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Prevailing assumptions in Comp Geo
theory

� worst-case asymptotic complexity measures

unit cost of operations on a constant number of simple
objects

the real RAM model, infinite precision real arithmetic

general position, no degeneracies
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Question

given two lines

��� � ��� that intersect in a single point �,
does � lie on

��� ?
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Talk outline

background

robustness and precision
the CGAL project
arrangements

controlled perturbation

preliminaries
the case of circles
applications
further directions
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Robustness: the problematic assumptions

� infinite precision real arithmetic� general position

the two issues are intertwined: (near) degenerate
configurations incur precision problems

geometric algorithms: interplay between numerics and
combinatorics
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Interplay between numerics and
combinatorics, example # 1

convex hulls

[Kettner et al, ’04]
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Interplay, example # 2

Delaunay triangulations

4 Jonathan Richard Shewchuk

b

a

c

d

Figure 1: Top left: A Delaunay triangulation. Top right: An invalid triangulation created due to roundoff error.
Bottom: Exaggerated view of the inconsistencies that led to the problem. The algorithm “knew” that the
point b lay between the lines ac and ad, but an incorrect incircle test claimed that a lay inside the circle dcb.
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Robustness, approaches

exact computing
[Karasick et al], [Mehlhorn et al], [Yap et al],
[Brönnimann et al]; speedup: floating point filters
[Fortune-Van Wyk], [Shewchuk]; symbolic
perturbation schemes [Edelsbrunner-Mücke], [Yap],
[Emiris-Canny-Seidel]; leave in the degeneracies
[Burnikel-Mehlhorn-Schirra]; libraries CGAL, LEDA,
CORE, EXACUS, � � �
fixed precision approximation
[Greene-Yao], [Guibas et al], [Fortune], [Milenkovic],
[Sugihara et al], [H-Packer], � � �
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Implementing Computational Geometry
algorithms

C++gal (INRIA), PlaGeo, SpaGeo (Utrecht),
LEDA-Geometry (MPI Saarbrr̈cken), [XYZ GeoBench
(Zurich), � � � ]

large effort, requires unique expertise and more
research

1995: the CGAL kernel

1996: the official beginning of CGAL

1998: GALIA, a continuation of CGAL

2001: ECG

2005: ACS

CGAL development still goes on
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CGAL = Computational Geometry Algorithms Library

ETH Zurich

FU Berlin

Trier University

INRIA Sophia Antipolis

MPI Saarbrücken

Tel Aviv University

Utrecht University
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Arrangements (leitmotiv)

Example: an arrangement of lines

vertex

edge

face
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Arrangements, cont’d

an arrangement of a set S of geometric objects is the
subdivision of space where the objects reside
induced by S

possibly non-linear objects (parabolas), bounded
objects (segments, circles), higher dimensions
(planes, simplices)

numerous applications in robotics, molecular biology,
vision, graphics, CAD/CAM, statistics, GIS

have been studied for decades, originally mostly
combinatorics
Matoušek (2002) cites Steiner,1826
nowadays mainly studied in combinatorial and
computational geometry
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Exact geometric computing: pros and cons

pros

the truth
algorithms can be easily transcribed, up to the general

position assumption (this is the CGAL approach)

cons

requires special machinery (non-standard number
types); available only for limited types of geometric
primitives

ever improving but still slow compared with machine
arithmetic

exact numerical output may be huge, when at all
possible

requires handling degeneracies
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T1:

x= 28027/25243, y= 43613/18457, z= 14423/37273

x= 20353/2617, y= 26497/32299, z= 3673/63667

x= 55897/42403, y= 499/27767, z= 31253/10243

T2:

x= 53593/24763, y= 62501/63317, z= 11827/5693

x= 57143/65423, y= 40483/59447, z= 27739/62327

x= 57283/22027, y= 41231/45817, z= 9433/48673

T3:

x= 5693/48527, y= 11597/7757, z= 58367/44017

x= 2377/59471, y= 23831/3163, z= 57287/25343

x= 16657/46507, y= 57283/14783, z= 9437/6911

Intersection:

x (normalized rational)=

297428938184216477745466885306417207432716614825860310134480766082004

2660360261669891047833223434838758837012 / 83190866465021278698642152

774750081010 83902598620752970358356141334716771364757960126316537540

08326934339751
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Beyond rationals

the intersection of the line 	 
 � with the circle � � � 	 � 
 


� � � � � � � � � � ��� � � � � � � � � �
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Controlled perturbation

input: a set

�

of geometric objects (curves or surfaces),
and the floating point precision

goal: perturb

�

slightly,

� � � �

, such that

� all the predicates arising in the construction of� � � �

are computed accurately, and� � � � �

is degeneracy free

the description here is for arrangements, but the
approach is applicable more generally
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Controlled perturbation: preliminaries

a fixed precision approximation

resolution bound , perturbation bound (actual
perturbation)

degeneracy := potential degeneracy

no degeneracy no perturbation

otherwise identify and remove all degeneracies

predicates are accurately computed

trade-off between perturbation magnitude and
computation time
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Controlled perturbation, history

introduction of the method, spheres
in space, molecular modeling
[H-Shelton ’97]

polyhedral surfaces, swept volumes
[Raab-H ’99]

polygons [Packer ’02]

computing the resolution bound,
circles [H-Leiserowitz ’03]

RIC algorithms, Delaunay

�

s
[Funke-Klein-Mehlhorn-Schmitt ’05]

dynamic molecular surfaces
[Eyal-H ’05]

CSC 2005 Controlled Perturbation 20



Is it OK to perturb?

in many scientific and industrial applications the
model is approximate to begin with

considerable slack for perturbation: typically, the
maximum perturbation magnitude is well below the
(in)accuracy of the model

CSC 2005 Controlled Perturbation 21



Arrangements of circles
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Resolution bound, example

� �� � � � � � � � �� � � � � � ��� � 
 !� � !�

" 
 �� � � � � � � � �� � � � � � � � � !� � !� � �

outer tangency # " 
 $
the minimum distance to move a circle so that the
predicate will be safely evaluated to a non-zero value
(using fp)

CSC 2005 Controlled Perturbation 23



The scheme

input:

%� � %� � � � � � %'& by center coordinates and radii,
floating-point precision �

compute � � �

handle the circles one by one,
%�( � % �(

� �( 
 ) % �� � � � � � % �( *

, at the end of stage

+

,

� � �( �

is
degeneracy free and

% �( will not be moved again

if

%(, � does not induce any degeneracy with

� �( then% �( , � - 
 %( , � , otherwise
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Handling the current circle

given the resolution bound � the circle

%�( , � will be moved
by at most

� � � � . � from its original position such that no
two ‘features’ will be less than � apart

the new location of the center is chosen inside a

�

-disc
around the original center avoiding forbidden regions

δ

the arrangement of forbidden regions is more
complicated than the original arrangement, use
randomization
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Degeneracies in arrangements of circles

� outer tangency� inner tangency� three circles intersecting in a common point� (the centers of two intersecting circles are too close)
assertion: the centers are at least some fixed minimum
distance apart
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Forbidden regions

the forbidden placements for the current center (of

% ( )
with respect to a degeneracy with already handled
circles (

% �0/ )
132

1 465
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Forbidden regions vs. valid placements

the forbidden volume for all degeneracies:78 
 8 � 8 � 8:9 8<;

78 =?> @ � � 
 � ! � A @ ! � � �

!

- max radius, @ - input density ( 
 B at worst)

for efficiency we wish that the total area of the forbidden
regions will be less than half the area of the sampled
region (the

�

-disc)

> � � C � 78 � � C � @ � � 
 � ! � A @ ! � � �
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Deriving the resolution bound, method I

outer tangency predicate (reminder)" 
 �� � � � � � � � �� � � � � � � � � !� � !� � �
outer tangency # " 
 $

we use floating-point arithmetic, so we will computeD " 
 �� � E � � � � F �� � E � � � � E � !� F !� � �

fp error bounds [Funke, others]:G H G HG3IJK LNM OQP

R R S R S T

RU V H RW H V HR IJK W HV IJK X U YZ[ \ LNM O^]`_ LNM OQa b

Rdc V H Re H V HR IJK W HV IJK X U YZ[ \ LNM Of]g_ LNM Oha b

Rji V H Rk H V HR IJK k HV IJK X U LNM O^] U LNM OQa
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Resolution bound, method I, cont’d

it follows thatD"mln o 
 �p � � p F p � � p � � F �p � � p F p � � p � � F �p !� p F p !� p � �

+ B qsr 
 t

u 
 �wv oyx + B qsr x D"mln o, where � is the mantissa length

p " � D "p = u

if

D " C u

then

" C $

, and if

D "{z � u
then

"{z $

a potential outer tangency between two circles

%� and

%�

when

p D "p = u
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Resolution bound, method I, cont’d

p " � D "p = u � if p "p C � u

then

p D "p C u

� �� � � � � � � � �� � � � � � ��� � 
 !� � !� | �
after squaring both side, and rearranging terms we get:�� � � � � � � � �� � � � � � � � � !� � !� � � 
 | � � !� � !� � � � � �

the left-hand side is exactly

"
, so we can rewrite our

requirement, this time in terms of �, that is

p | � � !� � !� � � � � � p C � u
- maximum input number, � - mantissa length,� � # � for outer tangency

� � C 
 $x �v ox 
 �x �
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Deriving the resolution bound, method II

applied to the common intersection of three circles

step 1: use interval arithmetic and nextafter to derive a bound

} on the error in computing an intersection point
step 2: inflate a disk of radius } around each approximate
intersection point and require that the disks are disjoint using
method I

�9 C ~x � F � 
 $x �gv ox �� �x � F � ~x � � � �
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Implementation details

intersection points sorted along each circle

total running time

� � B �g� � � B �

start with

��� - 
 � �, if after a small number of guesses
no valid placement found then

� (, � - 
 � � ( , till
placement found or guaranteed

�
reached

multiplies the running time by

� �� � � �
� �
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Arrangements of circles: Experiments

grid flower rand sparse

rand 100 rand 1000 rand 2000 rand 10000
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Experiments, cont’d

on an Intel Pentium III 1 GHz with 2 GB RAM (Linux
Redhat 7.3, gcc 2.95.3), time in seconds

name n max radius max coord avg pert max pert time

grid 320 10 140 0.1122 0.6320 0.114

flower 40 100 100 0.8819 2.3360 0.132

rand sparse 40 20 100 0.0424 0.0493 0.002

rand 100 100 49 100 0.0597 0.4017 0.130

rand 1000 1000 100 1000 0.0497 0.3994 0.556

rand 2000 2000 100 1000 0.1815 1.0856 2.804

rand 10000 10000 35 1000 0.3412 1.4527 9.478

Name #vertices #halfedges #faces

rand 10000 346954 1388506 347301

CSC 2005 Controlled Perturbation 35



Arrangements of circles, demo
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Alternative view of CP

controlled perturbation moves the original input so that if
the algorithm is run on the perturbed input with fixed
precision floating point filter, the filter will always succeed
and will never have to resort to higher precision or exact
computation
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Analysis?

the method can be safely implemented with hardly any
analysis, but with no guaranteed perturbation bound

with analysis:

(i) given a desired bound

�
one can determine the

necessary fp precision �, or

(ii) given the desired precision, one can bound the
maximum perturbation magnitude
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Molecular surfaces

sparse arrangement of spheres
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Decomposition related degeneracies

partial decomposition

choosing a unique pole direction � tremendous
computation burden
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Dynamic maintenance of molecular
surfaces

speedy update of the surface in Monte Carlo type simulations,

where a small number of degrees of freedom changes at a step
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Dynamic maintenance, perturbation

perturb as few atoms as possible at each step

always perturb from exact placement in local frame

avoid accumulating transformation errors by adding
up the rotation angles and then computing the
transformation
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Polyhedral surfaces and approximate
swept volumes

no longer fixed-size basic entities

numerous types of degeneracies
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Randomized incremental construction and
Delaunay triangulations

controlled perturbation is suitable for randomized
incremental construction of geometric objects with little
effect on the running time (under reasonable
assumptions)

concrete example: planar Delaunay triangulations — no
construction of new geometric objects

standard vs. lazy perturbation: standard analyzed, lazy
(as we saw for circles) results in smaller perturbation
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Controlled perturbation, summary

a fixed precision approximation method, actual (not symbolic)

perturbation; justified in many applications

guarantees robustness while using floating-point arithmetic

for circles: (i) about 40 times faster than state-of-the-art exact

arithmetic, (ii) separation bound for same size input numbers

requires � �� �

bits

no degeneracies � no perturbation

otherwise removes all degeneracies (good for exact

computation as well)

trade-off between the magnitude of perturbation and the time of

computation

easy to program

less easy to analyze: requires special analysis in each case
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Further work

additional types of arrangements and other
geometric structures

improve the bounds

dynamic bounds

automatic analysis
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THE END
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