pattern is normalized (i.e. divided) by its spatial root 

mean square (RMS) over either the tropical (ENSO) or 
North Pacific (PDO) where EOF is performed. The corre-
sponding PC is then multiplied by this RMS value so that 
the PC accounts for the amplitude of either ENSO or the 
PDO. The standardised global/regional signature associ-
ated with these climate modes is computed by regressing 
different variables (SST, SLP, wind and precipitation) onto 
the corresponding PC time series. As stated in the intro-
duction, variability in the Aleutian Low central pressure, 
either internally driven or remotely-forced by ENSO, plays 
a central role in forcing the PDO in the North Pacific. In 
this paper, we identify the Aleutian Low variability as the 
first EOF of SLP over the North Pacific (110°E–110°W; 
20°N–60°N - region similar to that used to define the PDO) 
and the associated PC is used as an index of the Aleutian 
Low.

The interannual and decadal components of the ENSO-
PDO time series and all the variables discussed in this 
study are extracted using the STL (Seasonal-Trend decom-
position) filtering method (Cleveland et al. 1990). STL is a 
robust iterative non-parametric regression procedure using 
a Loess smoother, which allows decomposing a time series 
into seasonal, interannual and decadal (long-term) compo-
nents. As for all non-parametric regression methods, STL 
requires subjective selection of a smoothing parameter to 
define the lowest frequency component. We have chosen a 
7-year threshold to extract decadal component of the vari-
ous data.

2.4  Spectral analysis

As stated in the introduction, re-emergence of North Pacific 
SST anomalies from the previous winter, ENSO forcing 
through mid-latitude teleconnection and the atmospheric 
white noise forcing are the key components in setting the 
temporal characteristics of the PDO variability. Newman 
et al. (2003) built a simple linear model of the PDO evolu-
tion that incorporates these three processes (Eq. 1). We use 
a similar definition of ENSO and PDO indices to Newman 
et  al. (2003) when deriving this model. In Newman et  al. 
(2003), PDO and ENSO indices for year n are computed 
as annual values obtained from the July (n) to June (n + 1) 
average, in order to account for the fact that ENSO and the 
PDO are both maximum in boreal winter. Hence the PDO 
evolution is modelled using a first-order auto-regressive 
(AR-1) model as:

 where P is the normalized (divided by the standard devi-
ation of the time series) PDO index, E is the normalized 
ENSO index, n is time (in years), and � is the (unpredict-
able) atmospheric white noise. The � parameter is obtained 
by regressing the PDO index onto the ENSO index. The � 

(1)P
n
= �P

n−1 + �E
n
+ �

n
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parameter is obtained by regressing the residual (P
n
− �E

n
) 

on the previous year’s PDO index Pn−1. Hence for this 
model, � represents the strength of the re-emergence pro-
cess while � accounts for the influence of ENSO on the 
PDO.

Applying this AR-1 model to HadISST data over the 
1900–1999 period, Newman et  al. (2003) showed that 
the model PDO time series yields a 0.74 correlation with 
observed PDO index, a significantly better skill than when 
only either ENSO or re-emergence is accounted for. They 
also concluded that the observed spectrum is well within 
the 95% confidence interval of the spectrum derived 
from the AR-1 model, suggesting that the observed PDO 

evolution can largely be explained by accounting only for 
atmospheric stochastic forcing, re-emergence and ENSO 
forcing. The relatively short (100 years) observational 
record however translates into strong uncertainties in the 
spectrum at decadal and multi-decadal time scales. As 
suggested by Schneider and Cornuelle (2005), this simple 
analysis does not preclude other processes, such as changes 
in the gyre circulation in the North Pacific, to operate. To 
assess the role of ENSO onto the PDO in CMIP simula-
tions, we applied the simple model described by Eq. (1) to 
the CMIP PDO time series as described below.

To calculate the PDO power spectrum, the PDO index 
defined in Sect.  2.3 is first converted into June–July 

Table 1  List of models analysed in the present study from CMIP3 and CMIP5 database

Model name, short name used in figures and discussion, length of the simulation and Class of the model (see text) are also given

CMIP3 models

1 CGCM3.1 CGCM 500 II
2 GFDL-CM2.0 GFDL2.0 500 II
3 GFDL-CM2.1 GFDL2.1 500 I
4 GISS-AOM GISSAO 250 II
5 GISS-ER GISSER 500 II
6 IPSL-CM4 IPSL4 500 I
7 MIROC3.2(m) MIROC3 500 I
8 ECHO-G ECHOG 340 I
9 MRI-CGCM2.3.2 MRI2.3.2 350 II
10 UKMO-HadCM3 HadCM3 340 II

CMIP5 models

11 BCC-CSM1.1 BCCCSM 500 II
12 CanESM2 CanESM 500 I
13 CCSM4 CCSM4 500 I
14 CNRM-CM5 CNRM 500 II
15 CSIRO-Mk3.6.0 CSIRO 500 I
16 FIO-ESM FIO 500 II
17 GFDL-CM3 GFDL3 500 I
18 GFDL-ESM2G GFDL2G 500 II
19 GFDL-ESM2M GFDL2M 500 I
20 GISS-E2-R GISSE2R 500 II
21 HadGEM2-ES HadGEM 500 I
22 INM-CM4 INMCM 500 II
23 IPSL-CM5A-LR IPSL-LR 500 I
24 IPSL-CM5A-MR IPSL-MR 300 I
25 IPSL-CM5B-LR IPSL5B 300 II
26 MIROC5 MIROC5 500 I
27 MPI-ESM-LR MPI-LR 500 I
28 MPI-ESM-MR MPI-MR 500 II
29 MPI-ESM-P MPI-P 500 I
30 MRI-CGCM3 MRI3 500 II
31 NorESM1-ME Nor-ME 252 I
32 NorESM1-M Nor-M 500 I
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averaged yearly values and then normalized by its standard 
deviation to have unit variance. A Fourier transform is then 
applied to obtain the raw power spectrum. To reduce the 
statistical noise which is inherent to spectrum calculation 
of finite time series, we use the Daniel’s estimator approach 
(well-suited for the case of continuous time series as in the 
present study), with the Daniel’s filter being here a triangle 
filter to reduce noise: a N-point double running-mean (i.e. a 
triangle filter of 2 N length) is used, where N has to be cho-
sen to give a good compromise between accurate amplitude 
and accurate bandwidth (see von Storch and Zwiers 1999 
for details). We have found N = 3 to be adequate for the 
140 years-long observational record over the 1871–2010 
period. For CMIP models, we chose N as the integer clos-
est to  3Ny/140 (where  Ny is the number of years of simula-
tion available for a given CMIP model) to obtain a com-
parable bandwidth to that obtained for observations which 
allows a fair comparison. This choice results in a similar 
spectral resolution for all computed spectra.

The PDO power spectrum is then compared to the 
spectrum computed from Newman’s model (Eq.  1). For 
this purpose we used a similar approach as Newman et al. 
(2003). Three steps are necessary. First, we generated 1000 
white noise time series (random time series), with the 
amplitude of the noise is defined by the standard deviation 
of the residual in Eq. (1) (i.e. the time series obtained once 
the ENSO and re-emergence influence is removed linearly 
from the original PDO time series). This allows generat-
ing 1000 samples of synthetic PDO time series (referred as 
“model time series” in the text) and thus to calculate 1000 
model power spectra. The mean of these 1000 spectra is 
considered as the average Newman’s model spectrum and 
the 2.5th and 97.5th percentiles of the spectral estimate dis-
tribution are used to establish the 95% confidence interval 
around the average model PDO spectrum.

3  ENSO‑PDO relationship in CMIP models

Observations indicate that PDO is partly driven by the 
tropical Pacific variability associated with ENSO (Gar-
reaud and Battisti 1999; Newman et al. 2003; Shakun and 
Shaman 2009). In this section, we will first show that the 
PDO tends to lag much more ENSO in CMIP models than 
in observations and that the influence of ENSO on the PDO 
is underestimated in models if this lag is not taken into 
account. However, the strength of the ENSO-PDO relation-
ship varies considerably amongst CMIP models and holds 
a key-role in shaping the PDO pan-Pacific spatial pattern.

Figure 2 displays the maximum lag-correlation between 
ENSO and PDO indices (and corresponding lag) for all 
observational and CMIP datasets at interannual and dec-
adal time scales combined (Fig.  2a; referred as “All time 

scales” hereafter) and separately for interannual and dec-
adal time scales (Fig.  2b, c). For a fair comparison with 
estimates from observation, the transparent frames shown 
at the tip of each bar indicate the minimum and maximum 
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Fig. 2  Maximum lag-correlation coefficient between the ENSO and 
PDO time series at a all time scales (including both interannual and 
decadal periodicities), b interannual and c decadal time scales. The 
number shown to the right of each bar indicates the lag (in month) 
of the maximum correlation, with positive lag indicates ENSO leads 
the PDO. The lag is indicated in italic when the correlation is not 
significantly different from zero based on a t-test. CMIP models are 
divided into two classes depending on this maximum lag-correlation 
between PDO and ENSO at all time scales: Class-I models (green 
bars) with correlation above 0.5 and Class-II models (red bars) 
below that threshold. The transparent bar at the tip of the colour bars 
indicates the minimum and maximum correlation obtained for each 
CMIP model when evaluating the correlation over sliding windows of 
the same length of the observational datasets (i.e. 140 years). Average 
correlation for observations, Class-I and Class-II models are indicated 
as thick bars on the bottom of each panel along with the average lag 
and uncertainty levels
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lag-correlation obtained by sub-sampling each model time 
series over 140-years sliding windows (i.e. the length of 
the observational record). In observations, the correlation 
between ENSO and PDO time series ranges from 0.52 for 
ERSST dataset to 0.61 for Kaplan, with ENSO leading 
the PDO by one to two months (Fig.  2a; black bars). As 
in observations, ENSO systematically leads the PDO in all 
CMIP models. Except for the FIO model, this lead-time is 
however larger in CMIP models (from 3 to 8 months) than 
in observations (~1–2 months). Previous studies that exam-
ined the links between ENSO and the PDO did not account 
for this lag but estimated the ENSO-PDO relationship based 
on instantaneous correlations (e.g. Furtado et al. 2011; Park 
et  al. 2013). Figure  3 compares the maximum lag- and 
instantaneous-correlation between ENSO and the PDO. 
In observations, the instantaneous and lag correlations are 
quite close due to the small lag (~ 1 month) between ENSO 
and the PDO. In CMIP models, however the simultaneous 
correlation is consistently (0.1–0.3) smaller than the lag 
correlation, due to the overestimated lag in CMIP models. 
Analysis based on simultaneous correlations (Furtado et al. 
(2011) and Park et al. (2013)) concluded that the influence 
of ENSO on the PDO is underestimated in CMIP models. 
Figure 3 however shows that accounting for the lag between 
ENSO and the PDO in models allows to define a group of 
models for which the ENSO-PDO links are in qualitatively 
agreement with observations.

When accounting for this lag, CMIP models exhibit a 
large range of ENSO-PDO correlations (Fig.  2a) with all 
correlations being significant and varying from 0.15 to 
0.75. 17 models exhibit a maximum ENSO-PDO lag-cor-
relation within the range of that observed (>0.5; shown by 
green bars) while the remaining 15 models underestimate 
the ENSO-PDO relationship (red bars). In the following, 
we hence divide CMIP models into two classes depending 
on the strength of the simulated ENSO-PDO relationship. 
We define Class-I models as those with a maximum ENSO-
PDO lag-correlation above 0.5 (green bars in Fig.  2a). 
These models exhibit an average correlation of 0.58 very 
close to the observational average (thick black bar on 

Fig. 2a). The black frames provide an indication of the pos-
sible range on ENSO/PDO correlation when calculating 
these correlation over the same length as the observational 
records (140 years). The typical correlation spread reaches 
0.15, but considerably varies from one model to another. A 
large fraction of the variation of this correlation for a given 
model is likely to arise from the internal variability of each 
model, as illustrated by Deser et  al. (2014, 2016) for the 
case of the air temperature over north America. It must 
however be noticed that a proper estimation of the inter-
nal variability in each model would require either longer 
pre-industrial simulations or large single model ensembles 
(Deser et al. 2012). Considering this uncertainty, each indi-
vidual model within Class-I models except one exhibits 
correlation within the range of observed estimates (between 
0.52 and 0.61; see black frames on Fig. 2a). Class-II mod-
els are defined as models with a maximum ENSO-PDO 
lag-correlation below 0.5 (with an average correlation of 
0.35 that is weak compared to that deduced from obser-
vations; red bars in Fig. 2a). Most of the Class-II models 
indeed exhibit correlation systematically below the range 
of the observed estimates within the uncertainty limits (see 
black frames on Fig. 2a). It has to be noticed that a larger 
proportion of CMIP3 models falls into Class-II models (7 
models) compared to Class-I models (3 models).

Re-computing these statistics separately for interannual 
and decadal components of ENSO and PDO time series 
(Fig.  2bc) illustrates that the observed ENSO-PDO rela-
tionship is slightly stronger at decadal (correlation of ~0.7) 
than at interannual time scales (~0.55). This is expected 
as applying decadal smoothing acts to decrease the noise 
of the time series. However, the difference in correlation 
found in observation between these two time scales is not 
so apparent in CMIP models. In addition, models with large 
ENSO-PDO lag-correlation at interannual time scales also 
generally display large lag-correlation at decadal periods 
with Class-I and Class-II models respectively displaying 
an average maximum lag-correlation of 0.6/0.38 at inter-
annual and 0.58/0.36 at decadal time scales. As expected, 
CMIP correlation uncertainties are generally larger at 
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decadal than at interannual time scales (see black frames 
on Fig. 2b, c): this results in ENSO-PDO lag-correlations 
falling within the observed range at decadal time scales for 
two-third of CMIP models. This analysis also reveals that 
ENSO systematically leads the PDO at both time scales, 
with a tendency for the lag to be larger at decadal time 
scales (~8 months vs ~4 at interannual time scales). This 
systematic tendency of ENSO to lead the PDO across mod-
els and observation suggests that ENSO forces the PDO, 
rather than the other way around.

To quantify more precisely how much of the PDO can 
be explained as a reddened response to ENSO and atmos-
pheric stochastic forcing, we fit an AR-1 model proposed 
by Newman et al. (2003; Eq. (1) in Sect. 2.4) to the PDO 
time series from the three observational and 32 CMIP sim-
ulations. Figure 4a evaluates the performance of this AR-1 
model in capturing the PDO variability. The influence of 
ENSO forcing on the PDO evolution is represented by 
the � coefficient in Eq. (1), shown on Fig. 4b. In line with 
Newman et  al. (2003) results, this AR-1 model captures 
the PDO variability in observations, with a skill (which is 
defined as the correlation between the original PDO time 
series and the PDO time series predicted by Eq.  1) rang-
ing between 0.67 and 0.73 depending on the observational 
dataset considered (black bars on Fig.  4a). This AR-1 
model also performs generally better in reproducing Class-
I model’s PDO evolution: all Class-I models except one 
exhibit a correlation above 0.6, with a 0.67 average correla-
tion that is very close to observation. In contrast, the aver-
age skill of Class-II models is 0.4 and all Class-II models 
tend to exhibit a weaker correlation than Class-I models. 
As expected from the ENSO-PDO correlations shown on 
Fig.  2a, there is a striking difference on the � values of 
Class-I and Class-II models, with a larger ENSO influ-
ence on PDO for Class-I models. However, the influence of 
ENSO as depicted by the � coefficient is generally weaker 
in CMIP models than in observational products, which may 
be related to the overestimated response time of the PDO 
relative to ENSO forcing in CMIP models, which we did 
not account for when deriving the AR-1 model.

The AR-1 model (Eq. 1) also allows testing whether the 
reddened response to ENSO and atmospheric white noise 
can explain the PDO spectral characteristics in CMIP mod-
els. As an illustration, Fig.  5 compares the actual PDO 
spectrum with that derived from the AR-1 model for Had-
ISST and two selected models with contrasted behaviours. 
Accounting for the influence of ENSO on the PDO allows 
reproducing most of the PDO spectral peaks at interan-
nual time scale and the red-noise behaviour at decadal 
time scales in HadISST data (Fig.  5a). In line with New-
man et  al. (2003) results, the observed PDO spectrum is 
therefore well captured by the reddened response to ENSO 
and atmospheric white-noise forcing (this is also the case 

in other observed datasets but not shown). As for obser-
vations, the PDO spectrum of the MIROC5 model (which 
displays the highest skill and ENSO influence on PDO, see 
Fig. 4) is very close to that derived from Eq. (1) (Fig. 5b) 
and lies within the 95% confidence interval of the mean 
model spectrum. In fact, the actual PDO spectrum lies well 
within the confidence interval of the AR-1 model spec-
trum for 27 out of the 32 CMIP models analysed in this 
study. This suggests that the PDO spectral characteristics 
can be understood as a reddened response to ENSO and 
atmospheric white noise forcing in most CMIP models. 
Only 5 models out of 32 (four of them belong to Class-II), 
exhibit a spectral peak at decadal time scales that cannot 
be explained by the AR-1 model (see Table 2). This is for 
instance the case for BCC-CSM1 (Fig. 5c), which displays 
a peak around 12  year period that lies outside the con-
fidence level. There are thus only 5 models out of 32, for 
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Fig. 4  a Correlation between original PDO time series and computed 
PDO time series using the AR-1 model (Eq. 1) for CMIP models and 
observations and b ENSO coefficient obtained for the AR-1 model. 
Class-I models are indicated in green and Class-II models in red as 
defined in the text and in the caption of Fig. 2. Average value of these 
metrics for observations, Class-I and Class-II models are shown as 
thick bars on the bottom of each panel
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which PDO spectral characteristics cannot be explained 
from the three basic processes encapsulated in Newman 
et al. (2003) model: ENSO forcing, stochastic forcing and 
oceanic memory due to re-emergence processes, i.e. for 
these 5 models, other processes (such as changes in oceanic 
gyre circulation associated with the Kuroshio extension) 
need to be accounted for to explain the PDO spectral char-
acteristics at decadal time scales.

Figure  6 illustrates how the diversity of the simulated 
ENSO-PDO relationship across the CMIP models trans-
lates into their ENSO and PDO pan-Pacific patterns. The 
observed pan-Pacific signature of ENSO is displayed on 
Fig. 6a. As expected, the observed ENSO pattern is char-
acterized by an equatorial Pacific warming associated with 
tropical SLP seesaw and converging westerly wind anoma-
lies west of the maximum warming (Fig.  6a). The ENSO 
pattern also exhibits a strong extra-tropical signatures over 
both hemispheres. For instance, a broad area of negative 
SLP anomalies characterize the central and eastern North 
Pacific, near the Aleutian Low climatological position. In 
this region, anomalous surface winds are roughly in geo-
strophic balance with the Aleutian Low fluctuations, with 
maximum westerly and negative SST anomalies south of 
the anomalous low (highlighted by the grey dashed frame 
on Fig. 6a). By similar mechanisms as in the North Pacific 
(Shakun and Shaman 2009), a sea-surface cooling is also 
observed in the South Pacific and is associated with west-
erly wind anomalies equator-ward of the maximum nega-
tive SLP anomalies (Fig.  6a). The ENSO pan-Pacific sig-
nature on Fig. 6a is very robust between different observed 
datasets, with SST pattern correlation exceeding 0.95 
(black bars, Fig.  6g). Both Class-I and Class-II models 
accurately reproduce the observed pan-Pacific ENSO pat-
tern (Fig. 6a–c), with only three models having pattern cor-
relation below 0.75 (Fig.  6g). Both classes of models are 
able to accurately simulate the location and amplitude of 
the negative SLP signature over the North Pacific and the 
associated westerly anomalies south of it (Fig. 6bc). Class-I 
and Class-II models however share some common biases, 
such as a westward shift of the equatorial warming and of 
the North Pacific cooling. The only apparent difference 
between the two classes of models relates to the amplitude 
of the low pressure and cooling signals in North Pacific, 
which are generally slightly weaker in Class-II compared to 
Class-I models (Fig. 6b, c).

A similar analysis is provided for the pan-Pacific signa-
ture of the PDO on Fig. 6d–f, h. In observations, the pan-
Pacific expression of the PDO bears a strong resemblance 
with that of ENSO (Fig.  6a, d), except that for the PDO 
there is a stronger weighting in the North Pacific relative 
to the tropical Pacific. In particular, the PDO is related to 
a negative SLP pattern within the Aleutian Low region 
(Fig. 6d), very similar to the ENSO SLP signature in that 
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Table 2  Models that display a peak at decadal time scales which is 
not explained by the AR1 model (Eq. 1)

The time-scale range of this peak is indicated in the second column

Model Period Class

CCSM4 10–20 I
MRI-CGCM2.3.2 10–15 II
MRI-CGCM3 10–20 II
BCC-CSM1.1 10–20 II
GISS-ER 10–30 II
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region (Fig.  6a). As for ENSO, the observed pan-Pacific 
PDO pattern is very robust between different observa-
tional datasets, with SST pattern correlation exceeding 
0.95 (black bars, Fig. 6h). Both Class-I and Class-II models 
capture the PDO SST signature and the location and spatial 
extend of the related SLP and wind signal reasonably well 
over the North Pacific (Fig. 6e, f). One obvious caveat of 
all CMIP models is however a clear westward shift of the 

maximum SST anomalies in the North Pacific, which are 
located in the Kuroshio extension region in models, rather 
than ~160°W as seen in observations. This may be related 
to the tendency of model SLP and wind perturbation to 
extend further westward (Fig. 6d–f) or to systematic errors 
in the mixed layer depth distribution (Lienert et al. 2011).

While Class-I and II CMIP models behave in a rather 
consistent way over the North Pacific, they exhibit a large 

Fig. 6   Pan-Pacific SST, wind stress and sea-level pressure signature 
of ENSO for a HadISST and 20th C (as in Fig.  1a), b Class-I and 
c Class-II CMIP models ensemble mean (Class-I and Class-II mod-
els are defined in the text and in the caption of Fig.  2). ENSO pat-
tern is defined as the leading EOF of SST anomalies in the tropical 
Pacific (120°E–80°W; 20°N–20°S, green rectangle on a) normal-
ized by its spatial root mean square so that the PC is a measure of 
the ENSO amplitude. The pan-Pacific signature of ENSO is obtained 
by regressing the SST (color), sea-surface pressure (contours) and 
wind stress (vectors) anomalies onto the first PC time series. d–f 
Same as (a–c) but for the pan-Pacific signature of the PDO which is 

defined as the leading EOF of SST anomalies over the North Pacific 
(110°E–110°W; 20°N–60°N, green rectangle on panel d). SST pan-
Pacific pattern correlation of each dataset with HadISST pattern for 
g ENSO and h PDO. SST patterns are unit less and wind stress vec-
tors have N.m− 2 °C− 1 units. On panels g and h, observational datasets 
are plotted in black, Class-I models in green and Class-II models in 
red. Average values for observations, Class-I and Class-II models are 
indicated as thick bars on the bottom of each panel. The gray dashed 
rectangle on panels (a–c) indicates the region where the mean zonal 
wind stress is averaged for Fig. 8c
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diversity in reproducing the pan-Pacific signature of the 
PDO, with SST pattern correlations with HadISST ranging 
from 0.4 to 0.82. There is also a clear tendency for Class-I 
pattern to agree more with observations than Class-II mod-
els (Fig.  6h), with average pattern correlation of 0.8 and 
0.65 respectively. As shown on Fig.  7a, there is indeed a 
strong relationship (0.7 correlation) between the ENSO-
PDO maximum lag-correlation (i.e. the criteria used to 
classify the CMIP models) and the quality of the simu-
lated pan-Pacific PDO pattern: models that reproduce the 
observed pan-Pacific PDO pattern well are those who dis-
play a strong influence of ENSO on the PDO. Figure 6ef 
indicate that a large part of the pan-Pacific PDO pattern 
difference between Class-I and Class-II models arises from 
the signal outside the North Pacific region: Class-I models 
have a larger equatorial and South Pacific SST and SLP sig-
nature compared to Class-II models, although still weaker 
than in observations (Fig. 6d–f). This relationship is further 
quantified in Fig.  7b. There is a 0.84 correlation between 
the quality of the model pan-Pacific PDO pattern and the 
equatorial warming associated with the PDO. Similarly, the 
amplitude of the sub-tropical southern Pacific signal is also 
clearly related to the amplitude of the equatorial warming 
(0.88 correlation; Fig.  7c), with an underestimated South 
Pacific cooling signal in Class-I models but almost non-
existent in Class-II models. Most of the differences in the 
Class-I and Class-II pan-Pacific PDO pattern thus arise 
from the differences in the relative amplitude of the SST 
signal associated with the PDO over the tropical and South 
Pacific regions. Models that reproduce the pan-Pacific PDO 
pattern reasonably well are those with a larger equatorial 

and south Pacific SST signal for a given amplitude of the 
North Pacific signal. In the following section, we investi-
gate possible reasons that can explain the diversity of the 
ENSO-PDO relationship in CMIP models.

4  Explaining the diversity of ENSO influence 
on the PDO in CMIP models

As mentioned in the introduction, El Niño influences 
North Pacific SST through the atmospheric bridge: warm 
SST anomalies in the equatorial Pacific enhance rainfall 
and the associated diabatic heating, inducing upper-level 
tropospheric divergence over the central tropical Pacific. 
This heating forces Rossby waves that are channelled by 
the mean circulation toward the North Pacific (e.g. Tren-
berth et  al. 1998), strengthening the Aleutian Low (e.g. 
Alexander et  al. 2002; see Fig.  6a). The resulting west-
erly anomalies to the south of the Aleutian Low combine 
with the westerlies to induce increased latent heat uptake 
and southward Ekman transport of cold water (Alexander 
and Scott 2008). The surface heat fluxes and advection by 
Ekman transport hence combine to drive the ENSO-related 
SST cooling in the North Pacific.

Within the atmospheric bridge paradigm, a relation-
ship between the amplitude of ENSO-related equatorial 
Pacific SST/precipitation and North Pacific SLP/surface 
winds is expected. Figure  8 allows assessing such a rela-
tionship across the CMIP models. Figure 8a demonstrates 
that the amplitude of ENSO-related equatorial Pacific pre-
cipitation (inferred from a regression of equatorial Pacific 
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Fig. 7  a Scatter of the Pan-Pacific PDO pattern correlation of each 
dataset with HadISST pattern shown in Fig. 6h against the maximum 
lag-correlation between the ENSO and the PDO time series shown 
in Fig. 2a for all CMIP (red for Class-II and green for Class-I mod-
els) and observational (black) datasets. b Same as (a) but between 
Pan-Pacific PDO pattern correlation and the relative amplitude of 
the PDO SST signature in the tropical Pacific. c Same as (b) but for 

the relative amplitude of PDO SST in South Pacific against relative 
amplitude of PDO SST in the tropical Pacific. The relative amplitude 
of the PDO SST signature in the tropical and South Pacific are com-
puted by the spatial root mean square of re-projected SST pattern of 
the PDO in the tropical Pacific (120°E–80°W; 20°N–20°S) and South 
Pacific (120°E–80°W; 20°S–50°S)
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precipitation anomalies onto the normalized ENSO index) 
is indeed linked with the amplitude of ENSO-related equa-
torial SST anomalies across models (0.78 correlation). In 
turn, Fig. 8b illustrates that the amplitude of ENSO-related 
precipitation, a proxy for tropical diabatic heating, controls 
to a large extent the strength of the associated atmospheric 
planetary wave response channelled toward the North 
Pacific, and hence the amplitude of the mean SLP in the 
region of the Aleutian Low across models (−0.79 correla-
tion). Finally, the amplitude of these SLP variations drives 
the amplitude of the surface wind response in the North 
Pacific region through geostrophic balance (−0.92 cor-
relation, Fig. 8c, see grey dashed frame on Fig. 6a for the 
definition of the region over which the zonal wind stress 
anomaly is estimated). This analysis demonstrates that, 
across CMIP models, the amplitude of ENSO-related 
North Pacific SLP and surface wind signals is connected to 
the amplitude of ENSO through its tropical diabatic heat-
ing. This chain that connects the amplitude of ENSO to the 
ENSO-related surface signature in the North Pacific exists 
over both interannual and decadal time scales (correlations 
in parenthesis on each panel of Fig.  8), although the link 
between the amplitude of ENSO-related equatorial precipi-
tation and the ENSO-related SLP variations in the North 
Pacific weakens at decadal time scales (−0.57 correlation) 
compared to interannual time scales (−0.81).

Given the importance of the Aleutian Low fluctuations 
in characterising the PDO, we now define its ENSO-related 
and intrinsic parts objectively from an EOF analysis of SLP 

over the North Pacific region [20°N–60°N; 110°E–110°W]. 
The contours on Fig.  9a–c show the normalized pattern 
of the SLP EOF1, i.e. Aleutian Low variability (note that 
a very similar pattern of Aleutian Low is obtained even if 
the ENSO signal is removed by a linear regression prior 
to EOF analysis). This analysis confirms that the leading 
mode of atmospheric variability over the North Pacific is 
associated to a modulation in the intensity of the Aleutian 
Low. The shaded pattern on Fig.  9a–c shows the ENSO-
related SLP signal in the North Pacific (obtained by regres-
sion of SLP  to the ENSO index). The pattern correlation 
between the Aleutian Low and remotely forced ENSO 
SLP-signature in the North Pacific is remarkably high 
in observations (~0.9) and also across the CMIP models 
(0.7 to 0.95). This analysis hence demonstrates that the 
ENSO remotely-forced SLP signals in the North Pacific 
project strongly onto the Aleutian Low. In the following, 
we hence use the principal component of the SLP pattern 
shown as contours on Fig.  9a–c as an index of the Aleu-
tian Low (for which we can isolate the ENSO contribu-
tion and independent component by a linear regression). 
The linear correlation between the ENSO index and the 
Aleutian Low index for each model and observed dataset 
(Fig. 9d) will in the following be considered as the strength 
of ENSO control on the North Pacific atmospheric variabil-
ity. Contrary to the North Pacific SST response to ENSO, 
which is more delayed in CMIP relative to observations, 
the delay between the equatorial forcing and mid-latitude 
atmospheric response is expected to be small due to the fast 
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Fig. 8  Scatter of a the amplitude of ENSO against the ENSO-
related precipitation amplitude in the equatorial Pacific [5°N–5°S; 
130°E–140°W], b ENSO-related precipitation amplitude in the equa-
torial Pacific against ENSO-related mean sea-level pressure ampli-
tude in the North Pacific [20°N–60°N; 110°E–110°W] (see green 
frame on Fig. 6d) and c ENSO-related mean sea-level pressure in the 
North Pacific against ENSO-related zonal wind stress in the North 
Pacific [30°N–40°N; 160°E–150°W] (see dashed frame on Fig.  6a–
c) for CMIP models and HadISST/20th C datasets at all time scales. 
Standard deviation of ENSO time series is considered as the “ENSO 

amplitude”. ENSO-related equatorial precipitation and ENSO-related 
winds in the North Pacific are derived by simple regression of the 
variable onto the normalized ENSO index. ENSO-related North 
Pacific SLP variability is defined here from the root-mean square of 
the point-wise (spatially averaged) regression coefficient of SLP to 
the ENSO index within the region [20°N–60°N; 110°E–110°W], and 
will be more objectively defined from Fig. 9. Correlation coefficient 
corresponding to each scatter is also given on the upper left of each 
panel along with the similar correlations individually for interannual 
and decadal time scales in parenthesis



Influence of ENSO on the Pacific decadal oscillation in CMIP models  

1 3

propagation of atmospheric planetary waves (e.g. Trenberth 
et al. 1998) and this is verified across models and observa-
tions (see lags on Fig. 9d). The weaker ENSO control on 
the North Pacific atmospheric variability in Class-II models 
shown in Fig.  9d is probably the main reason behind the 
weaker influence of ENSO on the PDO in those models. 
This is further demonstrated on Fig. 10a that illustrates the 
strong relationship between the maximum ENSO-PDO lag-
correlation and the strength of ENSO control on the Aleu-
tian Low across models (−0.72 correlation, significant at 
the 99% confidence level). This relationship also exists at 
interannual and decadal time scales (−0.87 and − 0.53 cor-
relation respectively; see Fig. 10b, c).

However, the strength of ENSO control on the North 
Pacific atmospheric variability is likely to depend both 
on the “signal” (amplitude of the ENSO-driven SLP 

variability in the North Pacific) and on the “noise” (ampli-
tude of the ENSO-independent pressure variability in the 
North Pacific):

1. As already pointed out from Fig.  8, the “signal” 
depends on the amplitude of ENSO: the larger the 
ENSO-related equatorial SST signal, the larger the 
tropical diabatic heating and stronger the ENSO signa-
ture on the North Pacific atmospheric variability is. In 
the following, the amplitude of ENSO is estimated as 
the standard deviation of the ENSO time series.

2. The “signal” also depends on the strength of ENSO-
driven atmospheric signature over the North Pacific. 
This amplitude of ENSO-driven North Pacific atmos-
pheric variability is estimated from the linear regres-
sion coefficient of Aleutian Low index on the ENSO 
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index (let us remind that with our choice of normali-
zation, the ENSO index contains information about 
ENSO amplitude in °C). We use a simultaneous 
regression here, since we showed on Fig.  9d that the 
lag between the equatorial forcing and mid-latitude 
atmospheric response is rather small across models 
and observations. It must however be noted that this 
simple technique does not allow to extract the possible 
non-linear interactions existing between ENSO and the 
Aleutian Low fluctuations.

3. Finally, the amplitude of Aleutian Low fluctuations 
that is unrelated to ENSO forcing, referred as atmos-
pheric “noise” in the following, could also impact the 
strength of ENSO control on the North Pacific atmos-

pheric variability: if this atmospheric noise is large, the 
random-walk part of the North Pacific variability will 
also be large relative to the ENSO-driven one. We esti-
mate the amplitude of this “noise” from the standard 
deviation of ENSO-independent Aleutian Low index 
(i.e. the ENSO influence is removed from the Aleutian 
Low index by a linear regression).

Figure  11 shows the scatters of the strength of ENSO 
influence on the North Pacific atmospheric variability and 
the three parameters described above. As expected from 
Figs.  8a, b, 11a illustrates that the ENSO amplitude con-
tributes to the strength of ENSO influence on the North 
Pacific atmospheric variability, with a −0.54 correlation 
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between the two parameters. This relationship remains true 
at interannual (−0.58 correlation) and decadal time scales 
(−0.51). In addition, Fig.  11b shows that the ENSO con-
trol is also related to amplitude of the ENSO signature on 
the North Pacific atmospheric variability (i.e. the amplitude 
of the Aleutian Low response to a given ENSO amplitude 
computed by a linear regression between the two), with 
a −0.58 correlation between these two parameters and 
similar relationship at interannual and decadal time scales 
(−0.51 and − 0.49 correlation). In contrast, the amplitude 
of the North Pacific atmospheric noise does not seem to 
explain the diversity of this control found across the mod-
els: Fig.  11c indicates that the correlation between these 
two parameters is not significant at interannual and all time 
scales. At decadal time scales, a larger ENSO-independent 
Aleutian Low variability (i.e. “noise”) in the North Pacific 
indeed leads to a weaker correlation between ENSO and 
the North Pacific atmospheric variability.

Figure 12 provides another indication of the influence of 
ENSO amplitude on the PDO amplitude. There is a large 
range of simulated ENSO and PDO amplitude with some 
models underestimating the level of variability and others 
overestimating it. Across this range, there tends to be a lin-
ear relationship (~0.66) between the ENSO amplitude and 
PDO amplitude amongst the different datasets (Fig.  12a). 
Although significant regardless of the time scale consid-
ered, this relationship is larger at interannual time scales 
(Fig.  12b; 0.75 correlation), compared to decadal time 
scales (Fig. 12c; 0.45 correlation). The strong relationship 
between the ENSO and PDO amplitudes at interannual 
time scales is in agreement with the earlier studies that 
identified ENSO as one of the major forcings of the PDO 
at this time scale (e.g. Alexander 1990; Lau and Nath 1994, 

1996; Alexander et al. 2002; Newman et al. 2003; Schnei-
der and Cornuelle 2005).

5  Summary and discussion

5.1  Summary

In this paper, we have assessed the ENSO-PDO relation-
ship in CMIP models and observations. CMIP models 
overestimate the time lag between ENSO and the PDO, this 
lag being 1 to 2 months in observations and 4–8 months in 
most of the CMIP models. Not accounting for this delayed 
PDO response to ENSO leads to an underestimation of 
ENSO influence on the PDO in CMIP models. When this 
time lag is taken into account, about half of the 32 CMIP 
models (Class-I) exhibit a maximum ENSO-PDO lag-
correlation above 0.5 that lies within the observed range. 
The other half (Class-II) of the models underestimates 
this correlation (<0.5). The auto-regressive model of PDO 
proposed by Newman et  al. (2003), which accounts for 
the north Pacific oceanic memory through re-emergence, 
ENSO and atmospheric white noise forcing, allows repro-
ducing PDO time series with an average skill of 0.7 cor-
relation in observations and Class-I CMIP models but the 
skill is poor for Class-II models (an average correlation of 
0.45). This auto-regressive model further captures the main 
PDO spectral characteristics in most of the CMIP models, 
regardless of the strength of their ENSO-PDO correlation. 
Only 5 models out of 32 display a decadal (10–30 yrs win-
dow) spectral peak that cannot be explained from a combi-
nation of ENSO and stochastic noise forcing. This analy-
sis hence suggests that for majority of the models, it is not 
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necessary to invoke other mechanisms (e.g. ocean dynam-
ics) to explain the PDO spectrum at decadal and longer 
time scales.

The PDO pan-Pacific pattern is different between 
Class-I (i.e. models showing realistic ENSO-PDO rela-
tionship) and Class-II (underestimated ENSO-PDO rela-
tionship) models. While the PDO pattern is relatively well 
reproduced in the North Pacific for most models (despite 
a westward shift in the position of the North Pacific cool-
ing to the Kuroshio extension region), Class-I and Class-
II models differ in their ability to reproduce the tropical 
and south Pacific signature of the PDO. While most of 
the CMIP models underestimate the PDO-related equato-
rial warming and south Pacific cooling, this bias is much 
more accentuated in Class-II models. The strong relation-
ship between the amplitude of the PDO-related equatorial 
warming and south Pacific cooling in CMIP models indi-
cates that the inter-hemispheric nature of the pan-Pacific 
PDO is due to ENSO forcing, a coherent forcing to the 
mid-latitudes of both hemispheres through the atmospheric 
bridge. We have further examined the reasons behind the 
diversity of the ENSO-PDO relationship in CMIP models. 
Results indicate that models with larger ENSO-PDO corre-
lation exhibit a stronger ENSO-control on the North Pacific 
sea-level pressure and wind variability. The strength of this 
control is related to both ENSO amplitude and the ampli-
tude of ENSO imprint on the North Pacific SLP variability 
in CMIP models. The influence of ENSO amplitude on the 
PDO is further highlighted by the high correlation between 
the ENSO and PDO amplitude across the CMIP models.

5.2  Discussion

Half of the CMIP models analysed in the present study 
display an ENSO-PDO correlation comparable to that 
observed (~0.6). For the other half, the ENSO forcing on 
the PDO is underestimated because of an underestimation 
of either ENSO amplitude or strength of ENSO telecon-
nection to North Pacific sea-level pressure and winds (or 
both) in the models. The fact that half of the CMIP mod-
els reasonably capture the strength of the ENSO influence 
on the PDO appears contradictory with previous studies 
on this topic (Furtado et  al. 2011; Park et  al. 2013). For 
instance, Furtado et  al. (2011) concluded that the influ-
ence of ENSO on the PDO is very weak or non-existent 
in most of the CMIP3 models, with only one-third of the 
CMIP3 models having a significant (but weak compared to 
observation) correlation between ENSO and the PDO. We 
demonstrate that this discrepancy is at least partly related 
to methodological aspects. Furtado et  al. (2011) and Park 
et  al. (2013) indeed derived their conclusions based on a 
simultaneous correlation between ENSO and PDO indices. 
While the relatively small lag of the PDO to ENSO (one to 

two months) justifies this approach in observations, using a 
simultaneous ENSO-PDO correlation is more problematic 
for CMIP models, for which PDO generally lags ENSO by 
4 to 8 months. Not accounting for this lag generally results 
in an underestimated ENSO influence on the PDO in most 
CMIP models. This is verified on Fig. 3, which compares 
the simultaneous and maximum lag-correlation between 
ENSO and PDO indices: not accounting for the lag weakly 
impacts the ENSO-PDO correlation in observations, but 
results in a systematic underestimation in CMIP models. 
This overestimated lag of PDO in response to ENSO in 
CMIP models is a far more systematic bias (only one model 
does not overestimate it) than the underestimation of the 
ENSO influence on the PDO. As these biases may have 
important consequences on the forecast of the North Pacific 
variability from seasonal to decadal time scales (Guemas 
et al. 2012), further studies are therefore required to under-
stand the causes of these biases and ultimately to correct 
them.

This study also shows that the underestimation of the 
ENSO influence on the PDO in half of the CMIP models 
can be traced back to both underestimated ENSO ampli-
tude and ENSO teleconnection to the North Pacific SLP 
and wind variability. From a qualitative visual assessment, 
Furtado et al. (2011) suggested that CMIP3 models do not 
accurately capture ENSO influence on the PDO because 
the pattern of ENSO teleconnection in the North Pacific 
does not project strongly onto the Aleutian Low pattern in 
these models. In contrast, our study provides quantitative 
evidences that CMIP models generally capture both the 
location of the North Pacific ENSO signature and of the 
Aleutian Low well and that ENSO teleconnection over the 
North Pacific projects well onto the Aleutian Low for most 
models (Fig.  9). Our analysis further indicates that, it is 
the amplitude rather than the pattern of ENSO signature in 
mid-latitudes that is faulty in Class-II models. Whether this 
diversity can be related to mean state biases (such as the 
westward shift in tropical ENSO SST variability, strength/
location of the upper level jet or of the Aleutian Low) 
deserves further investigations.

The PDO spectrum is consistent with the integration of 
ENSO and stochastic forcing by the oceanic mixed layer in 
most of the CMIP models. Spectral peaks at decadal time 
scales (10–30 years window) that cannot be explained from 
ENSO and stochastic forcing are seen only in 5 CMIP mod-
els out of 32. For these models other mechanisms such as 
ocean dynamics (gyre circulation, planetary waves) or other 
air-sea coupled processes need to be invoked to account for 
a statistically significant spectral peak relative to the red 
spectrum predicted by the Newman et  al. (2003) model. 
Ocean dynamics and local air-sea coupling may however 
still play a role in other models at multi-decadal and cen-
tennial time scales as suggested by a number of previous 
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studies (Deser and Blackmon 1995; Nakamura et al. 1997; 
Schneider and Cornuelle 2005; Wu et al. 2003; Park et al. 
2013).

One of the strong motivations for this study was to eval-
uate Pacific decadal SST variability in CMIP models in 
view of prospects for decadal climate predictions. The main 
source of PDO predictability is the ENSO forcing. We have 
shown that the strength of the ENSO influence on the PDO 
was tightly related to both the amplitude of ENSO and the 
strength of ENSO signature in mid-latitudes. Those are 
hence important metrics to be monitored in models to be 
used for decadal predictions. Understanding the causes of 
the biases that can affect the ENSO-teleconnection is also 
important. The depth of the winter mixed layer in the North 
Pacific could be a possible cause for the overestimated lag 
of the PDO response to ENSO in CMIP models (Lienert 
et al. 2011). Identifying the biases that can lead to a mis-
representation of ENSO signature over the North Pacific 
(e.g. biases in ENSO-related tropical rainfall patterns, in 
the location of the Aleutian Low and/or the jet that chan-
nels the equatorial signal towards higher latitudes) are 
also important for the establishment of decadal climate 
predictions.
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