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A few words about NEMOVAR

A joint project by CERFACS, ECMWF, Met Office and INRIA to develop an
ocean data assimilation system for the NEMO1 model, with a variational
kernel.

Two operational centres (ECMWF, Met Office) and two research institutes
(CERFACS, INRIA).

Separate from the (much larger) NEMO consortium which oversees the
development of the ocean model.

Versions of NEMOVAR are currently operational at ECMWF and Met Office.

Applications cover ocean forecasting, medium-range weather forecasting,
monthly-to-seasonal climate forecasting, coupled and uncoupled reanalysis.

The purpose of this talk is to outline work done in AVENUE and related
projects on using ensembles to specify B in NEMOVAR.

1Nucleus for European Modelling of the Ocean.
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Ensembles of Analyses

Ensemble of Data Assimilations framework for generating forecast and
analysis ensembles.

(from the DANGOS proposal - Met Office, CERFACS, CMCC, ECMWF, INRIA)
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Ensembles of Analyses

Determinstic EVIL (Auligné et al. 2016) has also been developed for
NEMOVAR as a cheaper alternative to the EDA.

Transform an ensemble of background perturbations (Xb) into an ensemble
of analysis perturbations (Xa) using approximate eigenvector (Ritz)
information (Θq,Zq) generated by B-preconditioned conjugate gradient
algorithms:

I B-PCG (Derber and Rosati 1989):
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I Restricted B-PCG (Gratton and Tshimanga 2009; Gürol et al. 2014):
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o
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How many iterations q required to get a good estimate of Pa = XaXaT?
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The NEMOVAR B formulation

The NEMOVAR B formulation is quite general:

B = β2
m (Bm1 + Bm2 + . . .)︸ ︷︷ ︸

Bm

+β2
e Be + β2

E
BEOF

wnere β2
m, β2

e and β2
E
are constant weights or switches.

Multiple covariance models for representing different scales (Mirouze et
al. 2016):

Bmi = Kb D
1/2
i Cmi D

1/2
i KT

b

A localized ensemble-based covariance matrix:

Be = Kb D1/2
e

(
L ◦ X̃ X̃T

)
D1/2

e KT
b

where the columns of X̃ = D−1/2
e K−1

b Xb are unbalanced, normalized
background ensemble perturbations.

A large-scale EOF-based covariance matrix for assimilating sparse
observations (Met Office):

BEOF = PΛPT
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EOF-based covariances (BEOF)

Observations have a non-local impact when using EOF-based covariances.

Data coverage EOF assimilation Standard assimilation

(Courtesy D. Lea, Met Office)
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Using ensembles to estimate parameters in Bm

The covariance model has the form

Bm = Kb D1/2 CD1/2 KT
b

Cψ is the discretized representation of the linear (implicit diffusion) operator
C : ψ0 → ψ

M
, for ψ0 , ψM

∈ Rd , defined by the solution of

(1−∇ · κ∇)M γ−1/2 ψ
M

= γ1/2 ψ0 , (1)

where M is a positive integer, γ1/2 is a normalization function, and κ is a
d × d matrix (Weaver et al. 2016).

For constant κ, the kernel of the integral solution of (1) admits covariance
functions from the Matérn class (Guttorp and Gneiting 2006):

c
d
(r) ∝ r M−d/2 KM−d/2

(
r
)

where r =
√

(z− z′)T κ−1 (z− z′) and KM−d/2 is the Bessel function of the
2nd kind of order M − d/2.
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Using ensembles to estimate parameters in Bm

The covariance model has the form

Bm = Kb D1/2 CD1/2 KT
b

Ensembles are used to estimate the variances (D→ De) and the diffusion
tensor (κ→ κe) associated with the diffusion operator in C.

To remove sampling error with small ensemble sizes, the raw estimates are
filtered using a diffusion operator with an optimally-based algorithm to
determine the filtering scale (Ménétrier et al. 2015; Michel et al. 2016).

A hybrid parameter formulation has also been developed:

D = α2
m Dm + α2

e De

κ = γ2
m κm + γ2

e κe

where Dm and κm are modelled (“climatological”) estimates, and αm,e and
γm,e are constant weights.
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Optimal filtering to reduce sampling error

Find the scale (Lopt) that corresponds to the unique zero-crossing of an
optimality function C (L) (Ménétrier et al. 2015).

For Gaussian statistics

C (L) = E [ ṽ 2 ]− Ne + 1
Ne − 1

E [ ṽ v̂ ]

where ṽ is the raw variance, v̂ the filtered variance, and Ne the ensemble size.

Optimality function Filter scale
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Variances estimated from an ocean ensemble

5-member ensemble (4 perturbed + 1 unperturbed) from 31/05/2015.
Background temperature error standard deviations at 100 m.
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Estimating the diffusion tensor κ from ensembles

κ−1 can be related to the local correlation Hessian tensor H
(Hristopulos 2002; Weaver and Mirouze 2013):(

1
2M − d − 2

)
κ−1 = −∇∇Tcd

∣∣
r=0 = H

H can be approximated locally from sample statistics using the formulae:
1 Belo-Pereira and Berre (2006); Weaver and Mirouze (2013):

H̃(z) =

(
∇ε(z) (∇ε(z))T−∇σ(z) (∇σ(z))T

)
(
σ(z)

)2 where
(
σ(z)

)2
= (ε(z))2

2 Michel (2013); Michel et al. (2016):

H̃(z) = ∇ε̃(z) (∇ε̃(z))T where ε̃(z) = ε(z)/σ(z)

3 Sato et al. (2009), Varella et al. (2011):

H̃(z) ≈ ∇ε̃(z) (∇ε̃(z))
T(

σ(z)
)2 assuming σ(z) is slowy varying
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Estimating correlation scales from an ocean ensemble

Level 1 temperature; 5 members; raw estimates

(a) Principal axis L1 (b) Principal axis L2 (c) Rotation angle

Level 1 temperature; 5 members; filtered estimates (Michel et al. 2016)

(d) Principal axis L1 (e) Principal axis L2 (f) Rotation angle
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Estimating correlation scales from an ocean ensemble

Level 1 temperature; 19 members; raw estimates

(g) Principal axis L1 (h) Principal axis L2 (i) Rotation angle

Level 1 temperature; 19 members; filtered estimates (Michel et al. 2016)

(j) Principal axis L1 (k) Principal axis L2 (l) Rotation angle
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What are some of the key issues?

Computing derivatives of ensemble perturbations is inherently noisy.

Computing the elements of H̃ using finite differences on a staggered grid
(C-grid in NEMO) requires some averaging to colocate elements. This
introduces inaccuracies.

Filtering H̃ while ensuring symmetry and positive-definiteness is tricky
(Michel et al. 2016).

Filtering with a constant scale does not seem appropriate for the global
ocean.

The numerical representation of the non-diagonal elements of κ in the
diffusion operator is complicated (self-adjointness, positive definiteness).

Solving the linear system of an implicitly-formulated diffusion equation with
non-diagonal κ is expensive.

Ignoring the non-diagonal elements may result in artificially short length
scales.

Recomputing κ on each assimilation cycle would require recomputing
normalization factors on each cycle, which is expensive.
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What are some of the key issues?

Computing derivatives of ensemble perturbations is inherently noisy.

Computing the elements of H̃ using finite differences on a staggered grid
(C-grid in NEMO) requires some averaging to colocate elements. This
introduces inaccuracies.

Filtering H̃ while ensuring symmetry and positive-definiteness is tricky
(Michel et al. 2016).

Filtering with a constant scale does not seem appropriate for the global
ocean.

The numerical representation of the non-diagonal elements of κ in the
diffusion operator is complicated (self-adjointness, positive definiteness).

Solving the linear system of an implicitly-formulated diffusion equation with
non-diagonal κ is expensive.

Ignoring the non-diagonal elements may result in artificially short length
scales.

Recomputing κ on each assimilation cycle would require recomputing
normalization factors on each cycle, which is expensive.

Is this the right approach?
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Using ensembles to estimate Be

The localized ensemble-based covariance matrix has the form:

Be = Kb D1/2
e

(
L ◦ X̃ X̃T

)
D1/2

e KT
b

The operator form of Schur product localization used for minimization in
variational assimilation is(

L ◦ X̃X̃T)v =
Ne∑
p=1

(
x̃p ◦ L

(
x̃p ◦ v

))
where X̃ =

(
x̃1, . . . , x̃Ne

)
We use a diffusion operator for the localization operator L.

We also consider the hybrid variant:

B = β2
e Be + β2

m Bm

where Bm employs climatological or modelled parameters.

L and the hybridization weights β2
m and β2

e can be estimated using an
optimally-based procedure (Ménétrier and Auligné 2015).

The algorithm is applied offline using the hybrid_diag software (B. Ménétrier)

It has been interfaced with NEMOVAR (Y. Yang).
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Optimal hybridization weights

Example from NEMOVAR

As expected:

β2
e increases with the ensemble size.

β2
m decreases with the ensemble size.
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Optimal localization

Localization and hybridization are optimized simultaneously.

Example from NEMOVAR

Correlation (black) and localization (colors)
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Localization modelling

Four formulations of L have been implemented in NEMOVAR:
1 No localization:

L =

 1
...
1

( 1 · · · 1
)

2 Univariate and separate localization for each of the M variables:

L = diag (L1, . . . , LM)

3 Multivariate and common localization for each variable:

L =

 1
...
1

L1
(
1 · · · 1

)
4 Multivariate and separate localization for each of the M variables:

L =

 L1/2
1
...

L1/2
M

( LT/2
1 · · · LT/2

M

)
AVENUE data assimilation workshop, CERFACS, Toulouse, 20-21 June 2017



Hybrid correlations from NEMOVAR

Example of surface T-T correlations at a point in the North Atlantic using two
different ensembles sizes (10 and 50)
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What are some of the key issues?

We can employ localization for the correlations and spatial filtering for the
variances.

In the hybrid formulation, the modelled component could be based on a
time-averaged ensemble for the variances and diffusion tensor.

Localization scales increase with ensemble size.

The conditioning of the system matrix of implicit diffusion degrades as the
length scales increase, so the cost of localization gets more expensive.

We can (should) do localization on a coarse grid to reduce cost. Developing
appropriate coarse grids for the global ocean is tricky (work in progress).

It is difficult to represent flat-like localization functions with a diffusion
operator.

It is probably not necessary to estimate localization scales on every
assimilation cycle, so the cost of re-normalization can be reduced.
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Concluding remarks

A lot of work has been done in AVENUE and related projects (ERA-CLIM2)
to develop different methods for defining ensemble covariances in
NEMOVAR.

Operational experience is now needed to determine the best choices.

This has started recently at ECMWF, as discussed next in Marcin Chrust’s
presentation.
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