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Introduction
In this work we propose novel sparse matrix ordering approaches based on hypergraph partitioning. The significance
of hypergraph-partitioning-based (HP-based) ordering is three-fold. First, almost all of the successful nested dissec-
tion [6] tools [7, 9, 10] are based on multilevel graph partitioning tools [7, 8, 10] with some extra initial partitioning and
refinement strategies specific to the solution of the Graph Partitioning by Vertex Separator (GPVS) problem. However,
GPVS-based multilevel ordering has a flaw as will be discussed in the next section. Second, direct solutions of the
systems in the form ofADAT x = b requires factorization ofADAT , whereA is a sparse and possibly rectangular
matrix, andD is a diagonal matrix. Here we present an approach for formulating GPVS problem as a Hypergraph
Partitioning (HP) problem. Using that formulation coupled with hypergraphs ability to model unsymmetric matri-
ces [4, 5], we propose a new method for finding a fill-reducing ordering ofADAT by finding a nested dissection of
unsymmetric and possibly rectangular matrixA . Third, we generalize the proposed method to order any symmetric
matrices.
Flaw of Multilevel GPVS-Based Orderings
The multilevel approach has recently proved to be successful in both graph and hypergraph partitioning problems. A
multilevel partitioning tool consist of three phases; coarsening, initial partitioning and uncoarsening. In the coarsening
phase, various vertex clustering heuristics are used at each level, starting from the original graph/hypergraph, to reduce
the original partitioning problem down to a series of smaller partitioning problems. Here, clustering corresponds to
coalescing highly interacting nodes to the supernodes of the next level. In the second phase, a partition is obtained on
the coarsest graph/hypergraph using various heuristics. In the third phase, the partition found in the second phase is
successively projected back towards the original problem by refining the projected partitions on the intermediate level
uncoarser graph/hypergraphs using various heuristics. In both graph partitioning by edge separator and hypergraph
partitioning problems, we have the nice property that a partition of the coarse graph/hypergraph with a valid and narrow
edge/hyperedge separator induces a valid and narrow separator of equal cutsize on the original graph/hypergraph.
Unfortunately, vertex clustering methods used in multilevel GPVS algorithms and tools lack this important property.
Describing GPVS Problem as a HP Problem
Consider a hypergraphH = (U ,N ) and its net-intersection graph (NIG) [1]G = (V, E) . A 2-way vertex partition
ΠHP = {U1,U2} of H can be decoded as 3-way net partitioningΠHP = {N1,N2,NS} of H as follows. N1

andN2 correspond to the internal nets of partU1 andU2 , respectively.NS corresponds to the external nets. Here,
we consider net-partitionΠHP = {N1,N2,NS} of H as inducing a GPVSΠGPV S = {V1,V2,VS} on its NIG
representationG , whereV1 ≡ N1 , V2 ≡ N2 , VS ≡ NS . Let AdjH(ni) denote the set of nets that share vertices
with net ni . Consider an internal netni of part U1 ,i.e., ni ∈ U1 . It is clear that we have eitherAdjH(ni) ⊆ N1 or
AdjH(ni) ⊆ N1∪NS . Recall that NIGG contains a vertexvi for each netni of H . So we have eitherAdjG(vi) ⊆ V1

or AdjG(vi) ⊆ V1∪VS in NIG G . In other words,AdjG(vi)∩V2 = ∅ . In the respectiveΠGPV S , this corresponds to
AdjG(V1) ∩ V2 = AdjG(V2) ∩ V1 = ∅ which in turn corresponds toAdjG(V1) ⊆ VS andAdjG(V2) ⊆ VS . Thus,VS

of ΠGPV S constitutes a valid separator of size|VS | = |NS | . Recall that in the GPVS problem, balancing is defined
on the vertex counts of partsV1 andV2 . Hence, the GPVS problem on NIGG can be described as an HP problem
according to the net-cut metric with balancing on the internal nets of partsU1 andU2 .

From a matrix theoretical point of view, letA be a matrix andH be its row-net hypergraph representation [5], the
NIG G would be the standard graph representation of matrixAAT . Hence, finding a doubly-bordered form of matrix
AAT (finding GPVS onG ) is equivalent to finding a singly-bordered form of matrixA (finding a net partition on
H ). Although this finding looks very impressive, it is not very useful on itself. For a general GPVS problem onG ,
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which is equivalent to finding a doubly-bordered form of associated matrix (sayZ ) of G , we should know a suitable
decomposition of matrixZ into AAT , where decomposition refers to the requirement thatZ and AAT have the
same sparsity patterns.
Nested Disection Ordering of Matrices of the formADAT

The solution of normal equations that arise in interior point methods for linear programming requires the factorization
of coefficient matrices of the formADAT , whereA is a rectangular constraint matrix andD is a diagonal matrix.
Here, we propose a HP-based nested dissection ordering for the ordering of matrixZ = ADAT . Nested dissection
ordering requires finding a doubly-bordered (DB) form of the matrix. In DB form, borders correspond to separatorS ,
and block-diagonals correspond toX andY parts of nested dissection as mentioned earlier. Nested dissection simply
orders rows/columns ofS after the rows/columns ofX andY . Together with the formulation of GPVS problem as
an HP problem, described in the previous section, we can construct an ordering ofZ by just recursively dissectingA .
That is, in each bisection ofA cutnets inNS correspond to separator vertices inS in the nested dissection.
Two-Clique Decomposition for General Nested Disection Ordering
Previous discussion relies on the assumption that there exists a decomposition ofZ into AAT such that nonzero
patterns ofZ and AAT are the same. However, in most of the applications this is not the case, that is,A is usually
unknown. Here, we propose a simple yet effective decomposition of symmetric matrices for HP-based nested dis-
section. LetG be the standard graph model representation of matrixZ . Our aim is to find a matrixA such thatZ
andAAT have the same sparsity patterns. In graph theoretical view, we are trying to find a hypergraphH such that
its NIG is G . Obviously the net set of the target hypergraphH is already identified by the definition of NIG. That
is, there must be a netni in hypergraphH corresponding to each vertexvi in G . The node set ofH is defined as
follows. There is a nodeuij in H corresponding to edgeeij ∈ E with the net listnets[uij ] = {ni, nj} . During the
construction of NIGG from a hypergraphH , each node ofH induces a clique among the vertices ofG that corre-
spond to nets incident to that node inH . It is clear that, with the proposed decomposition, each node ofH induces
distinct 2-cliques, therefore the proposed decomposition is referred to here as2-clique decomposition.

In matrix theoretical view, matrixA is the edge-incidence matrix of NIGG . That is, each row of matrixA
corresponds to a vertex inG . Each column of matrixA corresponds to an edge inG such that there are exactly two
nonzeros in each column representing the two end points of the edge. Note that the hypergraph mentioned in the
previous paragraph is the row-net representation of the edge-incident matrixA .
Results and Conclusion
We have implemented an HP-based nested disection ordering algorithm. The ordering algorithm leverages Ashcraft
and Liu’s works [3, 11]. We first do nested disections to construct decoupled block-diagonal submatrices. All of
those submatrices are ordered first with constrained minimum degree and then all separators are ordered together. Our
results show that, in general matrices hypergraph partitioning-based ordering produces comparable orderings with the
state of the art ordering tools, whereas for ordering matrices of the formZ = ADAT , it achieves 17% and 43% better
orderings than onmetis [10] and SMOOTH [2] in terms of operation count.
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[5] U. V. Çatalÿurek and C. Aykanat. Hypergraph-partitioning based decomposition for parallel sparse-matrix vector multiplica-

tion. IEEE Transactions on Parallel and Distributed Systems, 10(7):673–693, 1999.
[6] J. A. George. Nested dissection of a regular finite element mesh.SIAM Journal on Numerical Analysis, 10:345–363, 1973.
[7] A. Gupta. Watson graph partitioning package. Tech. Rep. RC 20453, IBM T. J. Watson Research Center, 1996.
[8] B. Hendrickson and R. Leland.The Chaco user’s guide, version 2.0. Sandia National Laboratories, 1995.
[9] B. Hendrickson and E. Rothberg. Effective sparse matrix ordering: just around the BEND. InProc. Eighth SIAM Conf.

Parallel Processing for Scientific Computing, 1997.
[10] G. Karypis and V. Kumar. MeTiS A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and

Computing Fill-Reducing Orderings of Sparse Matrices Version 3.0. University of Minnesota, 1998.
[11] J. W. H. Liu. On the minimum degree ordering with constraints.SIAM J. Sci. Statist. Comput., 10:1136–1145, 1989.

2


