Parallel Symbolic Factorization for Sparse LU Factorization
with Static Pivoting

L. GRIGORI' J.W.DEMMEL? X.S.LI?

February 20, 2005

LINRIA Rennes, Campus Universitaire de Beaulieu, Avenue du General Leclerc
Rennes, 35042, France. email: Laura.Grigori@irisa.fr
2U.C. Berkeley, 787 Soda Hall,.
Berkeley, CA 94720-1776, USA. email: demmel@cs.berkeley.edu
3 Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 5 0F-1650
Berkeley, CA 94720-8139, USA. email: XSLi@Ibl.gov

In this paper we consider a direct method to solve a sparse unsymmetric system of
linear equations Ax = b, which is the Gaussian elimination. This elimination consists in
explicitly factoring the matrix A into the product of L and U, where L is a unit lower
triangular matrix, and U is an upper triangular matrix, followed by solving LUz = b one
factor at a time. One of the main characteristics of the sparse LU factorization is the
notion of fill-in. This notion denotes an element that was zero in the original matrix A,
but becomes nonzero during the factorization. As these fill-ins can be computed without
referring to the numerical values of the matrix, and to be able to allocate memory and to
organize computations before calculating the numerical values of the factors, the resolution
of a sparse system is divided into several phases. We present here the specific phases of
SuperLU_DIST [4], a widely used algorithm to solve large sparse unsymmetric systems on
distributed memory computers. The first step consists in choosing a permutation matrix P;
and diagonal matrices D1 and Ds so that Py Dy ADs has large entries on the diagonal. This
helps assure accuracy of the final solution. The second step orders equations and variables
by choosing a permutation matrix P> so that the factors L and U of P2T PyD1ADy Py are
as sparse as possible. The third step performs a symbolic analysis, that is it identifies the
locations of nonzero entries of L and U. And finally, the fourth step computes the numerical
values of the factors L and U.

We discuss the design and the implementation of a memory scalable symbolic factoriza-
tion algorithm for unsymmetric matrices on distributed memory machines. Its integration
in SuperLU_DIST will transform this solver into a fully parallel solver. Earlier work has
addressed the parallelization of the numerical factorization (step 4 in SuperLU), because
its complexity is generally of higher order compared to the other steps. This is now a
well understood problem and the algorithm implemented in SuperLLU proved to be highly
parallel and efficient. Techniques were proposed for computing fill-reducing ordering in
parallel (step 2 in SuperLU), and we will review them briefly later in this section. More
recent research focused on the development of efficient parallel algorithms for permuting
large entries on the diagonal (step 1 in SuperLU). All these algorithms use distributed data
structures, and in particular the input matrix A is distributed over the processors. They
offer an overall good scalability. This includes memory scalability, i.e. if both the problem
size and the number of processors is increased by the same factor, then the same amount
of memory is used per processor.



The symbolic factorization is the only step that is sequential and that needs the input
matrix to reside on one processor. Thus it currently represents a memory bottleneck.
This paper presents the design and the implementation of a parallel symbolic factorization
algorithm, which is suitable for general sparse unsymmetric matrices. Its main goal is to
decrease the memory requirements of the symbolic factorization step.

From an algorithmic point of view, Rose and Tarjan [5] showed that the symbolic fac-
torization problem is related to the transitive closure problem. That is, any algorithm that
computes the fill-in for a specific ordering can be used to compute the transitive closure of
a graph.

The challenge in formulating a scalable parallel algorithm lies not only in the small
amount of computation to be distributed among processors, but also in the sequential
data dependency. The relation to the transitive closure algorithm implies that an improved
algorithm for fill-in computation would give an improvement over the best transitive closure
algorithms. Since the parallelization of the transitive closure problem has been thoroughly
studied, it seems unlikely that there is an easy way to find a formulation of the symbolic
factorization, in which the coarse grain parallelism would be inherent.

Guided by this observation, our goal is to develop an algorithm that provides memory
scalability. Speedup does not play the principal role in this development, but our purpose
is to obtain enough speedup to prevent this step from being a computational bottleneck in
a parallel solver. For this, the algorithm exploits two types of parallelism. The first type
of parallelism relies on the usage of a graph partitioning approach to reduce the fill-in. In
particular, the partition of the matrix is suitable for parallel execution. The second type
of parallelism is based on a block cyclic distribution of the data, a standard technique in
parallel scientific computing.

The choice of relying on a graph partitioning approach is in accordance with the state of
the art in the parallelization of reordering techniques. These techniques fall into two basic
categories. One consists in using a local strategy to minimize the amount of fill-in, and the
second one consists in using a graph partitioning approach to permute the matrix to some
particular form and so confining the fill-in.

The algorithms belonging to the first category proved to be difficult to parallelize. The
minimum degree ordering is one such example. This algorithm minimizes at each elimination
step the fill that can be introduced locally, without considering the effects on the later steps.
The parallelization of one of its variants is discussed for example by Chen et al [1]. They
have designed a parallel algorithm for shared memory machines, and they have observed a
limited speedup. As main sources of inefficiency, they discuss lack of parallelism and load
imbalance.

Nested dissection is an algorithm that belongs to the second category. The key concept
is the computation of a vertex separator, that splits the matrix into two disconnected parts.
The variables corresponding to the first part are ordered, followed by those of the second
part, and finally by those of the separator. The disconnected parts can be themselves further
divided by the computation of new separators, with the recursion continuing to any depth.
The main advantage of this partitioning is that the form of the matrix is suitable for parallel
execution. Following a similar graph partitioning approach, the multilevel schemes [2, 3]
proved to be well parallelized on distributed memory machines, while producing comparable
quality partitioning to the sequential techniques.

The above discussion has outlined the advantages of using a graph partitioning approach
in a fully parallel solver. This motivates our choice to rely on a corresponding partitioning
of the input matrix in our parallel algorithm.

We will first review several sequential symbolic factorization algorithms. Then we will
discuss the parallel symbolic factorization algorithm and we will present the experimental
results obtained when applying the algorithm on real world matrices.



References

[1] T.-Y. Chen, J. Gilbert, and S. Toledo. Toward an efficient column minimum degree code for
symmetric multiprocessors. Proceedings of the 9th SIAM Conference on Parallel Processing for
Scientific Computing, 1999.

[2] B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs. Proceedings of
SuperComputing, 1995.

[3] G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning and sparse
matrix ordering. Journal of Parallel and Distributed Computing, 48(1):71-95, 1998.

[4] X. Li and J. Demmel. SuperLU_DIST: A Scalable Distributed-memory Sparse Direct Solver for
Unsymmetric linear systems. ACM Transactions on Mathematical Software, 29(2), 2003.

[5] D. J. Rose and R. E. Tarjan. Algorithmic aspects of vertex elimination on directed graphs.
SIAM J. Appl. Math., 34(1):176-196, 1978.



