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Motivation

Data assimilation combines in an
optimal way the heterogeneous
and uncertain information
provided by model and
observations in order to estimate
the state of a system.

source: http://topaz.nersc.no
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Motivation

Linear Gaussian framework

Advance in time: xk = Mkxk−1 + vk , vk ∼ N (0,Qk )
Observation: zk = Hkxk + wk , wk ∼ N (0,Rk )

Kalman filter

Forecast Analysis

xf
k = Mk xa

k−1

Pf
k = Mk Pa

k−1MT
k + Qk

Kk = Pf
k HT

k (Hk Pf
k HT

k + Rk )−1

xa
k = xf

k + Kk (zk −Hk xf
k )

Pa
k = (I− Kk Hk )Pf

k

Challenges

storage of covariance matrices

non-linearity

non-Gaussian noise
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Motivation

Ensemble Kalman filter

To avoid updating the error covariance matrix explicitly, the Kalman
equations are applied to an ensemble of state vectors (with i = 1, . . . , n).

Forecast: xf ,i
k =Mk (xa,i

k−1) + vk , vk ∼ N (0,Qk )

Analysis: xa,i
k = xf ,i

k + Kk (zk −Hk xf ,i
k + wk ), wk ∼ N (0,Rk )

with Kk = Pf
k HT

k (Hk Pf
k HT

k + Rk )−1 the Kalman gain matrix.

The mean and error covariance are approximated by the ensemble mean
and covariance:

x̄f
k = 1

n

n∑
i=1

xf ,i
k , Pf

k = 1
n−1

Af (Af )T with Af =
[

xf ,1
k − x̄f

k , . . . , xf ,n
k − x̄f

k

]

Feasible for large applications with ∼ 100 ensemble members with
moderation techniques (inflation, localization).
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Motivation

Motivation for multi-ensembles

Large-scale geophysical applications may involve

B several numerical models
B different grid sizes
B significant i/o costs for storage of model output

Forecast: xf ,i
k =Mk (xa,i

k−1) + vk , vk ∼ N (0,Qk )

Analysis: xa,i
k = xf ,i

k + Kk (zk −Hk xf ,i
k + wk ), wk ∼ N (0,Rk )

Can we apply ensemble-based Kalman filters with ensembles of different
accuracies?

B How do we take into account the differences in accuracy between
ensembles?

B How can we estimate the error covariance matrix given ensembles of
different accuracies?
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A framework for maximum likelihood estimation

Setting (I)

Random variable:

x ∼ N (µ,Σ) with µ ∈ Rm and Σ ∈ Rm×m unknown.

Samples available:
X = [x1, . . . , xn] ∈ Rm×n

Goal: Compute estimates µ̂ ≈ µ and Σ̂ ≈ Σ
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A framework for maximum likelihood estimation

Maximum likelihood estimation

Maximize the likelihood function of the normal distribution:

L(µ̂, Σ̂|X) ∝
n∏

i=1

det(Σ̂)−1/2 exp
(
− 1

2 (xi − µ̂)T Σ̂
−1

(xi − µ̂)
)

Minimize the negative log-likelihood:

g(µ̂, Σ̂) = n
2 log det(Σ̂) + 1

2 trace(Σ̂
−1

AAT )

where A is the matrix of anomalies:

A = [x1 − µ̂, . . . , xn − µ̂]
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A framework for maximum likelihood estimation

Maximum likelihood estimation

Minimize the negative log-likelihood:

g(µ̂, Σ̂) = n
2 log det(Σ̂) + 1

2 trace(Σ̂
−1

AAT )

Differentiate with respect to µ̂:

n∑
i=1

(xi − µ̂)T Σ̂
−1
{dµ̂} = 0 ⇒ µ̂ = x̄ = 1

n

n∑
i=1

xi

Differentiate with respect to Σ̂:

trace
(

Σ̂
−1
{dΣ̂}

(
nI− Σ̂

−1
AAT

))
= 0 ⇒ Σ̂ = 1

n AAT

provided n > m
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A framework for maximum likelihood estimation

Setting (II)

Random variable:

x ∼ N (µ,Σ) with µ ∈ Rm and Σ ∈ Rm×m unknown.

Very few samples available:

X = [x1, . . . , xn] ∈ Rm×n with n < m

Goal: Compute estimates µ̂ ≈ µ and Σ̂ ≈ Σ
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A framework for maximum likelihood estimation

Maximum likelihood estimation when n < m

Pick a subspace of dimension p � m :

Q ∈ Rm×p, QT Q = I

Search for an estimate of the covariance matrix of the form

Σ̂ = QMQT = QLLT QT

where M ∈ Rp×p is symmetric positive definite and M = LLT is either a
Cholesky or symmetric square root factorization.

Similar to regularization/shrinkage techniques (Ledoit and Wolf 2004,
Ueno et. al. 2009, 2010, 2014, Johns and Mandel 2010, etc.)
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A framework for maximum likelihood estimation

Maximum likelihood estimation when n < m

Maximize the likelihood function with respect to the degenerate normal
distribution:

L(Σ̂|X) ∝
n∏

i=1

det∗(Σ̂)−1/2 exp
(
− 1

2 (xi − x̄)T Σ̂
†
(xi − x̄)

)

where

B det∗(Σ̂) is the pseudo-determinant

det∗(Σ̂) = det∗(QLLT QT ) = Q det(LLT )QT

B Σ̂
†

is the More-Penrose generalized inverse

Σ̂
†

= (QLLT QT )† = Q(LLT )−1QT
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A framework for maximum likelihood estimation

Maximum likelihood estimation when n < m

Minimize the negative log-likelihood:

g(L) = n log det(L) + 1
2 trace

(
(LLT )−1QT AAT Q

)
where A is the matrix of anomalies.

First order optimality conditions:

LLT = 1
n QT AAT Q

Σ̂ = QLLT QT = 1
n QQT AAT QQT

Remarks:

B For L to be nonsingular: p ≤ n − 1.

B Σ̂ is a projection of the sample covariance matrix.

B If range(Q) = range(A) then Σ̂ is the sample covariance matrix.
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A framework for maximum likelihood estimation

Numerical optimization

To compute the entries of the optimal L numerically, we use the
one-to-one correspondence between

L =


`1,1

`2,1 `2,2

...
. . .

`p,1 . . . . . . `p,p

 ←→ ` =



`1,1

...
`p,1

`2,2

...
`p,p



We use BFGS to minimize the negative log-likelihood g(`).

B Find a search direction pk by solving Bk pk = −∇g(`k ).
B Perform a linesearch to find an acceptable step-size αk .
B Take a step: `k+1 = `k + αk pk .
B Use a low-rank update to obtain Bk+1 from Bk .
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A framework for maximum likelihood estimation

Example from a L40 simulation
m = 40, n = 5, p = 4

Q chosen to be the left singular vectors of A
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Maximum likelihood estimation with multi-ensembles

Setting (III)

Random variables:

x ∼ N (µ,Σ) with µ ∈ Rm and Σ ∈ Rm×m unknown.

y ∼ N (µ,Σ + C) with C ∈ Rm×m known.

Very few samples available:

X = [x1, . . . , xnx ] ∈ Rm×nx

Y = [y1, . . . , yny ] ∈ Rm×ny

with nx + ny < m.

Goal: Compute estimates µ̂ ≈ µ and Σ̂ ≈ Σ
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Maximum likelihood estimation with multi-ensembles

Maximum likelihood estimation with multi-ensembles

Given samples “high-fidelity” samples X and “noisy” samples Y, the
likelihood function with respect to the degenerate normal distribution is

L(Σ̂|X,Y)

∝
nx∏

i=1

det∗(Σ̂)−1/2 exp
(
− 1

2 (xi − x̄)T Σ̂
†
(xi − x̄)

)
×

ny∏
j=1

det∗(Σ̂ + C)−1/2 exp
(
− 1

2 (yj − x̄)T (Σ̂ + C)†(yj − x̄)
)

where det∗(·) is the pseudo-determinant and (·)† denotes the
More-Penrose generalized inverse.
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Maximum likelihood estimation with multi-ensembles

Maximum likelihood estimation with multi-ensembles

Search for an estimate of the covariance matrix of the form

Σ̂ = QMQT = QLLT QT , where Q ∈ Rm×p, QT Q = I.

As in the single-ensemble case:

det∗(Σ̂) = Q det(LLT )QT , Σ̂
†

= Q(LLT )−1QT

We approximate Σ̂ + C by projection:

Σ̂ + C = QLLT QT + C ≈ Q(LLT + QT CQ)QT

Then
det∗(Σ̂ + C) ≈ Q det(LLT + QT CQ)QT

(Σ̂ + C)† ≈ Q(LLT + QT CQ)−1QT
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Maximum likelihood estimation with multi-ensembles

Maximum likelihood estimation with multi-ensembles

Minimize the negative log-likelihood:

g(L) = nx log det(L) +
ny

2 log det(LLT + QT CQ)

+ trace
(
(LLT )−1QT Ax AT

x Q
)

+ trace
(
(LLT + QT CQ)−1QT Ay AT

y Q
)

with Ax and Ay the anomalies of samples X and Y, respectively.

David Titley-Peloquin (McGill) AVENUE 2017 22 / 36



Maximum likelihood estimation with multi-ensembles

Example from a L40 simulation
m = 40, nx = 5, ny = 15, p = 19

noise: truncation of the vector components to 10−6, C = 10−12I
Q chosen to be the left singular vectors of matrix of anomalies

convergence of Σ̂ = QLLT QT close to the sample covariance ∼ variance of the noise
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Application to ensemble-based Kalman filters

Anomalies-based formulation (Sakov et. al., 2010)

Notation:

B ensemble E = [X,Y] ∈ Rm×n

B ensemble mean x = 1
n
Ee ∈ Rm, where e = [1, . . . , 1]T

B anomalies A = E− xeT

The analysis step updates the mean and the anomalies instead of the
ensemble members.

To recover the analysis ensemble: E = xeT + A
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Application to ensemble-based Kalman filters

Anomalies-based formulation (Sakov et. al., 2010)

Update of the ensemble mean:

xa = xf + Af GR−
1
2 (z−Hxf )/

√
n − 1

with
G = ST (I + SST )−1, S = R−

1
2 HAf /

√
n − 1.

Update of the ensemble anomalies: Aa = Af + Af T

B EnKF: T = G(D− S) where the columns of D are Gaussian samples

B ETKF: T = (In + ST S)−
1
2 − In

B DEnKF: T = − 1
2
GS
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Application to ensemble-based Kalman filters

QL-based formulation

Deriving the filters using QL instead of the anomalies Af :

Pf =

(
Af

√
n − 1

)(
Af

√
n − 1

)T

−→ Pf = QL(QL)T

QL not similar to an anomalies matrix:

B QL ∈ Rm×p, with p ≤ n − 1 and A ∈ Rm×n of rank n − 1.

B QLe 6= 0.

To interpret QL as an anomalies matrix:

Pf = QL(QL)T = QLVT (QLVT )T

where V ∈ Rn×p , VT V = I, Ve = 0, e.g.,

B right singular vectors from the SVD of Af

B random orthogonal matrices with columns orthogonal to e
(SEIK filter; Hoteit et. al., 2002).
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Numerical experiments

A quasi-geostrophic model

Model

B a 1.5-layer reduced-gravity QG model with

double-gyre wind forcing and biharmonic friction

B nonlinear, 129× 129 grid points

B dimension m = 1.6× 104

B EnKF-Matlab toolbox (Sakov, 2013).

Ensembles

B “Accurate” ensemble X: nx = 5 members.

B “Noisy” ensemble Y: ny = 20 members, truncation

to 1 digit before the analysis.

B Noise covariance matrix C: diagonal (variance

estimated from a large sample).

Water height, observations.

Sakov and Oke (2008)
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Numerical experiments

A quasi-geostrophic model

Observations

B Normal distributed additive noise: N (0, σ2
o I).

B R = σ2
o I.

B σ2
0 = 4, equidistant tracks, every fourth time step.

Moderation

B Inflation: 1.0 : 0.01 : 1.1.

B Local analysis: localization radius = 10.

Anomalies-like ensemble-based Kalman filters.

Configuration similar to Sakov and Oke (2008).
Water height, observations.

Sakov and Oke (2008)

David Titley-Peloquin (McGill) AVENUE 2017 30 / 36



Numerical experiments

ETKF ETKFM (C) ETKFM (S) DEnKF DEnKFM (C) DEnKFM (S)
RMS 0.7044 0.7067 0.7043 0.7025 0.6999 0.6991
STD 0.6293 0.6138 0.6121 0.6534 0.6343 0.6323
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Numerical experiments

Temporal evolution: errors

DEnKF DEnKFM (Chol) DEnKFM (SSQRT)

ETKF ETKFM (Chol) ETKFM (SSQRT)
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Numerical experiments

Temporal evolution: BFGS iterations [DEnKFM (SSQRT)]
infl = 1.00 infl = 1.03

Mean = 73.7, Conv = 4.3% Mean = 28.1, Conv = 51.7%

infl = 1.05 infl = 1.08

Mean = 36.6, Conv = 67% Mean = 48.5, Conv = 12.3%
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Summary

Summary

A strategy for estimating mean and covariance matrix of multi-ensembles
has been suggested.

B Normally distributed random vectors: same mean, covariance matrices of the

additional “noise” known.

B Estimation in a subspace of smaller dimension.

B Local minima can be computed numerically.

Application to ensemble-based Kalman filters.

B Derivation of a QL-based EnKF.

B Adapted to specific variants of EnKF.

B Anomalies-like QL-based formulation

Preliminary results

B Similar performances compared to anomalies-based filters, with a shift in the

inflation.

B Issues to be worked out: convergence of BFGS, choice of subspace, modelling of

noise, choice of parameters.
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Summary

Perspectives

Ongoing work and perspectives.

B Longer experiments (more analysis cycles), sensitivity to the dimension of the

problem, the noise,...

B Different strategies for building anomalies-like QL-based filters.

B Nonlinear observation operators.

B Numerical optimization on manifolds: fixed-rank symmetric positive semidefinite

matrices.

B Biased estimator?

Towards multigrid strategies in ensemble-based Kalman filters.
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Thank you for your attention!
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