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ABSTRACT:

The corner vortex shedding in solid rocket motors

also called VSA is studied in an academic

configuration with compressible unsteady simulation

and linear stability analysis. Lateral blowing impact

on the stability of the flow is analysed thanks to

parametric unsteady simulations by varying the flow

rate over the upper surface. The results clearly

show a stabilization of the flow when lateral blowing

increases. Linear stability analysis on local velocity

profiles enables to accurately reconstruct the mode

on a selected weakly unstable case, although the

frequency selection mechanism is not well captured.

The same analysis is performed on a stable case

and even if strong differences are noticed, linear

stability do not give a conclusion as clear as the

one obtained with numerical simulations. More

generally, these results show a stabilization effect

of the lateral blowing on corner vortex shedding and

the ability of the linear stability analysis to reproduce

and predict this mechanism.

1. INTRODUCTION

Pressure oscillations are a major issue in solid

rocket motors (SRM) and designing motors that

produce as small pressure oscillations as possible

represents an important industrial challenge.

For about 30 years, several studies have been

devoted to understand and characterize instability

mechanisms that trigger pressure oscillations.

Starting from the experimental observation that

the internal pressure oscillation frequencies are

close to the frequencies of the longitudinal acoustic

modes, one of the first method to analyse motor

stability, introduced by Majdalani and Flandro was

based on acoustics balance [29], [21]. However,

considering only acoustic appears to be insufficient

to explain the emergence of pressure oscillations

having frequencies that evolve in time [20].

Following pioneer works [38, 7, 19, 21], sources of

internal pressure fluctuations have been intensively

studied, especially in France [9, 36, 12, 3] in

the context of the Ariane 5 launcher. Vortex

shedding induced by hydrodynamic instabilities

appears as a possible source of pressure oscillation

and as proposed by Vuillot [39], three triggering

mechanisms can be identified: vortex shedding

induced by an obstacle, by a corner and a wall. This

latter mechanism called parietal vortex shedding

and induced by an intrinsic instability of the flow

has been the subject of extensive theoretical studies

[9, 24, 22, 23, 14, 6, 15, 28] based on linear

stability of the simplified Taylor-Culick flow model

[35, 17]. The good comparison of this approach

with pressure oscillations observed in subscale [13]

and in a real full scale motor [4] have definitively put

this intrinsic flow instability as a proven source of

pressure fluctuations and the knowledge acquired

enables to understand and predict correctly this

mechanism.

In the context of monolithic configurations, the

Corner Vortex Shedding, CVS also referred as VSA

[39] appears as a potential source of instability. This

instability can be generated when geometry exhibits

a propellant chamfered edge generating strong

shear flow in the cross-stream direction. Shear

flows are known to be prone to instabilities since

temporally or spatially growing waves are generated

along the stream and lead to the formation of

unsteady vortices. In the past 50 years, stability of

shear layers has been continuously studied and the

stability theory is today well established [18], [25],

[34]. However, because of headwall injections which

are characteristic of SRMs flows, velocity profiles

generated in the shear layer are quite different from

the ones of simple hyperbolic-tangent mixing layers

[30], [31]. The study of this particular mixing layer is

needed to better predict and understand CVS.

This work aims at performing unsteady simulations

of lateral blowing on a SRM shear layer. In

order to focus on CVS, the simulations are

performed in an academic configuration taking into



account only the shear region in a two dimensional

axisymmetric geometry. This configuration is

however representative in terms of dimensions,

velocity profiles, temperature and pressure of a real

motor.

This paper is organized as follows. First of

all the studied configuration and operating point

are defined. Then, after a quick presentation

of the unsteady simulation solver, the results

of the parametric study are presented showing

stabilisation of the mixing layer by lateral blowing.

Elements of linear stability theory are recalled in

section 5, followed by the analysis of an unstable

case in section 6. This study focuses first on

one axial position and then the 2D axial velocity

perturbation is reconstructed and compared to the

unsteady simulation results. Finally the same

analysis is performed on a stable case for qualitative

comparison and conclusion purposes.

2. CONFIGURATION

The geometry for the present study was chosen to

reproduce and isolate the CVS instability as it can

be found in a solid rocket motor.
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Figure 1. Schematic view of the configuration

As shown in Fig. 1, the geometry is a 2D

axisymmetric configuration composed of a cylinder

with injecting headwalls at an injection speed Vinj

of 10.2 m/s. This unrealistic injection velocity is

chosen to optimise computational time. Moreover

same results have been observed with an injection

velocity 10 times smaller. The driving parameter

of the instability is the velocity ratio between the

upper and the lower part of the mixing layer. The

channel includes a sharp section change with a step

height h equals to 0.115 m. The inlet radius R1

and the outlet radius R2 are respectively equal to

0.135 m and 0.25 m. The output of the domain is

located at 15.R2 away from the corner. To reduce the

computational domain, the well known Taylor-Culick

profile [35], [17], representative of flow induced by

headwall injection, is imposed over the boundary

condition noted INLET-TC on Fig. 1. Velocity

profiles are set to represent a 0.25 m long headwall

injection channel. Operating point parameters are

summarized in Tab.1.

General parameters

Temperature T 3500 K

Pressure P 50 bars

Propellant mass flow rate Q 50.82 kg/s/m2

Propellant gas parameters

Molar mass M 2.97× 10−2 kg/mol

Reference temperature T0 2324 K

Reference viscosity µ0 7.2× 10−5 kg/m/s

Heat capacity Cpg 2057 J/kg.K

Table 1. Operating point parameters

The mesh is composed of about 2.6 million

triangles. A quasi-constant space discretization of

∆x = 2.0.10−4 m is applied from the upstream inlet

to a distance of 3.R2 away from the corner. Then the

mesh is coarsened down to the outlet. Around 600

points are in the inlet radius R1 and about 13 points

in the shear layer.

3. THE UNSTEADY SIMULATION SOLVER

The unsteady simulations were performed with the

code AVBP [1], jointly developed by CERFACS

and IFPEN. AVBP, based on a cell-vertex finite

volume formulation, solves the fully compressible

Navier-Stokes equations on unstructured hybrid

grids. The main convective schemes are a

finite-volume Lax-Wendroff type scheme (LW)

and finite-element two-step Taylor-Galerkin scheme

(TTGC) [16]. These two schemes are respectively

2nd and 3rd order in time and space. The diffusive

scheme is a typical 2nd order compact scheme.

The simulations presented in this paper are

performed with the 2nd order convective scheme.

4. MODIFICATION OF THE FLOW FIELD

Parametric unsteady simulations were performed

with only one varying parameter, the mass flow rate

QP4 imposed over the upper boundary condition

noted INLET-P4 on Fig. 1. Mass flow rate QP2

and QP3 over surfaces INLET-P2 and INLET-P3

respectively are constant and equal to Q =
50.82 kg/m/s as referred in Tab. 1.

Starting from the nominal condition called R100 in

Tab. 2, where QP4 is equal to Q = 50.82 kg/m/s,

QP4 is decreased by steps of 10% until the case

R000 where no gas is injected through the surface.

The simulated cases with the corresponding values

of QP4 are summarized in Tab. 2.

The blowing impact can be qualitatively visualized

by vorticity fields in the axial plane presented for the

several blowing intensities on Fig. 2.

Theses results clearly show the stabilization of the
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Figure 2. Instantaneous vorticity fields for the cases R100 to R000



Case name QP4 [kg.m−2.s−1]

R100 50.82

R090 45.74

R080 40.16

R070 35.14

R060 30.12

R050 25.10

R040 20.08

R030 15.06

R020 10.04

R010 5.02

R000 0.00

Table 2. Test case matrix with varying mass flow

rate QP4.

shear layer when lateral blowing increases. Indeed,

as shown in Fig. 2, vortices first appear at a blowing

level of 20% of the nominal value (case R020). With

higher blowing intensity, the mixing layer seems to

be stable.

To measure the instability intensity, FFTs of axial

velocity signals are performed at a probe P0 located

at the black cross symbolized in Fig. 1.

As shown in Fig. 3, the case R030 corresponding to

Fig. 3(c) is the first case where peaks are present

in the FFT. The maximum amplitude in frequency

increases when lateral blowing decreases as

visualized for case R020 in Fig. 3(d), whereas only

noise is present for R050 and R040 respectively in

Fig. 3(a) and (b).

These results clearly confirm that increasing the

lateral blowing on the shear layer tends to stabilize

the CVS instability. It should be noted that in this

configuration, at nominal conditions corresponding

to case R100, no CVS is observed.
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Figure 3. FFTs of axial velocity signals recorded at P0 for cases (a): R050, (b): R040, (c): R030 and (d): R020

The frequency of the instability is quite dependent

on the blowing intensity, as shown in Fig. 4 where

the maximum amplitude in frequency is plotted for

the cases where an instability was present, namely

cases R030, R020, R010 and R000. The instability

frequency increases from 520 Hz for 0% blowing

(R000) to 760 Hz for 30% blowing (R030).
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Figure 4. Instability frequency evolution with lateral

blowing intensity.

5. LINEAR STABILITY ANALYSIS : CONCEPTS

AND VALIDATION

Numerical simulations have highlighted the stabilization

effect of lateral blowing on CVS in headwalls

induced flows. However, unsteady simulations do

not allow to clearly identify the regions of the flow or

the triggering mechanisms that are generating this

instability.

Physical insight into the causes of instability can

be obtained by performing linear stability analysis

of the time-averaged flow. This kind of analysis

has already been proven useful in academic

configurations like vortex shedding downstream a

cylinder [27], parietal vortex shedding in solid rocket

motors [9], [2], [14] as well as fuel injectors exhibiting



coherent structures in swirled jets [32], [26].

A local analysis formalism is used in this work,

meaning that the local stability behaviour is

computed at each axial position of the flow based

on local time-averaged velocity profiles at the given

axial position.

5.1. The linear stability theory and numerical

methods

In this approach the Navier-Stokes equations are

linearized around a steady axisymmetric base

flow. Then, each quantity Q can be decomposed

into a mean part Q̄ also called the base flow

and a fluctuating part q to be determined. For

an axisymmetric and incompressible flow, the

decomposed variables are defined by Eq. (1).

(Ux, Ur, Uθ, P )(x, r, θ) =(Ūx, Ūr, Ūθ, P̄ )(x, r) +

(ux, ur, uθ, p)(x, r, θ, t)
(1)

Following the parallel flow hypothesis, the base flow

is assumed to only depend on the radial coordinate

r. It should be noted that this hypothesis is not

fully satisfied here since the geometry and the

parietal injection imposed an axial dependence of

the base flow, significant at the proximity of the

corner, ignored here. However this assumption has

been successfully used in the stability study of the

VSP where good agreement between theoretical

and experimental results are found [37], [23].

Fluctuating quantities q are formulated using normal

mode decomposition given by Eq. (2).

q(x, r, θ, t) = q̂(r)ei(αx+mθ−ωt) (2)

In Eq. (2) q̂ is a complex function called amplitude

function, m is an integer representing the azimuthal

wave number and α and ω are generally complex

numbers.

In the case of a convective instability like the one

expected in the present mixing layer, using a spatial

analysis formalism is more relevant and is the one

chosen in this work. Therefore ω is a real number

and α = αr + iαi is a complex value. In this work

the azimuthal wave number m is set to zero since

only axisymmetric modes are studied in agreement

with the axisymmetric simulations presented above.

Eq. (2) can then be rewritten in Eq. (3).

q(x, r, θ, t) = q̂(r)e−αixei(αrx−ωt) (3)

In Eq. (3) the second exponential term is of norm

one and describes the wavy nature of the solution

for the fluctuation, αr being the wave number and

ω the circular frequency, with f = ω/2π being the

frequency itself. The first exponential in Eq. (3) is

real and reflects the amplification or the attenuation

of the perturbation with the distance x according to

the sign of αi and the propagation direction of the

unstable mode.

The problem now is to determine the amplitude

function q̂ as well as the frequency and complex

wave number α, so that perturbations given by Eq.

(3) satisfy the linearized Navier-Stokes equations

and boundary conditions. These conditions

constitute the dispersion relation defined by Eq. (4).

Except for very simple cases, this relation cannot be

analytically determined and is solved numerically.

F(Q̄, α, ω,m) = 0 (4)

After discretization the linearized equations can be

transformed into a generalized eigenvalue problem

as the one expressed in Eq. (5). X , defined by

Eq. (6) is a vector holding unknowns q̂j at each

discretization point j.

A.X = α.B.X (5)

X = [ûx, ûr, ûθ, p̂] (6)

The linearized equations are associated to boundary

conditions at the wall (r = R2, Eq. (7)) and at the

axis (r = 0, Eq. (8) with m = 0).

ûx(R2) = ûr(R2) = ûθ(R2) = 0 (7)

dûx

dr
(0) = ûr(0) = ûθ(0) = 0 (8)

Several methods can be used to solve an

eigenvalue problem but the one chosen is the

spectral collocation method [8] which consists in

decomposing the functions to discretize, here the

amplitude functions, on a polynomial basis. The

Tchebytchev polynomials are used associated to

Gauss-Lobatto disctretization points. More details

can be found in [8].

5.2. Validation

The linear stability solver described above has been

validated for instance the Taylor-Culick flow, for

which stability is nowadays well known and has

been the subject of several publications, including

[9, 10, 24, 23, 11, 6].

Tab. 3 presents the comparison of the eigenvalues

of the three most amplified modes obtained with the

solver to the reference values of [2].

Reference results [2] Solver results

Mode αr αi αr αi

1 6.095 -1.078 6.095 -1.078

2 3.326 -0.109 3.326 -0.109

3 2.601 0.132 2.601 0.132

Table 3. Eigenvalues comparison of the three most

amplified modes with reference values [2]

Results are equal, the difference being lower than

10−4, which validates the solver.



6. STABILITY ANALYSIS OF AN UNSTABLE

CASE

In this section the weakly unstable case R030
is analysed. The aim described above is to

evaluate if the local stability analysis enables first

to select the same instability frequencies as in

the unsteady simulation and second to capture the

spatial evolution of the selected mode.

6.1. Method of analysis

The following stability study is split into three parts.

In the first part, one axial position x0 = 0.04 m

away from the geometry corner is studied and the

computed dispersion curve is compared to the FFT

of the signal recorded at the same axial position x0.

The shape of the modulus |ûx(r)| and the phase

ϕûx
(r) of the eigenfunction ûx(r) defined by Eq.

(9) are also compared at the frequency instability

with the one found by dynamic mode decomposition

(DMD) analysis of the unsteady simulation solution

[33].

ûx(r) = |ûx(r)|e
iϕûx

(r) (9)

In the second part, dispersion curves are computed

for several axial positions leading to the determination

of the spatial amplification en of the perturbation at

the instability frequency.

en is the term that modifies the amplitude of the axial

velocity perturbation ux as defined in Eq. (10) with

m = 0 and t = 0.

ux(x, r, t) = |ûx(r)|e
nei(ϕαr

+ϕûx
(r)) (10)

n, called the n-factor represents the integration of

−αi over the upstream positions. The value of n at

(a) (b) (c) (d) (e)

Figure 6. Mean velocity profiles and gradients at x=0.04m as a function of radim = r/R2. (a),(b): axial and

radial velocity profiles; (c),(d): axial and radial velocity gradients with respect to the radial coordinate, (e): axial

velocity gradient with respect to the axial coordinate.

axial position x is defined by Eq. (11), x0 being the

first position studied.

n =

∫ x

x0

−αi(ξ)dξ (11)

The axial evolution of en is directly compared to the

axial evolution of the FFT magnitude given by the

simulation results.

In the last part, by combining the modulus |ûx(r)|e
n

and the phase ϕαr
+ϕûx

(r), defined in Eq. (10), the

2D perturbation is reconstructed. ϕαr
is the phase

introduced by the axial wave number αr integrated

over the previous positions as defined in Eq. (12).

ϕαr
=

∫ x

x0

αr(ξ)dξ (12)

The axial velocity perturbation reconstruction is

finally compared to the simulation result.

6.2. Study at one axial position x0

The first linear stability analysis is performed on

mean velocity profiles at the axial position x0 =
0.04m away from the geometry corner, represented

by the black line on the vorticity field in Fig. 5.

x0

X
Y

Figure 5. Location of the first stability analysis.

The mean velocity profiles and gradients at this

position are plotted in Fig. 6.



The radial coordinate is normalized by the radius

R2 = 0.25 m and the velocity profiles are normalized

by the axial velocity on the axis Ūxr=0 = 267 m/s at

this position. This high axial velocity is linked to the

high velocity injection chosen.

In Fig. 7 the FFT of the simulation signal at x0 is

compared to the computed evolution of the spatial

amplification −αi as a function of the perturbation

frequency f = ω/2π.

Figure 7. Comparison of the spatial amplification

−αi (red line with symbols) with the FFT of

the unsteady simulation signal (black line without

symbol) at x0 as a function of frequency.

As shown on Fig. 7, the stability analysis captures

well the frequency of the dominating mode at this

position. The unstable frequency range is however

larger in the stability analysis than in the unsteady

simulation where few frequencies are present.

A DMD analysis [33] of the simulation results

enables to compute the modulus and the phase of

the mode at the instability frequency of 720 Hz. This

modulus and phase can be compared to the ones

found by the stability analysis for a perturbation at

the same frequency. This comparison is shown in

Fig. 8.(a) for the modulus and in Fig. 8.(b) for the

phase. The amplitude of the modulus is scaled and

the phase is shifted with a constant value to match

the DMD results. As shown in Fig. 8 the stability

analysis captures remarkably well the shape of the

modulus and the phase of the visualized mode.

6.3. Amplification factor computation

The aim of this part is to evaluate the axial evolution

of the perturbation amplitude, called the n-factor

defined in Eq. 11. To do so, the dispersion curve is

computed for several axial positions from x0 = 0.04
m to x18 = 0.40 m with a step of ∆x = 0.02 m, as
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Figure 8. Comparison of the eigenvector modulus

(a) and phase (b) between stability analysis (red

line with symbols) and DMD of unsteady simulation

results (black line without symbol) at x0.

shown in Fig. 9.

Fig. 10.(a) shows all the dispersion curves

computed and Fig. 10.(b) shows the axial evolution

of en. As visualized in Fig. 10.(a), when going

downstream the dispersion curve flattens and the

most amplified frequency increases.

x18

Y
X

x0 Δx

Figure 9. Location of the performed stability

analysis.

This phenomenon is recovered in the evolution of

the exponential of the n-factor plotted in Fig. 10.(b).

The most amplified frequency is shifted from 720 Hz

for the first position x0 to 1060 Hz when the entire

domain is considered (from x0 to x18).

This frequency shift is not visible in the unsteady

simulation as shown on the FFT of signals at several

axial positions plotted in Fig. 11.

The local stability analysis induced by the quasi-

parallel approximation used may not be sufficient

to properly captured the frequency selection

mechanism. Indeed the corner in the geometry

imposed a strong axial dependence of the mean

flow at the proximity of the corner.
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Figure 10. (a): Evolution of αi for each axial

position from x0 to x18. The lighter the color line

the further the axial position. (b): Evolution of en

when integration domain increases. Line nX means

integration from x0 to xX .

The quasi-parallel hypothesis can be then contested

in this case. To outcome this limitation, a biglobal

method with no hypothesis on the base flow could

be used. This method outlined by [5] and applied

to the solid rocket motor flow [13], [14], [15] tends

to be more realistic than the local analysis even if in

the case of the parietal vortex shedding instability
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Figure 11. Comparison of the value of A0.e
n at the two maximum amplitude frequencies (red symbols) with the

FFT on simulation velocity signal. (black line without symbol). (a),(b),(c),(d),(e): respectively at x10, x12, x14,

x16, x18.

the quasi-parallel flow assumption gives good

results.

However, the amplitude evolution of the perturbation

at the unstable frequencies are well captured by the

local stability analysis as shown on Fig. 11, where

the red symbols represent the values of A0.e
n, A0

being a constant fixed to match the FFT amplitude

at the last position x18.

6.4. Perturbation reconstruction

The objective of this part is to reconstruct the 2D

field of axial perturbation ux(x, r, t) at the mode

frequency of 720 Hz.

The modulus evolution A0|ûx(r)|e
n is plotted in Fig.

12.(a). The shape and the amplitude evolution are

perfectly captured by the linear stability analysis.

The phase evolution ϕ(r) = ϕαr
+ ϕûx

(r) is plotted

in Fig. 12.(b). After normalization of the phase

eigenfunction ϕûx
(r), the phase of the perturbation

ϕ(r) is shifted by the same offset value fixed so that

phase matches at the last position x18 as visualized

on Fig. 12.(6b).

As shown in Fig. 12.(b) the shape of computed

phase is coherent with the one of the simulation

even if a deviation progressively grows.

Finally the full 2D reconstruction of the axial

perturbation ux(x, r, t) is performed and compared

to the axial velocity perturbation of the simulation

result.

As shown on Fig. 13, the reconstructed perturbation

is very close to the one of the simulation.

Linear stability thus is able to predict the shape and

the space-time evolution of the perturbation with

good accuracy.
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Figure 13. Comparison of the reconstructed axial

velocity perturbation from linear stability (a) and

the field of the axial velocity perturbation in the

simulation (b).

7. STABILITY STUDY OF A STABLE CASE

The same analysis is applied to the perfectly stable

case R080. Since the unsteady simulation exhibits

no unstable frequency, no amplified frequencies

should appear in the linear stability analysis.

However, weakly amplified frequencies are found as

illustrated by the n-factor evolution plotted on Fig.

14.

This amplification factor is smaller by a factor 10

compared to the one of the case R030 plotted on

Fig. 10.(b). This means that the perturbation will

be much less spatially amplified than in the previous

unstable case and may not be sufficient to sustain

an instability in the simulation.

The difference in the stability prediction between

the simulation and the local linear stability analysis

could also be an outcome of the quasi parallel

stability analysis limits.

However this analysis enables to capture the

tendency of stabilisation of the CVS by lateral

blowing.
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Figure 14. Evolution of en when integration domain

increases. Line nX means integration from x0 to xX .

8. CONCLUSIONS

Parametric unsteady simulations on an academic

case reproducing the CVS in solid rocket motors

have shown that lateral blowing has a strong impact

on the stability of the mixing layer. Increasing

blowing intensity tends to attenuate and even

suppress the CVS. This phenomenon has been

qualitatively observed on instantaneous vorticity

fields and quantitatively measured by axial velocity

signal analysis.

A local linear stability analysis was performed to

identify the triggering mechanisms of this instability

and confirm that the fluctuations are induced by an

intrinsic hydrodynamic instability of the shear layer.

An unstable case is first studied and results

show that the local formalism induced by the

quasi-parallel approximation may not be sufficient

to reproduce the frequency selection mechanism.

However, excellent results are obtained for the

prediction of the 2D axial velocity perturbation at the

correct frequency.

Stability analysis is finally performed on a stable

case and unlike the simulations, weakly amplified

frequencies are found. Nevertheless, the tendency

of stabilization by the lateral blowing found by the

simulation is recovered.

Even if the analysis reveals some limits, with this

powerful method the stabilization of the shear layer

with its principal characteristics obtained in the

unsteady simulations are recovered.
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