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Premises Motivation

Context and Motivation

IThe EnKF proves success in high-dimensional system with only few members.
IThe example below system of dimension O(106) and 102 members

Example of EnKF in high-
dimensional system.
TOPAZ ocean-sea ice EnKF inte-
grated system.

In the figure sea ice edge: analysis
(black), observations (blue) and 2-
days forecast (gray).

Courtesy of Laurent Bertino (NERSC)
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Premises Motivation

Context and Motivation

Example of performance (RMSE) of the EnKF and EnKS (IEnKS in the figure) as a
function of the ensemble size in perfect dynamics (L95 model).

Bocquet and Sakov, 2014
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Premises Motivation

Context and Motivation

ISeveral numerical results suggest that the skills of ensemble-based data assimilation
methods in chaotic systems are related to the instabilities of the underlying dynamics
[Ng et al., 2011].

INumerical evidence that some asymptotic properties of the ensemble-based
covariances (rank, range) relate to the unstable modes of the dynamics [Sakov and Oke,
2008; Carrassi et al., 2009].

IEnKF-like methods work well in high-dimensional system with only ”very few”
members (< 100).

Motivation

Some of questions behind this work:

1 (General...) Can DA methods be designed taking into account the dynamical
properties of the model?

2 Is the uncertainty in the state estimate driven by the instabilities?

3 Why only a limited number of members is sufficient? (Caution: I will not mention
localization in this talk!)

4 ...
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Premises Lyapunov vectors and exponents in a nutshell

Lyapunov vectors and exponents

IState and (infinitesimal) error dynamics:

dx(t)

dt
= Mt(x(t)) ,

de(t)

dt
= Mx(t),te(t) . (1)

The time integration of the linear error dynamics yields the resolvent:

e(t1) = M(t1,t0)e(t0) . (2)

IThe Oseledec theorem tells that the limiting matrix (far future)

S(t0) = lim
t1→∞

{
M(t1,t0)TM(t1,t0)

} 1
2(t1−t0)

. (3)

exists, has eigenvalues eλ1 ≥ eλ2 ≥ . . .≥ eλn where the λi are called the Lyapunov
exponents that do not depend on t0, and has eigenvectors that are called the forward
Lyapunov vectors which depend on t0. Symmetrically (far past)

S(t1) = lim
t0→−∞

{
M(t1,t0)M(t1,t0)T

} 1
2(t1−t0)

. (4)

exists, has the same eigenvalues that do not depend on t1, and eigenvectors that are
called the backward Lyapunov vectors (which depend on t1).
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Premises Lyapunov vectors and exponents in a nutshell

Error dynamics and Lyapunov vectors/exponents

IThe forward and backward Lyapunov vectors are orthonormal. They are
norm-dependent and are not covariant under the effect of the dynamics (their subspaces
do).

IThe positive Lyapunov exponents correspond to exponentially growing error/unstable
modes. The negative Lyapunov exponents correspond to exponentially decaying
error/stable modes. The zero Lyapunov exponents correspond to neutral modes.

IThe Lyapunov vectors generate a sequence of embedded subspaces of Rn for each t1
such that

F−1 (t1)⊂ F−2 (t1)⊂ ·· · ⊂ F−n (t1) = Rn (5)

where for e ∈ F−i (t1)\F−i−1(t1), ‖M−1(t1,t0)e‖ ∼
t0→−∞

e−λi (t1−t0)‖e‖; e are the covariant

Lyapunov vectors.

IWe define the unstable-neutral subspace Ut1 ≡ F−n0
(t1) as the space generated by the

n0 backward Lyapunov vectors that are related to positive and zero Lyapunov
exponents. Here, the stable subspace is defined as the orthogonal U ⊥

t1
of Ut1 in Rn.

ISee [Legras and Vautard, 1996; Kuptsov and Parlitz, 2012] for a topical introduction.
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Premises Lyapunov vectors and exponents in a nutshell

Laypunov exponents and Attractor dimension

The Lyapunov exponents characterize and quantify chaos.

A chaotic system must have at least 1 positive exponent.

For continuous dynamics at least 1 exponent must be zero and corresponds to the
tangent to the flow.

∑
m
i=1 λi = ∇ · f - The sum of the Lyapunov exponents is equal to the averaged

divergence of the flow.

For dissipative systems the above means that ∑
m
i=1 λi < 0.

The Lyapunov exponents measure the average rate of expansion/contraction of
the volumes in the phase-space.

They are natural indicators of the uncertainty evolution.

Thus the Lyapunov exponents allow to compute the attractor dimension -
Kaplan-Yorke dimension

d = d−+
∑
d−
i=1 λi

|λd+ |
(6)

with d− and d+ such that ∑
d−
i=1 λi > 0 ∑

d+

i=1 λi < 0

The attractor dimension can be intended as a measure of the irreducible degrees of
freedom
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Premises Lyapunov vectors and exponents in a nutshell

Local variability - An example from the L63 model

Leading local Lyapunov exponent
Cosine of angle between 1st/2nd CLVs.
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Data assimilation performance in chaotic dynamics Linear perfect dynamics

Linear case: Kalman filter convergence on the unstable-neutral

subspace

IModel dynamics and observation model:

xk = Mkxk−1, (7)

yk = Hkxk + vk . (8)

The observation noise, vk , is assumed an unbiased Gaussian white sequence with
statistics

E[vkvT
l ] = δk,lRk . (9)

IWe shall show now several analytic convergence results:

Linear/Gaussian filters, full rank initial covariance [Gurumoorthy et al, 2017]

Linear/Gaussian filters, general initial covariance [Bocquet et al, 2017]

Linear/Gaussian smoothers, general initial covariance [Bocquet and Carrassi, 2017]
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Data assimilation performance in chaotic dynamics Linear perfect dynamics

Key analytic results - Filter case

IAsymptotic rank
If n0 is the dimension of the unstable-neutral subspace, it can be shown that

lim
k→∞

rank(Pk)≤min{rank(P0),n0} . (10)

IConvergence rate
Let σk

i , for i = 1, . . . ,n denote the eigenvalues of Pk . We have

σ
k
i ≤ αi exp

(
2kλ

k
i

)
(11)

where kλ k
i is a log-singular value of Mk:0 and limk→∞ λ k

i = λi . This gives an upper
bound for all eigenvalues of Pk and a rate of convergence for the n−n0 smallest ones.

IProjection on the unstable subspace
If Pk is uniformly bounded, the stable subspace of the dynamics is asymptotically in the
null space of Pk , i.e. for any vector uk:0 in the stable subspace

lim
k→∞
‖Pkuk:0‖= 0. (12)
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Data assimilation performance in chaotic dynamics Linear perfect dynamics

Key analytic results - Filter case

IExplicit dependence of Pk on P0

Using either analytic continuation or the symplectic symmetry of the linear
representation of covariances, we have proven that

Pk = Mk:0P0 [I +ΘkP0]−1 MT
k:0 (13)

where

Θk , MT
k:0ΓkMk:0 =

k−1

∑
l=0

MT
l :0ΩlMl :0. (14)

is the information matrix, directly related to the observability, Γk . Ωk , HT
kR−1

k Hk is
the precision of the observations transferred to state space.

IControl of the unstable-neutral modes - Universal limiting covariance
Let U+,k be a matrix whose columns are the unstable and neutral backward Lyapunov
vectors. If they are sufficiently observed we have:

lim
k→∞

{
Pk −U+,k

[
UT

+,kΓkU+,k

]−1
UT

+,k

}
= 0. (15)

The asymptotic sequence does not depend on P0, only Γk !

A. Carrassi DA & Chaos - CERFACS - Avenue project Workshop. Toulouse, France, 20th June 2017 12 / 36



Data assimilation performance in chaotic dynamics Linear perfect dynamics

Numerical illustration and verification
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Data assimilation performance in chaotic dynamics Linear perfect dynamics

Key analytic results - The smoother case
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IExplicit dependence of Xk on X0

Left-transform update; if k = pS , p = 0,1, . . . :

Xk = Mk:0X0

[
IN + XT

0Θ̂kX0

]− 1
2
Ψk (16)

where

Θ̂k ,
p−1

∑
q=0

MT
qS :0Ω̂qSMqS :0 . (17)

and Ψk is an orthogonal matrix. It is also possible to derive the right-transform update
[see Bocquet and Carrassi, 2017 for the full derivation].
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Data assimilation performance in chaotic dynamics Linear perfect dynamics

Analytic Results - The smoother case

IConvergence rate
The convergence rate of the collapse of Pk of the smoother is not faster than the
filter’s: the bounding rate is the same.

IAsymptotic of Xk

The accuracy of the smoother for re-analysis is better and this impacts the asymptotic
sequences. Indeed we have, for k = pS , p = 0,1, . . .:

lim
k→∞

{
Xk −U+,k

[
UT

+,k Γ̂kU+,k

]− 1
2
Ψk

}
= 0 . (18)

The only difference with respect to filter’s is in the observability matrix Γ̂k , for k = pS ,
p = 0,1, . . .:

Γ̂k = Γk +
k+L−S

∑
l=k

M−T
k:l ΩlM

−1
k:l . (19)

which guarantees that the limiting Xk for smoother is smaller than in filter

U+,k

[
UT

+,k Γ̂kU+,k

]−1
UT

+,k ≤U+,k

[
UT

+,kΓkU+,k

]−1
UT

+,k . (20)
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Data assimilation performance in chaotic dynamics Nonlinear perfect dynamics

Nonlinear chaotic models: the Lorenz-95 low-order model
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I It represents a mid-latitude zonal circle of the global atmosphere.
ISet of M = 40 ordinary differential equations [Lorenz and Emmanuel 1998]:

dxm
dt

= (xm+1−xm−2)xm−1−xm +F , (21)

where F = 8, and the boundary is cyclic.
IChaotic dynamics, for M = 40, it possesses 13 positive and 1 neutral Lyapunov
exponents (n0 = 14).
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Data assimilation performance in chaotic dynamics Nonlinear perfect dynamics

Rank deficiency of the EnKF covariance

M = 36, n0 = 12
EnKF-like method: Maximum Likelihood Ensemble filter [Zupanski, 2005] - Hybrid
ensemble/variational

Mean number of eigenvalues accounting for 90% of the variance vs Nens for τ = 12, 6 and 3 hours

Carrassi et al., 2009
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Data assimilation performance in chaotic dynamics Nonlinear perfect dynamics

Spectrum of the analysis error covariance matrix
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IM = 40, it possesses 13 positive and 1 neutral Lyapunov exponents (n0 = 14).
ITime-average spectra of Pa

k : A visible transition at r = 15.

Bocquet and Carrassi, 2017
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Data assimilation performance in chaotic dynamics Nonlinear perfect dynamics

EnKF performance and Lyapunov directions
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ITime- and ensemble-averaged angle an anomaly of the EnKF and the
unstable-neutral subspace (left), and the EnKF RMSE normalized by σ (right panel),

on the plane (x ,y) = (∆t,σ). The setup is H = Id , R = σ Id and N = 20.
Bocquet and Carrassi, 2017
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Data assimilation performance in chaotic dynamics Nonlinear perfect dynamics

Projection on the unstable-neutral subspace and accuracy of EnKF
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IEnKF - Average angle (left y-axis) between an anomaly (from the ensemble) and the
unstable-neutral subspace, and RMSE of the analysis (right y-axis), as a function of the
ensemble size.

Bocquet and Carrassi, 2017
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Data assimilation performance in chaotic dynamics Nonlinear perfect dynamics

Deviation from linearity - Does the unstable neutral subspace suffice?

6dim - Lorenz 1995 Model
2 positive Lyapunov exponents, 1 neutral, and 3 negative

Time series of EnKF RMSE along Lyapunov vectors

Ng et al., 2011

The greatest separation between decaying and growing modes occurs for small observational error ⇒
Suggestion to include some weakly stable modes to describe the uncertainty.
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Data assimilation performance in chaotic dynamics Linear imperfect dynamics

Linear noisy dynamics - The effect of the stable modes

IModel dynamics and observation model:

xk = Mkxk−1 + wk , (22)

yk = Hkxk + vk . (23)

The model and observation noises, wk and vk , are assumed mutually independent, unbiased Gaussian white
sequences with statistics

E[vkvT
l ] = δk,lRk , E[wkwT

l ] = δk,lQk , E[vkwT
l ] = 0 . (24)

Grudzien et al., 2017

Discrete, linearized L95 with
10 dimensions and 6 stable
modes.

The error in the stable modes
does not converge to zero but
it is bounded.

Variability in the local LE of
the stable modes forces
transient instabilities.

Unconstrained uncertainty in
the i th mode computable
recursively using the QR
decomposition
ψ i
k = ∑

k
l=0 ||(TT

k:l )
i ||2
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Data assimilation for chaotic dynamics Some considerations about stability vs observability

Nonlinear System - Stability ∼ Observability

Consider again the deterministic (perfect) nonlinear-chaotic system
x(t) = M (x(t0)) (unknown)

We aim at estimating/approximating it by the sequence
xak = (I−KkH )M (xk−1) + Kkyk

Linear perturbation evolution is given by δx(t) = Mδx(t0)

The linear perturbations about the forecast/analyses sequence follow
δxak = (I−KkHk)Mk−1δxak−1

The term (I−KkHk) reflects the effect induced by the assimilation

It modifies the stability properties of the perturbative dynamics relative to the free
(unconstrained) system.

We shall use this linear stability framework in nonlinear system ⇔ we will assume
that error will behave (quasi)-linearly.
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Data assimilation for chaotic dynamics Some considerations about stability vs observability

Nonlinear System - Stability ∼ Observability

Complete stabilization by the updating process is sufficient for the uniqueness
of the solution

It is necessary for the convergence of this solution to the true state of the
system.

Conjecture ⇒ The complete stabilization will drive analysis errors to zero in the
noiseless case and to the lowest possible values when noise or nonlinear effects are
present.

We have two ways to achieve this stabilization:

1 Design of the observational network (types, distribution, frequency) ⇐⇒ Acting on
the operator H

2 Design of the DA scheme ⇐⇒ Acting on K
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Data assimilation for chaotic dynamics Some considerations about stability vs observability

Assimilation in the Unstable Subspace - AUS

Assimilation in the Unstable Subspace ⇔ Confine the analysis correction in the unstable
subspace

The growth of the initial uncertainty strongly projects on the unstable manifold of
the forecast model.

The AUS approach consists in confining the analysis update in the subspace
spanned by the leading unstable directions E:

xa = xb + EΓETHT (R + HEΓETHT )−1(yo −Hxb)

While all assimilation methods, more or less implicitly, exert some control on the
flow dependent instabilities, AUS exploits the unstable subspace, as key dynamical
information in the assimilation process.

The columns of the matrix E are the Lyapunov modes of the forecast-analysis cycle

They can be approximated by Breeding on the Data Assimilation System BDAS

Trevisan and Uboldi, 2004; Palatella et al, 2013 for a review
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Data assimilation for chaotic dynamics Some considerations about stability vs observability

Illustration: AUS in 1 dimension

M has a single eigenvalue, Γ > 1 corresponding to a positive Lyapunov exponent

e be the associated eigenvector

1 scalar observation ⇒ H is a constant row vector

Kalman gain approximated by Kk = cek where c is a constant scalar.

A sufficient condition for the complete stabilization of the forecast-analysis cycle
is:

cHe > 1−Γ−1

The choice Kk ||ek makes the confinement on the unstable direction

The amplitude of the correction, c, must be large enough to counteract the
unstable growth.
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Data assimilation for chaotic dynamics Some considerations about stability vs observability

Illustration: AUS in 1 dimension

Lorenz-63 at the origin
x = y = z = 0

Observation of the y -component

M possesses one eigenvalue larger
than 1, Γ = 3.26.

He converges to 0.91

Stabilization is achieved if
c > 0.762

Carrassi et al., 2008
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Data assimilation for chaotic dynamics Observational design to control chaos

AUS and Target Observations

TARGET OBSERVATION STRATEGY: Breeding on the Data Assimilation System BDAS

Quasi-geostrophic atmospheric model
(Rotunno and Bao, 1996 MWR)

Perfect model setup - Observation Dense
area (1-20 Longitude) - Target Area, one
obs between 21-64 Longitude

Carrassi et al., 2007

Experiment Ocean Obs Type/Positioning/Assimilation RMS Error

LO - 0.462

FO vert.Prof/fixed(in the max(err))/3DVar 0.338

RO vert.Prof/random/3DVar 0.311

3DVar-BDAS vert.Prof/BDAS/3DVar 0.184

AUS-BDAS temp.1-Level/BDAS/AUS 0.060

Carrassi et al., 2007
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Data assimilation for chaotic dynamics Observational design to control chaos

Hybrid 3DVar - AUS

Enhancing the performance of a 3DVar by using AUS
Comparison with EnKF
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Carrassi et al, 2008

A network of randomly distributed obs (vertical soundings)

3DVar-AUS: (1) AUS assimilate the obs able to control an unstable mode; (2) 3DVar process the remaining obs

3DVar-AUS comparable to EnKF with only one BDAS mode ⇒ Reduced computational cost and implementation on a pre-existing 3DVar scheme
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Data assimilation for chaotic dynamics Assimilation design to control chaos

Does stabilization improve estimation?

Lorenz 1995 Model

Experiment RMS Error

Free 1

AUS-BDAS - τ = 3 h 0.014

AUS-BDAS - τ = 2 h 0.011

AUS-BDAS - τ = 1 h 0.009

Quasi-Geostrophic Model (Rotunno and Bao, 1996)
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DA provides a stabilizing effect (compare 3DVar with free system Lyapunov spectrum) but ...

if the DA is designed to kill the instabilities, the estimation error is efficiently reduced

Carrassi et al., 2008
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Data assimilation for chaotic dynamics Extended Kalman filter in the unstable subspace / EKF-AUS

EKF-AUS

Lorenz 1995 with dimension n = 40(14Lyap+), 60(19Lyap+) and 80(25Lyap+)

When errors behave linearly the error covariance projects on the unstable subspace

EKF and its reduced unstable space counterpart EKF-AUS gives the same performance
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Toward more realism Out of linearly behaving errors

EKF-AUS extension to nonlinear error

When errors do not behave linearly the unstable-neutral subspace alone does not describe fully the
uncertainty.

An extension to include stable modes is considered in the extension EKF-AUS-NL [Palatella and
Trevisan, 2015].

In the EKF-AUS-NL n0 unstable-neutral direction + ml additional stable modes are used.

The stable modes and their interactions with all m0 are considered by expanding the error dynamics up
to the 2nd order.

EKF-AUS-NL works well when nonlinearity in the dynamics are primarily of quadratic nature, likewise
the advection.

Below example with L95 (n0 = 14) and ml = 4

The figure shows the time before divergence (no divergence set with τd = 4000 in the figure) as a
function of the obs error σo and assimilation interval τ.
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Toward more realism Imperfect (noisy) dynamics

Linear noisy dynamics - The unconstrained stable forecast

ISpectrum of the Pf for different observational design
IThe horizontal lines depicts the unconstrained forecast error, ψ i in the stable modes
[Grudzien et al, 2017]

Grudzien et al., 2017
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Conclusion and directions

Conclusion and directions

IDeterministic ensemble filters and smoothers are sensitive to the existence of a
low-dimensional unstable-neutral subspace where a large portion of the
uncertainty is confined.
IThis seems to support/explain their success in high dimension.
I It is possible to design reduced-order formulation based on the unstable-neutral
subspace.
IThese formulation will be quasi-optimal when errors behave linearly and/or
models are not perfect.
I Sub-optimal, but accurate, reduced-order formulations can be designed by
including weakly stable modes.

Directions

IDesign of ”optimal” reduced order-filter in the presence of noise.
IBayesian data assimilation using unstable subspace to define the proposal
density.
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Upcoming conference on dynamical system & geosciences

Dear	friends	and	colleagues,	we	would	like	to	draw	your	attention	to	the	following	meeting:	
	

Numerical	Modeling,	Predictability	and	Data	Assimilation	
in	Weather,	Ocean	and	Climate	

A	Symposium	Honoring	the	Legacy	of	Anna	Trevisan	
 

The	Symposium	will	be	held	on	October	17-20,	2017,	at	the	Institute	of	Atmospheric	Sciences	
and	Climate	(ISAC)	of	the	National	Research	Council	of	Italy	(CNR),	in	Bologna.			
	

The	event	aims	to	honor	Anna´s	scientific	contributions	and	her	 impact	on	the	atmospheric,	
oceanic	 and	 climate	 sciences.	 The	 sessions	 are	 open	 to	 all	 those	 scientists,	 students	 and	
colleagues	who	have	worked	with	Anna	in	person,	to	those	whose	past	and	current	research	
has	been	influenced	by	Anna’s	work	and	by	her	personality,	as	well	as	to	those	who	expect	to	
gain	future	insights	from	the	communications	presented	at	this	symposium.		
	

Full	details	on	the	Symposium	website:	www.isac.cnr.it/Anna-Trevisan-Memorial-Symposium					
The	Symposium	will	be	structured	along	three	thematic	areas:	
	

1. Numerical	modeling	of	the	atmosphere	and	ocean	
Keynote	Speaker:	E.	Kalnay	(Un.	of	Maryland,	USA)	

2. Predictability	
Keynote	Speaker:	M.	Ghil	(ENS	&	UCLA,	France	&	USA)	

3. Data	Assimilation	
Keynote	Speaker:	O.	Talagrand	(ENS	&	CNRS,	France)	

	

We	welcome	abstracts	on	any	of	 the	 three	areas	and	 for	either	oral	or	poster	contributions.	
The	 contributions	 will	 be	 published	 in	 a	 Special	 Issue	 of	 Nonlinear	 Processes	 in	
Geophysics	subject	to	standard	peer-review	process.		
	

Important	dates:	Deadline	for	submission	of	abstract	July	15th	
										Deadline	for	registration	September	15th	(no	fee).		

	

The	invited	speakers	of	the	Symposium	are:	
R.	 Benzi	 (Un.	 La	 Sapienza,	 Rome,	 Italy),	 M.	 Bocquet	 (ENPC,	 France),	 M.	 Bonavita	
(ECMWF),	A.	Buzzi	(ISAC,	CNR),	P.	Cessi	(Scripps,	USA),	S.	Corti	(ISAC,	CNR),	V.	Lucarini	
(Un.	 of	 Reading,	 UK),	 C.	 Nicolis	 (RMI,	 Belgium),	 L.	 Palatella	 (Italy),	 S.	 Penny	 (Un.	 of	
Maryland,	USA),	N.	Pinardi	(Un.	of	Bologna,	Italy),	R.	Rotunno	(NCAR,	USA),	S.	Tibaldi	
(CMCC,	Italy),	F.	Uboldi	(Italy)	and	S.	Vannitsem	(RMI,	Belgium)	
	

Thank	 you	 for	 bringing	 the	 symposium	 to	 the	 attention	 of	 your	 colleagues,	 students	 and	
collaborators.	
	

We	look	forward	to	welcome	you	in	Bologna.	
	
	
	

Best	regards,	
	
	

Alberto	Carrassi		
On	 behalf	 of	 the	 organizing	 and	 scientific	 committee:	Michael	 Ghil,	 Eugenia	Kalnay,	 Alberto	
Maurizi,	Franco	Prodi,	Antonio	Speranza	and	Olivier	Talagrand.	
	
	

	

	

National Research Council of Italy
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