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Solving Triangular Systems More Accurately and Efficiently
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Abstract: The aim of the proposed talk is to present a new algorithm that solves linear triangular systems
accurately and efficiently. By accurately, we mean that this algorithm should yield a solution as accurate as if it
is computed in twice the working precision. By efficiently, we mean that its implementation should run faster
that the existing algorithms with the same output accuracy.
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1 How to improve the result accuracy ?

When we perform computations with finite-precision arithmetic, i.e, with floating point arithmetic, the com-
puted values of the intermediate variables often suffer from the rounding errors introduced by each arithmetic
operator +,−,×, /,√. These rounding errors contribute to the inaccuracy of the results computed with numer-
ical algorithms.

With multiprecision libraries: To improve this accuracy, we sometines need to increase the working preci-
sion which is often the IEEE-754 double precision format. Fixed-length multiprecision librairies provide both
efficiency and precision to be interesting in scientific computing. Bailey’s double-double algorithms [6] are
used by the authors of [4] to implement efficiently the XBLAS library. These extended basic linear algebra
subroutines provide the same set of routines as the well known BLAS but allow intermediate computation in
extended precision. Double-double numbers implement this extended precision that improves the accuracy and
the convergence of some BLAS and LAPACK subroutines [1].

With targeted algorithms: Improving the computed result accuracy can be designed for a given algorithm. A
classic example of such targeted accuracy improvement is the summation of n floating point numbers : Knuth-
Kahan compensated summation, Kahan-Priest double compensated summation. . . (see [2, chap.4] for entries).
These highly accurate algorithms compute correcting terms which take into account the rounding errors accu-
mulated during the calculus. Since the propagation of these elementary rounding errors is tedious to describe for
large numerical algorithms, the CENA method provides an automatic linear correction of the global rounding
error together with a bound of the corrected accuracy [3]. This correction relies on well known results about the
elementary rounding errors in the arithmetic operators named error free transformations by Ogita et al. in [5].

Experimental results exhibit that the accuracy of a corrected result with the CENA method is of the order of
the condition number times the square of the working precision. Very recent results from Ogita et al. propose
the first proof of this kind of “twice the working precision” behavior for the summation and the dot product
algorithms [5].

2 An efficient improvement of the accuracy for triangular systems

The algorithm we propose here is an optimised instantiation of the CENA correction applied to the substitution
algorithm for triangular systems.

In this talk, we first explicit the correcting term the CENA method computes dynamically. This term represents
the global forward error generated by the substitution algorithm when solving a triangular system Tx = b.
Then we introduce a fast version of this corrected substitution algorithm that computes the expected accurate
solution in 0(n2) floating point operations, i.e., in the same theoretical complexity as the not corrected substitu-
tion algorithm.
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Modern floating point units and associated compilers are such that the actual overhead of the error free trans-
formation algorithms is measured to be about 2.5 times faster than its theoretical floating point complexity [5].
We compare the actual computing times of the proposed corrected algorithm with the reference implementation
of the XBLAS dtrsv_x routine. We experiment that the proposed algorithm is twice faster than the reference
time given by the XBLAS current implementation.

We also experiment both the classic substitution algorithm performed in double precision, the XBLAS dtrsv_x
and our corrected routine for a wide range of carefully generated very ill-conditioned systems: the Skeel condi-
tion numbers vary from 103 to 1045 (these huge condition numbers have a sense since here both T and b have
been designed to be exact floating point numbers). Next figure presents the relative accuracy | x̂ − xd|/|xd|
of the computed solution x̂ compared to the condition number range. We observe that both the XBLAS and
our corrected substitution algorithms exhibit the expected behavior: the relative accuracy is proportional to
the square of the double precision u. The full precision solution is computed as long as the condition number
is smaller than 1/u. Then the computed solution has an accuracy of the order cond ×u

2 for systems with a
condition number (cond) smaller than 1/u

2. At last, no computed digit remains exact for condition number up
to 1/u

2.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100000  1e+10  1e+15  1e+20  1e+25  1e+30  1e+35  1e+40  1e+45

re
la

tiv
e 

fo
rw

ar
d 

er
ro

r

condition number

u

1/u 1/u2

Double precision
Corrected algorithm

XBLAS (dtrsv_x)

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.

[2] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, second edition, 2002.

[3] Philippe Langlois. Automatic linear correction of rounding errors. BIT, 41(3):515–539, 2001.

[4] Xiaoye S. Li, James W. Demmel, David H. Bailey, Greg Henry, Yozo Hida, Jummy Iskandar, William
Kahan, Suh Y. Kang, Anil Kapur, Michael C. Martin, Brandon J. Thompson, Teresa Tung, and Daniel J.
Yoo. Design, implementation and testing of extended and mixed precision BLAS. ACM Transactions on
Mathematical Software, 28(2):152–205, June 2002.

[5] Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. Accurate sum and dot product. SIAM J. Sci.
Comput., 2005. (to appear).

[6] Xiaoye S. Li Yozo Hida and David H. Bailey. Algorithms for quad-double precision floating point arith-
metic. 15th IEEE Symposium on Computer Arithmetic, pages 155–162, 2001.

2


