ECERFACS

CENTRE EUROPÉEN DE RECHERCHE ET DE FORMATION AVANCÉE EN CALCUL SCIENTIFIQUE

Accounting for model error in air quality forecasts: an application of 4DEnVar to the assimilation of atmospheric composition

E. Emili, S. Gürol, D. Cariolle

www.cerfacs.fr

Acknowledgments: G. Desroziers, P. Moinat, Y. Trémolet, M. Fisher

- Why model error is crucial for chemical forecasts
- QG-Chem: a new toy model for chemical DA
- DA experiments with a perfect model: 4DEnVar (versus) 3D-Var
- DA experiments with model errors (4DEnVar)
- Bias estimation and forecast bias correction (4DEnVar)
- Conclusions and perspectives

Forecasts biases in operational models

Forecasts biases in operational models

Chemistry facts:

- Heterogeneous, species- and time-dependent forecast errors
- Strong sensitivity to disparate and highly variable model parameters (chemical emissions, mixing layer height, clouds, meteorology etc. etc.)
- Highly variable (non-linear) chemical couplings

Basic needs for the DA algorithm:

- Initial condition and model errors accounted
- □ Long assimilation windows (≥ 12 hours)
- Multivariate

- 4DEnVar exploits *ensembles* to mimic a *weak constraint 4D-Var*
- ... with no need of linearized and adjoint codes
- ... no need to construct and estimate complex error covariances operators
 - **B**, **Q** (localization operator **C** needed instead)
- Physical-based specification of model error covariance (Q) through stochastic perturbation of model parameters
- No need of ensemble inflation

FKF

Desroziers et al. 2014. 4D-En-Var: link with weak-constraint 4D-Var and different possible implementations. QJRMS

A new toy-model for atmospheric chemistry DA: **QG-Chem**

Quasi-Geostrophic model (QG):

- Two-layers 3-D model, mesoscale dynamics at midlatitudes
- **Model state**: stream function $\psi(N_x, N_y, 2)$
- Conservation of potential vorticity *q*

Σ (FRFA

- 12000*6000 km² domain, cyclic in E-W, fixed boundary conditions N-S
- q advected with a semi-lagrangian scheme

Tropospheric chemistry model:

- 0-D chemical solver C_t=F_{ASIS}(C_{t-1})
- Model state: C(96) chemical concentrations
- RACM chemical scheme (Stockwell et al. 1997)
- Emissions of primary pollutants
- Diurnal effect (photo-chemistry)

QG-Chem = QG meteorology + tropospheric chemistry

- **Model state**: 3-D stream function $\psi(N_x, N_y, 2) + 3$ -D chemical concentrations C(N_x, N_y, 2, 96)
- Chemicals advected with QG semi-lagrangian scheme
- 2-D field of pollutants emissions E(N_x, N_y, N_{emi})
- N-S chemical boundary conditions (set to climatology)

Surface emissions typical of Paris (Crassier et al. 2000):

FRF

QG-Chem domain (N_x =16, N_y =8) and emissions rescaling factor:

Location of assimilated measurements
 A, B : Observed locations

QG-Chem on day twenty, Rossby circulation, polluted atmosphere

ZCERFACS

AVENUE WULKSHUP ZT-0-T1

- 24 hours long experiments
- Control variable (ψ ,C): size = 97.16.8.2 = **24832 variables**
- 4 synthetic observations of four species (O_3 , CO, CO_2 , NO_2) assimilated hourly: $4 \cdot 24 = 96$ daily observations for each species
- Observations perturbed with gaussian noise (function of the species)
- Reference unperturbed simulation to validate the results (truth)

Perfect model experiment

Initial Condition (IC) randomized with **B^{1/2}**

3D-Var

- Analysis/forecast cycles of **1h**
- Same B as above in assimilation step (*climatological* covariance)

4DEnVar

- 1 window of 24h, 24 subwindows of 1h
- 16 ensemble members
- **B^{1/2}** to create ensemble perturbations

Model error experiment

IC randomized with **B^{1/2}** + Log-normal perturbation of NO emissions (model parameter)

4DEnVar

As in the left side, but model emissions perturbed as well to generate the ensemble

Perfect model experiment: RMSE gain (%)

-12

-18

-12 -18

-12 -18

-12

-18

Reanalyses skills: 4DEnVar on par or better than 3DVar when the model is perfect. Impact of flow dependent **B**?

gain (%) = (RMSE_{analysis} - RMSE_{forecast}) / MEAN(x_{truth})
< 0 (blue) when DA improves the 4D state
> 0 (red) otherwise

Perfect model experiment: 3DVar vs 4DEnVar

		3D-Var			4DEnVar	
Species	Max. gain (%)	Min. gain (%)	Avg. gain (%)	Max. gain (%)	Min. gain (%)	Avg. gain (%)
O ₃	17.11	-7.67	0.92	27.03	-6.68	2.55
CO	17.15	-3.33	1.22	18.82	-4.11	1.62
CO_2	13.08	-10.60	1.76	13.62	-7.51	1.93
NO_2	57.39	-6.15	0.95	48.07	-10.52	1.21

gain (%) = (RMSE_{analysis} - RMSE_{forecast}) / MEAN(x_{truth})

- Comparison done for one cycle of 24 hours (24 cycles of 3DVar)
- 4DEnVar gains slightly better than 3DVar
- Better average gains with 4DEnVar for all chemical species
- Locally some larger errors with 4DEnVar for some species (CO, NO₂). Ensemble size? Localization?

Perfect model experiment: ensemble size

CERFACS

Perfect model experiment: localization

O₃

CO

 CO_2

NO₂

ΔΓς

FR

Effective model error (forecast bias)

FKF

Model error experiment: ozone

AVENUE workshop 21-6-17

Model error experiment: ozone

O₃ effective model error

ECERFACS

Model error experiment: forecast correction

Truth Free forecast 4D-EnVar analysis Forecast Bias corrected forecast

ZCERFACS

Model error experiment: multivariate forecast

correction

ZCERFACS

Model error experiments: 3DVar vs 4DEnVar

	Reanalysis				Forecast							
Species	3D-Var		4DEnVar		3D-Var		4DEnVar					
	ϵ_{\min}	ϵ_{\max}	$\epsilon_{\rm avg}$	ϵ_{\min}	ϵ_{\max}	$\epsilon_{\rm avg}$	$\epsilon_{ m min}$	ϵ_{\max}	$\epsilon_{\rm avg}$	ϵ_{\min}	ϵ_{\max}	$\epsilon_{\rm avg}$
O ₃	2.8	25.7	14.3	2.0	26.4	13.3	5.1	23.9	14.4	4.9	21.7	11.3
CO	1.3	42.8	17.1	1.1	27.7	13.1	6.7	90.8	37.3	7.2	50.1	22.1
NO_2	7.7	88.9	41.2	4.1	69.4	23.3	23.6	117.8	74.0	11.3	90.3	37.2
CO_2	3.1	15.3	8.6	1.4	17.5	8.6	1.7	13.7	5.7	1.9	13.6	6.9

 ϵ (%) = RMSE_{analysis/forecast} / MEAN(x_{truth})

- Comparison done for 7 windows of 24 hours (Reanalysis) and the follow-up 24 hours forecast
- All chemical emissions perturbed (model error) plus the initial condition for the four species of interest
- Initial condition set to the truth at beginning of each window (no cycling)
- Forecast bias correction applied within 4DEnVar
- 4DEnVar significantly better for chemical species that depend strongly from model error (CO, NO₂, O₃), both in reanalysis than in forecast mode

- ✓ QG-Chem developed to test state-of-the-art chemical DA
- ✓ 4DEnVar slightly better than 3DVar for chemical reanalyses when the model is perfect ...
- ... but much more promising for multivariate chemical assimilation in presence of generic model errors
- A simple 4DEnVar diagnostic can help detecting and reducing forecast biases due to strong model errors
- > Future work:
 - □ Non-linear chemical regimes (outer loops?)
 - □ Better localization (advection of localization, species dependent length scales)
 - Cycling
 - Prototype implementation on a real CTM

More details on Emili et al., GMD 2016

