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Introduction
In this work we propose novel sparse matrix ordering approaches based on hypergraph partitioning. The significance
of hypergraph-partitioning-based (HP-based) ordering is three-fold. First, almost all of the successful nested dissec-
tion [6] tools [7, 9, 10] are based on multilevel graph partitioning tools [7, 8, 10] with some extra initial partitioning and
refinement strategies specific to the solution of the Graph Partitioning by Vertex Separator (GPVS) problem. However,
GPVS-based multilevel ordering has a flaw as will be discussed in the next section. Second, direct solutions of the
systems in the form oAD AT 2z = b requires factorization oA DA™ , where A is a sparse and possibly rectangular
matrix, and D is a diagonal matrix. Here we present an approach for formulating GPVS problem as a Hypergraph
Partitioning (HP) problem. Using that formulation coupled with hypergraphs ability to model unsymmetric matri-
ces [4, 5], we propose a new method for finding a fill-reducing ordering bfA” by finding a nested dissection of
unsymmetric and possibly rectangular matdx Third, we generalize the proposed method to order any symmetric
matrices.
Flaw of Multilevel GPVS-Based Orderings
The multilevel approach has recently proved to be successful in both graph and hypergraph partitioning problems. A
multilevel partitioning tool consist of three phases; coarsening, initial partitioning and uncoarsening. In the coarsening
phase, various vertex clustering heuristics are used at each level, starting from the original graph/hypergraph, to reduce
the original partitioning problem down to a series of smaller partitioning problems. Here, clustering corresponds to
coalescing highly interacting nodes to the supernodes of the next level. In the second phase, a partition is obtained on
the coarsest graph/hypergraph using various heuristics. In the third phase, the partition found in the second phase is
successively projected back towards the original problem by refining the projected partitions on the intermediate level
uncoarser graph/hypergraphs using various heuristics. In both graph partitioning by edge separator and hypergraph
partitioning problems, we have the nice property that a partition of the coarse graph/hypergraph with a valid and narrow
edge/hyperedge separator induces a valid and narrow separator of equal cutsize on the original graph/hypergraph.
Unfortunately, vertex clustering methods used in multilevel GPVS algorithms and tools lack this important property.
Describing GPVS Problem as a HP Problem
Consider a hypergraph = (U4, ') and its net-intersection graph (NIG) [ = (V, ). A 2-way vertex partition
yp = {Uy,Us} of H can be decoded as 3-way net partitionifigyp = {N7, N2, Ng} of H as follows. N}
and A\ correspond to the internal nets of pa#t andif,, respectively.Ns corresponds to the external nets. Here,
we consider net-partitiodl; p = {N7,N5, N5} of H as inducing a GPVSIgpys = {V1, V2, Vs} on its NIG
representatior, whereV; = N1, Vo = Ny, Vs = Ns. Let Adjy(n;) denote the set of nets that share vertices
with netn;. Consider an internal net; of parti/y ,i.e., n; € U;. Itis clear that we have eithetdj;;(n;) C N7 or
Adjr(n;) € MiUNs . Recall that NIGG contains a vertex; for each net; of H. So we have eitheAdjg(v;) C V;
or Adjg(v;) €V, UVs inNIG G. In other words,Adjg(v;) N V2 = 0. In the respectivédl; py s, this corresponds to
Adjg(V1) NVa = Adjg(Vz) N'Vy = 0 which in turn corresponds tddjg (V1) C Vs and Adjg(V2) C Vs. Thus, Vg
of llgpys constitutes a valid separator of sipés| = |NVs|. Recall that in the GPVS problem, balancing is defined
on the vertex counts of parg; andV,. Hence, the GPVS problem on NIG can be described as an HP problem
according to the net-cut metric with balancing on the internal nets of parendifs .

From a matrix theoretical point of view, let be a matrix and{ be its row-net hypergraph representation [5], the
NIG G would be the standard graph representation of matti%” . Hence, finding a doubly-bordered form of matrix
AAT (finding GPVS ongG) is equivalent to finding a singly-bordered form of matrix (finding a net partition on
‘H). Although this finding looks very impressive, it is not very useful on itself. For a general GPVS problém on



which is equivalent to finding a doubly-bordered form of associated matrix4gayf G, we should know a suitable
decomposition of matrixZ into AA”, where decomposition refers to the requirement thaand AA” have the
same sparsity patterns.

Nested Disection Ordering of Matrices of the formADA”

The solution of normal equations that arise in interior point methods for linear programming requires the factorization
of coefficient matrices of the formtDAT , where A is a rectangular constraint matrix ad?l is a diagonal matrix.
Here, we propose a HP-based nested dissection ordering for the ordering of Matrix DA” . Nested dissection
ordering requires finding a doubly-bordered (DB) form of the matrix. In DB form, borders correspond to separator
and block-diagonals correspond 3 andY parts of nested dissection as mentioned earlier. Nested dissection simply
orders rows/columns af' after the rows/columns ok andY . Together with the formulation of GPVS problem as

an HP problem, described in the previous section, we can construct an ordefnigygfust recursively dissecting.

That is, in each bisection of cutnets inNs correspond to separator verticesSnin the nested dissection.

Two-Clique Decomposition for General Nested Disection Ordering

Previous discussion relies on the assumption that there exists a decomposifiointsf AA” such that nonzero
patterns ofZ and AA” are the same. However, in most of the applications this is not the case, thatdsjsually
unknown. Here, we propose a simple yet effective decomposition of symmetric matrices for HP-based nested dis-
section. LetG be the standard graph model representation of m&rixOur aim is to find a matrixd such thatZ

and AAT have the same sparsity patterns. In graph theoretical view, we are trying to find a hypergsamth that

its NIG is G. Obviously the net set of the target hypergraighis already identified by the definition of NIG. That

is, there must be a net; in hypergraph’{ corresponding to each vertex in G. The node set of{ is defined as
follows. There is a node;; in H corresponding to edge;; € £ with the net listnets[u;;] = {n;,n;}. During the
construction of NIGG from a hypergrapt#{, each node of{ induces a clique among the vertices@fthat corre-
spond to nets incident to that node. It is clear that, with the proposed decomposition, each nodég a@fiduces
distinct 2-cliques, therefore the proposed decomposition is referred to hrdigse decomposition.

In matrix theoretical view, matrixA is the edge-incidence matrix of NIG. That is, each row of matrix4
corresponds to a vertex id. Each column of matrix4d corresponds to an edge é such that there are exactly two
nonzeros in each column representing the two end points of the edge. Note that the hypergraph mentioned in the
previous paragraph is the row-net representation of the edge-incident matrix
Results and Conclusion
We have implemented an HP-based nested disection ordering algorithm. The ordering algorithm leverages Ashcraft
and Liu's works [3, 11]. We first do nested disections to construct decoupled block-diagonal submatrices. All of
those submatrices are ordered first with constrained minimum degree and then all separators are ordered together. Our
results show that, in general matrices hypergraph partitioning-based ordering produces comparable orderings with the
state of the art ordering tools, whereas for ordering matrices of the formAD AT | it achieves 17% and 43% better
orderings than onmetis [10] and SMOOTH [2] in terms of operation count.
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