Towards the estimation of optimal covariance matrices in multi-ensemble data assimilation

David Titley-Peloquin McGill University, Montreal, Canada

Joint work with S. Gratton and E. Simon INPT, IRIT, Toulouse, France

AVENUE Project Workshop 2017

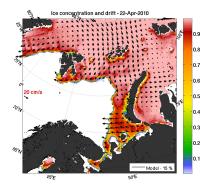
<u>Outline</u>

- Motivation
- A framework for maximum likelihood estimation
- Maximum likelihood estimation with multi-ensembles
- Application to ensemble-based Kalman filters
- Numerical experiments

<u>Outline</u>

- Motivation
- A framework for maximum likelihood estimation
- Maximum likelihood estimation with multi-ensembles
- Application to ensemble-based Kalman filters
- Numerical experiments

Data assimilation combines in an optimal way the heterogeneous and uncertain information provided by model and observations in order to estimate the state of a system.



source: http://topaz.nersc.no

Motivation

Linear Gaussian framework

Advance in time: $\mathbf{x}_k = \mathbf{M}_k \mathbf{x}_{k-1} + \mathbf{v}_k$, $\mathbf{v}_k \sim \mathcal{N}(0, \mathbf{Q}_k)$ Observation: $\mathbf{z}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{w}_k$, $\mathbf{w}_k \sim \mathcal{N}(0, \mathbf{R}_k)$

Motivation

Linear Gaussian framework

$$\begin{array}{lll} \text{Advance in time:} & \mathbf{x}_k = \mathbf{M}_k \mathbf{x}_{k-1} + \mathbf{v}_k, & \mathbf{v}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_k) \\ \text{Observation:} & \mathbf{z}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{w}_k, & \mathbf{w}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_k) \end{array}$$

Kalman filter

Forecast	Analysis
$egin{aligned} \mathbf{x}_k^f &= \mathbf{M}_k \mathbf{x}_{k-1}^a \ \mathbf{P}_k^f &= \mathbf{M}_k \mathbf{P}_{k-1}^a \mathbf{M}_k^T + \mathbf{Q}_k \end{aligned}$	$\begin{split} \mathbf{K}_{k} &= \mathbf{P}_{k}^{f} \mathbf{H}_{k}^{T} (\mathbf{H}_{k} \mathbf{P}_{k}^{f} \mathbf{H}_{k}^{T} + \mathbf{R}_{k})^{-1} \\ \mathbf{x}_{k}^{a} &= \mathbf{x}_{k}^{f} + \mathbf{K}_{k} (\mathbf{z}_{k} - \mathbf{H}_{k} \mathbf{x}_{k}^{f}) \\ \mathbf{P}_{k}^{a} &= (\mathbf{I} - \mathbf{K}_{k} \mathbf{H}_{k}) \mathbf{P}_{k}^{f} \end{split}$

Motivation

Linear Gaussian framework

$$\begin{array}{lll} \text{Advance in time:} & \mathbf{x}_k = \mathbf{M}_k \mathbf{x}_{k-1} + \mathbf{v}_k, & \mathbf{v}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_k) \\ \text{Observation:} & \mathbf{z}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{w}_k, & \mathbf{w}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_k) \end{array}$$

Kalman filter

Forecast	Analysis
$egin{aligned} \mathbf{x}_k^f &= \mathbf{M}_k \mathbf{x}_{k-1}^a \ \mathbf{P}_k^f &= \mathbf{M}_k \mathbf{P}_{k-1}^a \mathbf{M}_k^T + \mathbf{Q}_k \end{aligned}$	$\mathbf{K}_{k} = \mathbf{P}_{k}^{f} \mathbf{H}_{k}^{T} (\mathbf{H}_{k} \mathbf{P}_{k}^{f} \mathbf{H}_{k}^{T} + \mathbf{R}_{k})^{-1}$ $\mathbf{x}_{k}^{a} = \mathbf{x}_{k}^{f} + \mathbf{K}_{k} (\mathbf{z}_{k} - \mathbf{H}_{k} \mathbf{x}_{k}^{f})$ $\mathbf{P}_{k}^{a} = (\mathbf{I} - \mathbf{K}_{k} \mathbf{H}_{k}) \mathbf{P}_{k}^{f}$

Challenges

- storage of covariance matrices
- non-linearity
- non-Gaussian noise

Ensemble Kalman filter

• To avoid updating the error covariance matrix explicitly, the Kalman equations are applied to an ensemble of state vectors (with *i* = 1,...,*n*).

$$\begin{array}{ll} \text{Forecast:} & \mathbf{x}_k^{f,i} = \mathcal{M}_k(\mathbf{x}_{k-1}^{a,i}) + \mathbf{v}_k, & \mathbf{v}_k \sim \mathcal{N}(0, \mathbf{Q}_k) \\ \text{Analysis:} & \mathbf{x}_k^{a,i} = \mathbf{x}_k^{f,i} + \mathbf{K}_k(\mathbf{z}_k - \mathbf{H}_k \mathbf{x}_k^{f,i} + \mathbf{w}_k), & \mathbf{w}_k \sim \mathcal{N}(0, \mathbf{R}_k) \end{array}$$

with $\mathbf{K}_k = \mathbf{P}_k^f \mathbf{H}_k^T (\mathbf{H}_k \mathbf{P}_k^f \mathbf{H}_k^T + \mathbf{R}_k)^{-1}$ the Kalman gain matrix.

Ensemble Kalman filter

• To avoid updating the error covariance matrix explicitly, the Kalman equations are applied to an ensemble of state vectors (with *i* = 1,...,*n*).

$$\begin{array}{ll} \text{Forecast:} & \mathbf{x}_k^{f,i} = \mathcal{M}_k(\mathbf{x}_{k-1}^{a,i}) + \mathbf{v}_k, & \mathbf{v}_k \sim \mathcal{N}(0, \mathbf{Q}_k) \\ \text{Analysis:} & \mathbf{x}_k^{a,i} = \mathbf{x}_k^{f,i} + \mathbf{K}_k(\mathbf{z}_k - \mathbf{H}_k \mathbf{x}_k^{f,i} + \mathbf{w}_k), & \mathbf{w}_k \sim \mathcal{N}(0, \mathbf{R}_k) \end{array}$$

with $\mathbf{K}_k = \mathbf{P}_k^f \mathbf{H}_k^T (\mathbf{H}_k \mathbf{P}_k^f \mathbf{H}_k^T + \mathbf{R}_k)^{-1}$ the Kalman gain matrix.

• The mean and error covariance are approximated by the ensemble mean and covariance:

$$\bar{\mathbf{x}}_{k}^{f} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{k}^{f,i}, \quad \mathbf{P}_{k}^{f} = \frac{1}{n-1} \mathbf{A}^{f} (\mathbf{A}^{f})^{T} \text{ with } \mathbf{A}^{f} = \left[\mathbf{x}_{k}^{f,1} - \bar{\mathbf{x}}_{k}^{f}, \dots, \mathbf{x}_{k}^{f,n} - \bar{\mathbf{x}}_{k}^{f} \right]$$

Ensemble Kalman filter

• To avoid updating the error covariance matrix explicitly, the Kalman equations are applied to an ensemble of state vectors (with *i* = 1,...,*n*).

$$\begin{array}{ll} \text{Forecast:} & \mathbf{x}_k^{f,i} = \mathcal{M}_k(\mathbf{x}_{k-1}^{a,i}) + \mathbf{v}_k, & \mathbf{v}_k \sim \mathcal{N}(0, \mathbf{Q}_k) \\ \text{Analysis:} & \mathbf{x}_k^{a,i} = \mathbf{x}_k^{f,i} + \mathbf{K}_k(\mathbf{z}_k - \mathbf{H}_k \mathbf{x}_k^{f,i} + \mathbf{w}_k), & \mathbf{w}_k \sim \mathcal{N}(0, \mathbf{R}_k) \end{array}$$

with $\mathbf{K}_k = \mathbf{P}_k^f \mathbf{H}_k^T (\mathbf{H}_k \mathbf{P}_k^f \mathbf{H}_k^T + \mathbf{R}_k)^{-1}$ the Kalman gain matrix.

• The mean and error covariance are approximated by the ensemble mean and covariance:

$$\bar{\mathbf{x}}_{k}^{f} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{k}^{f,i}, \quad \mathbf{P}_{k}^{f} = \frac{1}{n-1} \mathbf{A}^{f} (\mathbf{A}^{f})^{T} \text{ with } \mathbf{A}^{f} = \left[\mathbf{x}_{k}^{f,1} - \bar{\mathbf{x}}_{k}^{f}, \dots, \mathbf{x}_{k}^{f,n} - \bar{\mathbf{x}}_{k}^{f}\right]$$

• Feasible for large applications with \sim 100 ensemble members with moderation techniques (inflation, localization).

Motivation for multi-ensembles

- Large-scale geophysical applications may involve
 - several numerical models
 - b different grid sizes
 - \triangleright significant i/o costs for storage of model output

$$\begin{array}{ll} \text{Forecast:} & \mathbf{x}_k^{f,i} = \mathcal{M}_k(\mathbf{x}_{k-1}^{a,i}) + \mathbf{v}_k, & \mathbf{v}_k \sim \mathcal{N}(0, \mathbf{Q}_k) \\ \text{Analysis:} & \mathbf{x}_k^{a,i} = \mathbf{x}_k^{f,i} + \mathbf{K}_k(\mathbf{z}_k - \mathbf{H}_k \mathbf{x}_k^{f,i} + \mathbf{w}_k), & \mathbf{w}_k \sim \mathcal{N}(0, \mathbf{R}_k) \end{array}$$

Motivation for multi-ensembles

- Large-scale geophysical applications may involve
 - several numerical models
 - b different grid sizes
 - ▷ significant i/o costs for storage of model output

$$\begin{array}{ll} \text{Forecast:} & \mathbf{x}_{k}^{f,i} = \mathcal{M}_{k}(\mathbf{x}_{k-1}^{a,i}) + \mathbf{v}_{k}, & \mathbf{v}_{k} \sim \mathcal{N}(0, \mathbf{Q}_{k}) \\ \text{Analysis:} & \mathbf{x}_{k}^{a,i} = \mathbf{x}_{k}^{f,i} + \mathbf{K}_{k}(\mathbf{z}_{k} - \mathbf{H}_{k}\mathbf{x}_{k}^{f,i} + \mathbf{w}_{k}), & \mathbf{w}_{k} \sim \mathcal{N}(0, \mathbf{R}_{k}) \end{array}$$

- Can we apply ensemble-based Kalman filters with ensembles of different accuracies?
 - How do we take into account the differences in accuracy between ensembles?
 - ▷ How can we estimate the error covariance matrix given ensembles of different accuracies?

<u>Outline</u>

- Motivation
- A framework for maximum likelihood estimation
- Maximum likelihood estimation with multi-ensembles
- Application to ensemble-based Kalman filters
- Numerical experiments

Setting (I)

• Random variable:

 $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\mu} \in \mathbb{R}^m$ and $\boldsymbol{\Sigma} \in \mathbb{R}^{m \times m}$ unknown.

• Samples available:

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{m \times n}$$

• Goal: Compute estimates $\hat{\mu} \approx \mu$ and $\widehat{\Sigma} \approx \Sigma$

• Maximize the likelihood function of the normal distribution:

$$\mathcal{L}(\hat{\mu}, \widehat{\mathbf{\Sigma}} | \mathbf{X}) \propto \prod_{i=1}^{n} \det(\widehat{\mathbf{\Sigma}})^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x}_{i} - \hat{\mu})^{T} \widehat{\mathbf{\Sigma}}^{-1}(\mathbf{x}_{i} - \hat{\mu})
ight)$$

• Maximize the likelihood function of the normal distribution:

$$\mathcal{L}(\hat{\mu}, \widehat{\boldsymbol{\Sigma}} | \mathbf{X}) \propto \prod_{i=1}^{n} \det(\widehat{\boldsymbol{\Sigma}})^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x}_{i} - \hat{\mu})^{T} \widehat{\boldsymbol{\Sigma}}^{-1}(\mathbf{x}_{i} - \hat{\mu})
ight)$$

• Minimize the negative log-likelihood:

$$g(\hat{\mu}, \widehat{\mathbf{\Sigma}}) = rac{n}{2} \log \det(\widehat{\mathbf{\Sigma}}) + rac{1}{2} \operatorname{trace}(\widehat{\mathbf{\Sigma}}^{-1} \mathbf{A} \mathbf{A}^{T})$$

where $\boldsymbol{\mathsf{A}}$ is the matrix of anomalies:

$$\mathbf{A} = [\mathbf{x}_1 - \hat{\boldsymbol{\mu}}, \dots, \mathbf{x}_n - \hat{\boldsymbol{\mu}}]$$

• Minimize the negative log-likelihood:

$$g(\hat{oldsymbol{\mu}}, \widehat{oldsymbol{\Sigma}}) = rac{n}{2} \log \det(\widehat{oldsymbol{\Sigma}}) + rac{1}{2} ext{trace}(\widehat{oldsymbol{\Sigma}}^{-1} oldsymbol{A} oldsymbol{A}^{ op})$$

• Minimize the negative log-likelihood:

$$g(\hat{oldsymbol{\mu}}, \widehat{oldsymbol{\Sigma}}) = rac{n}{2} \log \det(\widehat{oldsymbol{\Sigma}}) + rac{1}{2} ext{trace}(\widehat{oldsymbol{\Sigma}}^{-1} oldsymbol{A} oldsymbol{A}^{ op})$$

• Differentiate with respect to $\hat{\mu}$:

$$\sum_{i=1}^{n} (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}})^{T} \widehat{\boldsymbol{\Sigma}}^{-1} \{ \mathsf{d} \hat{\boldsymbol{\mu}} \} = 0 \quad \Rightarrow \quad \hat{\boldsymbol{\mu}} = \overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$$

• Minimize the negative log-likelihood:

$$g(\hat{oldsymbol{\mu}}, \widehat{oldsymbol{\Sigma}}) = rac{n}{2} \log \det(\widehat{oldsymbol{\Sigma}}) + rac{1}{2} ext{trace}(\widehat{oldsymbol{\Sigma}}^{-1} oldsymbol{A} oldsymbol{A}^{ op})$$

• Differentiate with respect to $\hat{\mu}$:

$$\sum_{i=1}^{n} (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}})^{T} \widehat{\boldsymbol{\Sigma}}^{-1} \{ \mathsf{d} \hat{\boldsymbol{\mu}} \} = 0 \quad \Rightarrow \quad \hat{\boldsymbol{\mu}} = \overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$$

• Differentiate with respect to $\widehat{\pmb{\Sigma}}$:

trace
$$\left(\widehat{\boldsymbol{\Sigma}}^{-1} \{ \mathsf{d}\widehat{\boldsymbol{\Sigma}} \} \left(n \mathsf{I} - \widehat{\boldsymbol{\Sigma}}^{-1} \mathsf{A} \mathsf{A}^T \right) \right) = 0 \quad \Rightarrow \quad \widehat{\boldsymbol{\Sigma}} = \frac{1}{n} \mathsf{A} \mathsf{A}^T$$

• Minimize the negative log-likelihood:

$$g(\hat{oldsymbol{\mu}}, \widehat{oldsymbol{\Sigma}}) = rac{n}{2} \log \det(\widehat{oldsymbol{\Sigma}}) + rac{1}{2} ext{trace}(\widehat{oldsymbol{\Sigma}}^{-1} oldsymbol{A} oldsymbol{A}^{ op})$$

• Differentiate with respect to $\hat{\mu}$:

$$\sum_{i=1}^{n} (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}})^{T} \widehat{\boldsymbol{\Sigma}}^{-1} \{ \mathsf{d} \hat{\boldsymbol{\mu}} \} = 0 \quad \Rightarrow \quad \hat{\boldsymbol{\mu}} = \overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$$

• Differentiate with respect to $\widehat{\pmb{\Sigma}}$:

trace
$$\left(\widehat{\boldsymbol{\Sigma}}^{-1} \{ d\widehat{\boldsymbol{\Sigma}} \} \left(n \mathbf{I} - \widehat{\boldsymbol{\Sigma}}^{-1} \mathbf{A} \mathbf{A}^T \right) \right) = 0 \quad \Rightarrow \quad \widehat{\boldsymbol{\Sigma}} = \frac{1}{n} \mathbf{A} \mathbf{A}^T$$

provided n > m

Setting (II)

• Random variable:

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 with $\boldsymbol{\mu} \in \mathbb{R}^m$ and $\boldsymbol{\Sigma} \in \mathbb{R}^{m imes m}$ unknown.

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{m \times n}$$
 with $n < m$

• Goal: Compute estimates
$$\hat{\mu} \approx \mu$$
 and $\widehat{\mathbf{\Sigma}} \approx \mathbf{\Sigma}$

• Pick a subspace of dimension $p \ll m$:

$$\mathbf{Q} \in \mathbb{R}^{m imes p}, \quad \mathbf{Q}^T \mathbf{Q} = \mathbf{I}$$

• Search for an estimate of the covariance matrix of the form

 $\widehat{\boldsymbol{\Sigma}} = \boldsymbol{Q} \boldsymbol{M} \boldsymbol{Q}^{\mathcal{T}} = \boldsymbol{Q} \boldsymbol{L} \boldsymbol{L}^{\mathcal{T}} \boldsymbol{Q}^{\mathcal{T}}$

where $\mathbf{M} \in \mathbb{R}^{p \times p}$ is symmetric positive definite and $\mathbf{M} = \mathbf{L}\mathbf{L}^{T}$ is either a Cholesky or symmetric square root factorization.

• Pick a subspace of dimension $p \ll m$:

$$\mathbf{Q} \in \mathbb{R}^{m imes p}, \quad \mathbf{Q}^T \mathbf{Q} = \mathbf{I}$$

• Search for an estimate of the covariance matrix of the form

 $\widehat{\boldsymbol{\Sigma}} = \boldsymbol{Q} \boldsymbol{M} \boldsymbol{Q}^{\mathcal{T}} = \boldsymbol{Q} \boldsymbol{L} \boldsymbol{L}^{\mathcal{T}} \boldsymbol{Q}^{\mathcal{T}}$

where $\mathbf{M} \in \mathbb{R}^{p \times p}$ is symmetric positive definite and $\mathbf{M} = \mathbf{L}\mathbf{L}^{T}$ is either a Cholesky or symmetric square root factorization.

• Similar to regularization/shrinkage techniques (Ledoit and Wolf 2004, Ueno et. al. 2009, 2010, 2014, Johns and Mandel 2010, etc.)

• Maximize the likelihood function with respect to the degenerate normal distribution:

$$\mathcal{L}(\widehat{\boldsymbol{\Sigma}}|\boldsymbol{\mathsf{X}}) \propto \prod_{i=1}^{n} \det^{*}(\widehat{\boldsymbol{\Sigma}})^{-1/2} \exp\left(-\frac{1}{2}(\boldsymbol{\mathsf{x}}_{i} - \overline{\boldsymbol{\mathsf{x}}})^{T} \widehat{\boldsymbol{\Sigma}}^{\dagger}(\boldsymbol{\mathsf{x}}_{i} - \overline{\boldsymbol{\mathsf{x}}})
ight)$$

• Maximize the likelihood function with respect to the degenerate normal distribution:

$$\mathcal{L}(\widehat{\boldsymbol{\Sigma}}|\boldsymbol{X}) \propto \prod_{i=1}^{n} \det^{*}(\widehat{\boldsymbol{\Sigma}})^{-1/2} \exp\left(-\frac{1}{2}(\boldsymbol{x}_{i} - \overline{\boldsymbol{x}})^{T} \widehat{\boldsymbol{\Sigma}}^{\dagger}(\boldsymbol{x}_{i} - \overline{\boldsymbol{x}})
ight)$$

where

 $\triangleright \det^*(\widehat{\mathbf{\Sigma}})$ is the pseudo-determinant

$$\mathsf{det}^*(\widehat{\boldsymbol{\Sigma}}) = \mathsf{det}^*(\boldsymbol{\mathsf{QLL}}^{\mathsf{T}}\boldsymbol{\mathsf{Q}}^{\mathsf{T}}) = \boldsymbol{\mathsf{Q}}\,\mathsf{det}(\boldsymbol{\mathsf{LL}}^{\mathsf{T}})\boldsymbol{\mathsf{Q}}^{\mathsf{T}}$$

 $\triangleright~\widehat{\pmb{\Sigma}}^{\dagger}$ is the More-Penrose generalized inverse

$$\widehat{\boldsymbol{\Sigma}}^{\dagger} = (\boldsymbol{\mathsf{Q}}\boldsymbol{\mathsf{L}}\boldsymbol{\mathsf{L}}^{\mathsf{T}}\boldsymbol{\mathsf{Q}}^{\mathsf{T}})^{\dagger} = \boldsymbol{\mathsf{Q}}(\boldsymbol{\mathsf{L}}\boldsymbol{\mathsf{L}}^{\mathsf{T}})^{-1}\boldsymbol{\mathsf{Q}}^{\mathsf{T}}$$

• Minimize the negative log-likelihood:

```
g(\mathbf{L}) = n \log \det(\mathbf{L}) + \frac{1}{2} \operatorname{trace}((\mathbf{L}\mathbf{L}^{T})^{-1} \mathbf{Q}^{T} \mathbf{A} \mathbf{A}^{T} \mathbf{Q})
```

where \mathbf{A} is the matrix of anomalies.

• Minimize the negative log-likelihood:

```
g(\mathbf{L}) = n \log \det(\mathbf{L}) + \frac{1}{2} \operatorname{trace}((\mathbf{L}\mathbf{L}^{T})^{-1} \mathbf{Q}^{T} \mathbf{A} \mathbf{A}^{T} \mathbf{Q})
```

where $\boldsymbol{\mathsf{A}}$ is the matrix of anomalies.

• First order optimality conditions:

$$\begin{aligned} \mathbf{L}\mathbf{L}^{T} &= \frac{1}{n}\mathbf{Q}^{T}\mathbf{A}\mathbf{A}^{T}\mathbf{Q}\\ \widehat{\mathbf{\Sigma}} &= \mathbf{Q}\mathbf{L}\mathbf{L}^{T}\mathbf{Q}^{T} = \frac{1}{n}\mathbf{Q}\mathbf{Q}^{T}\mathbf{A}\mathbf{A}^{T}\mathbf{Q}\mathbf{Q}^{T}\end{aligned}$$

• Minimize the negative log-likelihood:

$$g(\mathsf{L}) = n \log \mathsf{det}(\mathsf{L}) + rac{1}{2} \mathsf{trace}ig((\mathsf{L}\mathsf{L}^{ op})^{-1} \mathbf{Q}^{ op} \mathbf{A} \mathbf{A}^{ op} \mathbf{Q}ig)$$

where $\boldsymbol{\mathsf{A}}$ is the matrix of anomalies.

• First order optimality conditions:

$$\begin{aligned} \mathbf{L}\mathbf{L}^{T} &= \frac{1}{n}\mathbf{Q}^{T}\mathbf{A}\mathbf{A}^{T}\mathbf{Q}\\ \widehat{\mathbf{\Sigma}} &= \mathbf{Q}\mathbf{L}\mathbf{L}^{T}\mathbf{Q}^{T} = \frac{1}{n}\mathbf{Q}\mathbf{Q}^{T}\mathbf{A}\mathbf{A}^{T}\mathbf{Q}\mathbf{Q}^{T}\end{aligned}$$

Remarks:

- ▷ For **L** to be nonsingular: $p \le n 1$.
- \triangleright $\widehat{\Sigma}$ is a projection of the sample covariance matrix.
- \triangleright If range(**Q**) = range(**A**) then $\widehat{\Sigma}$ is the sample covariance matrix.

Numerical optimization

• To compute the entries of the optimal L numerically, we use the one-to-one correspondence between

$$\mathbf{L} = \begin{bmatrix} \ell_{1,1} & & & \\ \ell_{2,1} & \ell_{2,2} & & \\ \vdots & \ddots & \\ \ell_{p,1} & \cdots & \cdots & \ell_{p,p} \end{bmatrix} \qquad \longleftrightarrow \qquad \boldsymbol{\ell} = \begin{bmatrix} \ell_{1,1} & & \\ \vdots \\ \ell_{p,1} & & \\ \ell_{2,2} \\ \vdots \\ \ell_{p,p} \end{bmatrix}$$

Numerical optimization

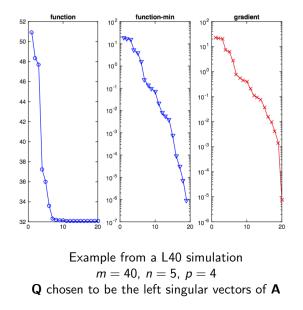
• To compute the entries of the optimal L numerically, we use the one-to-one correspondence between

$$\mathbf{L} = \begin{bmatrix} \ell_{1,1} & & \\ \ell_{2,1} & \ell_{2,2} & \\ \vdots & \ddots & \\ \ell_{p,1} & \dots & \dots & \ell_{p,p} \end{bmatrix} \qquad \longleftrightarrow \qquad \boldsymbol{\ell} = \begin{bmatrix} \ell_{1,1} \\ \vdots \\ \ell_{p,1} \\ \ell_{2,2} \\ \vdots \\ \ell_{p,p} \end{bmatrix}$$

- We use BFGS to minimize the negative log-likelihood $g(\ell)$.
 - \triangleright Find a search direction \mathbf{p}_k by solving $\mathbf{B}_k \mathbf{p}_k = -\nabla g(\boldsymbol{\ell}_k)$.
 - \triangleright Perform a linesearch to find an acceptable step-size α_k .

$$\triangleright \quad \mathsf{Take \ a \ step:} \ \boldsymbol{\ell}_{k+1} = \boldsymbol{\ell}_k + \alpha_k \mathbf{p}_k.$$

▷ Use a low-rank update to obtain \mathbf{B}_{k+1} from \mathbf{B}_k .



<u>Outline</u>

- Motivation
- A framework for maximum likelihood estimation
- Maximum likelihood estimation with multi-ensembles
- Application to ensemble-based Kalman filters
- Numerical experiments

Setting (III)

• Random variables:

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 with $\boldsymbol{\mu} \in \mathbb{R}^m$ and $\boldsymbol{\Sigma} \in \mathbb{R}^{m imes m}$ unknown.
 $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma} + \mathbf{C})$ with $\mathbf{C} \in \mathbb{R}^{m imes m}$ known.

• Very few samples available:

$$\begin{split} \mathbf{X} &= [\mathbf{x}_1, \dots, \mathbf{x}_{n_x}] \in \mathbb{R}^{m \times n_x} \\ \mathbf{Y} &= [\mathbf{y}_1, \dots, \mathbf{y}_{n_y}] \in \mathbb{R}^{m \times n_y} \end{split}$$

with $n_x + n_y < m$.

• Goal: Compute estimates $\hat{\mu} \approx \mu$ and $\widehat{\Sigma} \approx \Sigma$

Maximum likelihood estimation with multi-ensembles

 \bullet Given samples "high-fidelity" samples ${\bf X}$ and "noisy" samples ${\bf Y},$ the likelihood function with respect to the degenerate normal distribution is

$$\begin{split} \mathcal{L}(\widehat{\boldsymbol{\Sigma}}|\boldsymbol{X},\boldsymbol{Y}) \\ \propto \prod_{i=1}^{n_{x}} \det^{*}(\widehat{\boldsymbol{\Sigma}})^{-1/2} \exp\left(-\frac{1}{2}(\boldsymbol{x}_{i}-\bar{\boldsymbol{x}})^{T} \widehat{\boldsymbol{\Sigma}}^{\dagger}(\boldsymbol{x}_{i}-\bar{\boldsymbol{x}})\right) \\ \times \prod_{j=1}^{n_{y}} \det^{*}(\widehat{\boldsymbol{\Sigma}}+\boldsymbol{C})^{-1/2} \exp\left(-\frac{1}{2}(\boldsymbol{y}_{j}-\bar{\boldsymbol{x}})^{T} (\widehat{\boldsymbol{\Sigma}}+\boldsymbol{C})^{\dagger}(\boldsymbol{y}_{j}-\bar{\boldsymbol{x}})\right) \end{split}$$

where det $^*(\cdot)$ is the pseudo-determinant and $(\cdot)^\dagger$ denotes the More-Penrose generalized inverse.

Maximum likelihood estimation with multi-ensembles

• Search for an estimate of the covariance matrix of the form

 $\widehat{\boldsymbol{\Sigma}} = \boldsymbol{\mathsf{Q}} \boldsymbol{\mathsf{M}} \boldsymbol{\mathsf{Q}}^{\mathsf{T}} = \boldsymbol{\mathsf{Q}} \boldsymbol{\mathsf{L}} \boldsymbol{\mathsf{L}}^{\mathsf{T}} \boldsymbol{\mathsf{Q}}^{\mathsf{T}}, \text{ where } \boldsymbol{\mathsf{Q}} \in \mathbb{R}^{m \times p}, \ \boldsymbol{\mathsf{Q}}^{\mathsf{T}} \boldsymbol{\mathsf{Q}} = \boldsymbol{\mathsf{I}}.$

• As in the single-ensemble case:

$$\mathsf{det}^*(\widehat{\boldsymbol{\Sigma}}) = \boldsymbol{\mathsf{Q}}\,\mathsf{det}(\boldsymbol{\mathsf{LL}}^{\mathsf{T}})\boldsymbol{\mathsf{Q}}^{\mathsf{T}}, \quad \widehat{\boldsymbol{\Sigma}}^{\dagger} = \boldsymbol{\mathsf{Q}}(\boldsymbol{\mathsf{LL}}^{\mathsf{T}})^{-1}\boldsymbol{\mathsf{Q}}^{\mathsf{T}}$$

Maximum likelihood estimation with multi-ensembles

• Search for an estimate of the covariance matrix of the form $\hat{\mathbf{r}}_{1} = \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{$

 $\widehat{\boldsymbol{\Sigma}} = \boldsymbol{\mathsf{Q}}\boldsymbol{\mathsf{M}}\boldsymbol{\mathsf{Q}}^{\mathsf{T}} = \boldsymbol{\mathsf{Q}}\boldsymbol{\mathsf{L}}\boldsymbol{\mathsf{L}}^{\mathsf{T}}\boldsymbol{\mathsf{Q}}^{\mathsf{T}}, \text{ where } \boldsymbol{\mathsf{Q}} \in \mathbb{R}^{m \times p}, \ \boldsymbol{\mathsf{Q}}^{\mathsf{T}}\boldsymbol{\mathsf{Q}} = \boldsymbol{\mathsf{I}}.$

• As in the single-ensemble case:

$$\mathsf{det}^*(\widehat{\boldsymbol{\Sigma}}) = \boldsymbol{\mathsf{Q}}\,\mathsf{det}(\boldsymbol{\mathsf{LL}}^{\mathsf{T}})\boldsymbol{\mathsf{Q}}^{\mathsf{T}}, \quad \widehat{\boldsymbol{\Sigma}}^{\dagger} = \boldsymbol{\mathsf{Q}}(\boldsymbol{\mathsf{LL}}^{\mathsf{T}})^{-1}\boldsymbol{\mathsf{Q}}^{\mathsf{T}}$$

• We approximate
$$\widehat{\pmb{\Sigma}} + \pmb{C}$$
 by projection:

$$\widehat{\boldsymbol{\Sigma}} + \boldsymbol{\mathsf{C}} = \boldsymbol{\mathsf{Q}} \boldsymbol{\mathsf{L}} \boldsymbol{\mathsf{L}}^{\mathsf{T}} \boldsymbol{\mathsf{Q}}^{\mathsf{T}} + \boldsymbol{\mathsf{C}} \approx \boldsymbol{\mathsf{Q}} (\boldsymbol{\mathsf{L}} \boldsymbol{\mathsf{L}}^{\mathsf{T}} + \boldsymbol{\mathsf{Q}}^{\mathsf{T}} \boldsymbol{\mathsf{C}} \boldsymbol{\mathsf{Q}}) \boldsymbol{\mathsf{Q}}^{\mathsf{T}}$$

Maximum likelihood estimation with multi-ensembles

 $\widehat{\boldsymbol{\Sigma}} = \boldsymbol{\mathsf{Q}}\boldsymbol{\mathsf{M}}\boldsymbol{\mathsf{Q}}^{\mathsf{T}} = \boldsymbol{\mathsf{Q}}\boldsymbol{\mathsf{L}}\boldsymbol{\mathsf{L}}^{\mathsf{T}}\boldsymbol{\mathsf{Q}}^{\mathsf{T}}, \text{ where } \boldsymbol{\mathsf{Q}} \in \mathbb{R}^{m \times p}, \ \boldsymbol{\mathsf{Q}}^{\mathsf{T}}\boldsymbol{\mathsf{Q}} = \boldsymbol{\mathsf{I}}.$

• As in the single-ensemble case:

$$\mathsf{det}^*(\widehat{\boldsymbol{\Sigma}}) = \boldsymbol{\mathsf{Q}}\,\mathsf{det}(\boldsymbol{\mathsf{LL}}^{\mathsf{T}})\boldsymbol{\mathsf{Q}}^{\mathsf{T}}, \quad \widehat{\boldsymbol{\Sigma}}^{\dagger} = \boldsymbol{\mathsf{Q}}(\boldsymbol{\mathsf{LL}}^{\mathsf{T}})^{-1}\boldsymbol{\mathsf{Q}}^{\mathsf{T}}$$

• We approximate
$$\widehat{\pmb{\Sigma}} + \pmb{\mathsf{C}}$$
 by projection:

$$\widehat{\boldsymbol{\Sigma}} + \boldsymbol{\mathsf{C}} = \boldsymbol{\mathsf{Q}}\boldsymbol{\mathsf{L}}\boldsymbol{\mathsf{L}}^{\mathsf{T}}\boldsymbol{\mathsf{Q}}^{\mathsf{T}} + \boldsymbol{\mathsf{C}} \approx \boldsymbol{\mathsf{Q}}(\boldsymbol{\mathsf{L}}\boldsymbol{\mathsf{L}}^{\mathsf{T}} + \boldsymbol{\mathsf{Q}}^{\mathsf{T}}\boldsymbol{\mathsf{C}}\boldsymbol{\mathsf{Q}})\boldsymbol{\mathsf{Q}}^{\mathsf{T}}$$

• Then

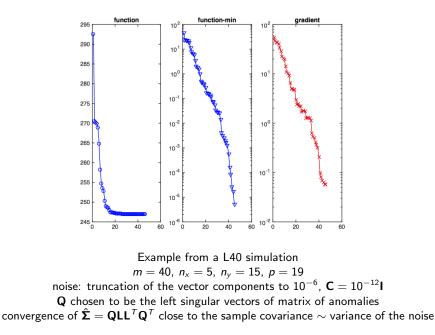
$$\begin{split} \det^*(\widehat{\boldsymbol{\Sigma}} + \boldsymbol{\mathsf{C}}) &\approx \boldsymbol{\mathsf{Q}} \det(\boldsymbol{\mathsf{L}}\boldsymbol{\mathsf{L}}^{\mathcal{T}} + \boldsymbol{\mathsf{Q}}^{\mathcal{T}}\boldsymbol{\mathsf{C}}\boldsymbol{\mathsf{Q}})\boldsymbol{\mathsf{Q}}^{\mathcal{T}} \\ (\widehat{\boldsymbol{\Sigma}} + \boldsymbol{\mathsf{C}})^{\dagger} &\approx \boldsymbol{\mathsf{Q}}(\boldsymbol{\mathsf{L}}\boldsymbol{\mathsf{L}}^{\mathcal{T}} + \boldsymbol{\mathsf{Q}}^{\mathcal{T}}\boldsymbol{\mathsf{C}}\boldsymbol{\mathsf{Q}})^{-1}\boldsymbol{\mathsf{Q}}^{\mathcal{T}} \end{split}$$

Maximum likelihood estimation with multi-ensembles

• Minimize the negative log-likelihood:

$$\begin{split} \mathsf{g}(\mathsf{L}) &= \mathsf{n}_{\mathsf{x}} \log \det(\mathsf{L}) + \frac{\mathsf{n}_{\mathsf{y}}}{2} \log \det(\mathsf{L}\mathsf{L}^{\mathsf{T}} + \mathsf{Q}^{\mathsf{T}}\mathsf{C}\mathsf{Q}) \\ &+ \operatorname{trace}((\mathsf{L}\mathsf{L}^{\mathsf{T}})^{-1}\mathsf{Q}^{\mathsf{T}}\mathsf{A}_{\mathsf{x}}\mathsf{A}_{\mathsf{x}}^{\mathsf{T}}\mathsf{Q}) \\ &+ \operatorname{trace}((\mathsf{L}\mathsf{L}^{\mathsf{T}} + \mathsf{Q}^{\mathsf{T}}\mathsf{C}\mathsf{Q})^{-1}\mathsf{Q}^{\mathsf{T}}\mathsf{A}_{\mathsf{y}}\mathsf{A}_{\mathsf{y}}^{\mathsf{T}}\mathsf{Q}) \end{split}$$

with \mathbf{A}_{x} and \mathbf{A}_{y} the anomalies of samples **X** and **Y**, respectively.



<u>Outline</u>

- Motivation
- A framework for maximum likelihood estimation
- Maximum likelihood estimation with multi-ensembles
- Application to ensemble-based Kalman filters
- Numerical experiments

- Notation:
 - ▷ ensemble $\mathbf{E} = [\mathbf{X}, \mathbf{Y}] \in \mathbb{R}^{m \times n}$
 - \triangleright ensemble mean $\mathbf{x} = \frac{1}{n} \mathbf{E} \mathbf{e} \in \mathbb{R}^m$, where $\mathbf{e} = [1, \dots, 1]^T$

$$\triangleright$$
 anomalies $\mathbf{A} = \mathbf{E} - \mathbf{x}\mathbf{e}$

- Notation:
 - \triangleright ensemble $\mathbf{E} = [\mathbf{X}, \mathbf{Y}] \in \mathbb{R}^{m \times n}$
 - \triangleright ensemble mean $\mathbf{x} = \frac{1}{n} \mathbf{E} \mathbf{e} \in \mathbb{R}^m$, where $\mathbf{e} = [1, \dots, 1]^T$
 - \triangleright anomalies $\mathbf{A} = \mathbf{E} \mathbf{x} \mathbf{e}^{T}$
- The analysis step updates the mean and the anomalies instead of the ensemble members.

- Notation:
 - \triangleright ensemble $\mathbf{E} = [\mathbf{X}, \mathbf{Y}] \in \mathbb{R}^{m \times n}$
 - \triangleright ensemble mean $\mathbf{x} = \frac{1}{n} \mathbf{E} \mathbf{e} \in \mathbb{R}^m$, where $\mathbf{e} = [1, \dots, 1]^T$
 - \triangleright anomalies $\mathbf{A} = \mathbf{E} \mathbf{x} \mathbf{e}^{T}$
- The analysis step updates the mean and the anomalies instead of the ensemble members.
- To recover the analysis ensemble: $\mathbf{E} = \mathbf{x}\mathbf{e}^T + \mathbf{A}$

• Update of the ensemble mean:

$$\mathbf{x}^{a} = \mathbf{x}^{f} + \mathbf{A}^{f}\mathbf{G}\mathbf{R}^{-\frac{1}{2}}(\mathbf{z} - \mathbf{H}\mathbf{x}^{f})/\sqrt{n-1}$$

with

$$\mathbf{G} = \mathbf{S}^T (\mathbf{I} + \mathbf{S}\mathbf{S}^T)^{-1}, \qquad \mathbf{S} = \mathbf{R}^{-\frac{1}{2}} \mathbf{H} \mathbf{A}^f / \sqrt{n-1}.$$

• Update of the ensemble mean:

$$\mathbf{x}^{a} = \mathbf{x}^{f} + \mathbf{A}^{f}\mathbf{G}\mathbf{R}^{-\frac{1}{2}}(\mathbf{z} - \mathbf{H}\mathbf{x}^{f})/\sqrt{n-1}$$

with

$$\mathbf{G} = \mathbf{S}^{\mathsf{T}} (\mathbf{I} + \mathbf{S}\mathbf{S}^{\mathsf{T}})^{-1}, \qquad \mathbf{S} = \mathbf{R}^{-\frac{1}{2}} \mathbf{H} \mathbf{A}^{\mathsf{f}} / \sqrt{n-1}.$$

• Update of the ensemble anomalies: $A^a = A^f + A^f T$

• Update of the ensemble mean:

$$\mathbf{x}^{a} = \mathbf{x}^{f} + \mathbf{A}^{f} \mathbf{G} \mathbf{R}^{-\frac{1}{2}} (\mathbf{z} - \mathbf{H} \mathbf{x}^{f}) / \sqrt{n-1}$$

with

$$\mathbf{G} = \mathbf{S}^T (\mathbf{I} + \mathbf{S}\mathbf{S}^T)^{-1}, \qquad \mathbf{S} = \mathbf{R}^{-\frac{1}{2}} \mathbf{H} \mathbf{A}^f / \sqrt{n-1}.$$

• Update of the ensemble anomalies: $A^a = A^f + A^f T$

 \triangleright EnKF: T = G(D - S) where the columns of D are Gaussian samples

$$\triangleright \quad \mathsf{ETKF:} \quad \mathsf{T} = (\mathsf{I}_n + \mathsf{S}^T \mathsf{S})^{-\frac{1}{2}} - \mathsf{I}_n$$

 \triangleright **DEnKF**: $\mathbf{T} = -\frac{1}{2}\mathbf{GS}$

QL-based formulation

• Deriving the filters using **QL** instead of the anomalies **A**^f:

$$\mathbf{P}^{f} = \left(\frac{\mathbf{A}^{f}}{\sqrt{n-1}}\right) \left(\frac{\mathbf{A}^{f}}{\sqrt{n-1}}\right)^{T} \longrightarrow \mathbf{P}^{f} = \mathbf{QL}(\mathbf{QL})^{T}$$

QL-based formulation

• Deriving the filters using **QL** instead of the anomalies **A**^f:

$$\mathbf{P}^{f} = \left(\frac{\mathbf{A}^{f}}{\sqrt{n-1}}\right) \left(\frac{\mathbf{A}^{f}}{\sqrt{n-1}}\right)^{T} \longrightarrow \mathbf{P}^{f} = \mathbf{Q}\mathbf{L}(\mathbf{Q}\mathbf{L})^{T}$$

• QL not similar to an anomalies matrix:

▷
$$\mathbf{QL} \in \mathbb{R}^{m \times p}$$
, with $p \le n - 1$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$ of rank $n - 1$.
▷ $\mathbf{QLe} \ne 0$.

QL-based formulation

• Deriving the filters using **QL** instead of the anomalies **A**^f:

$$\mathbf{P}^{f} = \left(\frac{\mathbf{A}^{f}}{\sqrt{n-1}}\right) \left(\frac{\mathbf{A}^{f}}{\sqrt{n-1}}\right)^{T} \quad \longrightarrow \quad \mathbf{P}^{f} = \mathbf{Q}\mathbf{L}(\mathbf{Q}\mathbf{L})^{T}$$

• QL not similar to an anomalies matrix:

▷
$$\mathbf{QL} \in \mathbb{R}^{m \times p}$$
, with $p \le n - 1$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$ of rank $n - 1$.
▷ $\mathbf{QLe} \ne 0$.

• To interpret **QL** as an anomalies matrix:

$$\mathbf{P}^{f} = \mathbf{Q}\mathbf{L}(\mathbf{Q}\mathbf{L})^{T} = \mathbf{Q}\mathbf{L}\mathbf{V}^{T}(\mathbf{Q}\mathbf{L}\mathbf{V}^{T})^{T}$$

where $\mathbf{V} \in \mathbb{R}^{n \times p}$, $\mathbf{V}^T \mathbf{V} = \mathbf{I}$, $\mathbf{V} \mathbf{e} = \mathbf{0}$, e.g.,

- \triangleright right singular vectors from the SVD of \mathbf{A}^{f}
- random orthogonal matrices with columns orthogonal to e (SEIK filter; Hoteit et. al., 2002).

<u>Outline</u>

- Motivation
- A framework for maximum likelihood estimation
- Maximum likelihood estimation with multi-ensembles
- Application to ensemble-based Kalman filters
- Numerical experiments

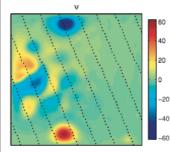
A quasi-geostrophic model

Model

- a 1.5-layer reduced-gravity QG model with double-gyre wind forcing and biharmonic friction
- \triangleright nonlinear, 129 imes 129 grid points
- \triangleright dimension $m = 1.6 \times 10^4$
- ▷ EnKF-Matlab toolbox (Sakov, 2013).

Ensembles

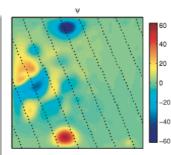
- ▷ "Accurate" ensemble **X**: $n_x = 5$ members.
- ▷ "Noisy" ensemble \mathbf{Y} : $n_y = 20$ members, truncation to 1 digit before the analysis.
- Noise covariance matrix C: diagonal (variance estimated from a large sample).



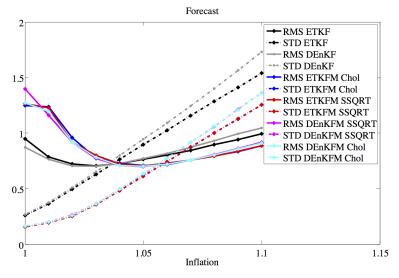
Water height, observations. Sakov and Oke (2008)

A quasi-geostrophic model

- Observations
 - ▷ Normal distributed additive noise: $\mathcal{N}(0, \sigma_o^2 \mathbf{I})$.
 - $\triangleright \mathbf{R} = \sigma_o^2 \mathbf{I}.$
 - $\triangleright \ \sigma_0^2 = 4$, equidistant tracks, every fourth time step.
- Moderation
 - ▷ Inflation: 1.0 : 0.01 : 1.1.
 - \triangleright Local analysis: localization radius = 10.
- Anomalies-like ensemble-based Kalman filters.
- Configuration similar to Sakov and Oke (2008).

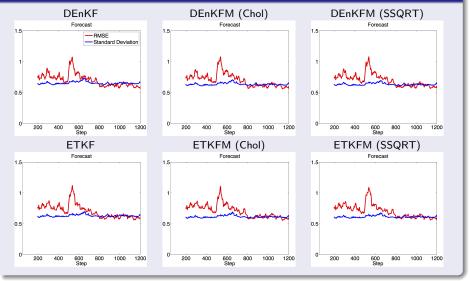


Water height, observations. Sakov and Oke (2008)

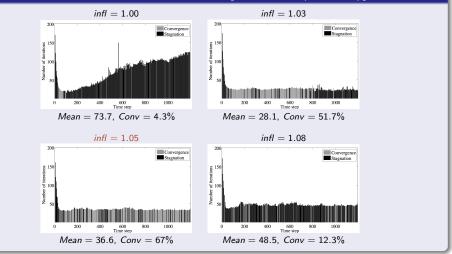


	ETKF	ETKFM (C)	ETKFM (S)	DEnKF	DEnKFM (C)	DEnKFM (S)
RMS	0.7044	0.7067	0.7043	0.7025	0.6999	0.6991
STD	0.6293	0.6138	0.6121	0.6534	0.6343	0.6323

Temporal evolution: errors



Temporal evolution: BFGS iterations [DEnKFM (SSQRT)]



Summary

- A strategy for estimating mean and covariance matrix of multi-ensembles has been suggested.
 - Normally distributed random vectors: same mean, covariance matrices of the additional "noise" known.
 - ▷ Estimation in a subspace of smaller dimension.
 - Local minima can be computed numerically.
- Application to ensemble-based Kalman filters.
 - ▷ Derivation of a **QL**-based EnKF.
 - ▷ Adapted to specific variants of EnKF.
 - Anomalies-like QL-based formulation
- Preliminary results
 - Similar performances compared to anomalies-based filters, with a shift in the inflation.
 - Issues to be worked out: convergence of BFGS, choice of subspace, modelling of noise, choice of parameters.

Summary

Perspectives

- Ongoing work and perspectives.
 - Longer experiments (more analysis cycles), sensitivity to the dimension of the problem, the noise,...
 - > Different strategies for building anomalies-like QL-based filters.
 - ▷ Nonlinear observation operators.
 - Numerical optimization on manifolds: fixed-rank symmetric positive semidefinite matrices.
 - > Biased estimator?
- Towards multigrid strategies in ensemble-based Kalman filters.

References

- Gratton S., Simon E., Titley-Peloquin D.: Covariance matrix estimation with noisy samples. In preparation.
- Hoteit I., Pham D.-T., Blum J.: A simplified reduced order Kalman filtering and application to altimetric data assimilation in tropical Pacific, *Journal of Marine Systems*, 36, 101-127, 2002.
- Sakov P., Evensen G., Bertino L.: Asynchronous data assimilation with the EnKF, *Tellus*, 62A, 24-29, 2010.
- Sakov P., Oke P. R.: A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters, *Tellus*, 60A, 361-371, 2008.
- Sakov P.: EnKF-Matlab toolbox.

Thank you for your attention!