
MINIMIZING OPERATIONS COUNTS AND MAXIMIZING DATA
LOCALITY FOR EFFICIENT DERIVATIVE CODES IN AUTOMATIC

DIFFERENTIATION∗

ANDREW LYONS† AND JEAN UTKE‡

Automatic differentiation (AD) [4], a technique for the accurate and efficient
computation of derivative information, plays an important role in areas such as opti-
mization and data assimilation. We consider the efficiency of Jacobian computations
performed by generated code. Fully exploiting the associativity of the chain rule yields
the combinatorial problem of minimizing an operations count as an efficiency measure
[3]. Solving this combinatorial problem creates savings in terms of this measure. How-
ever, these savings do not always translate into runtime improvements, in particular
when the generated code is pushed through an optimizing compiler; one suspects the
lack of data locality as a slowing effect. Because of the complexity of the AD code
transformation itself, currently no AD tool attempts to adapt this transformation
toward specific optimizing compiler and hardware combinations. Only recently have
attempts been made to develop a generic heuristic to improve data locality in the
code generated by the EliAD tool [2].

We present the data locality concept in the context of the code generation from
so-called vertex, edge, or face elimination as implemented in the AD tool OpenAD [6].
We introduce a variety of generic heuristics and, using application examples, compare
the impact of data locality vs. minimizing the operations count in the presence of
compiler optimization.

1. Locality Considerations for Jacobian Code. Consider the application of
AD for computing the Jacobian of a vector function F : IRn → IRm that is imple-
mented as a computer program. As a simple example, let F : IR2 → IR2 be defined as
y1 = sin(x1 ∗ (x1 ∗x2)), y2 = cos(x1 ∗ (x1 ∗x2)). We begin by using the code for F in
Fig. 1.1 (a) to construct the computational graph G = (V,E) as shown in Fig. 1.1 (b).

v3 = (v1 ∗ v2)
v4 = (v1 ∗ v3)
v5 = sin(v4)
v6 = cos(v4)

1 2

3

4

5 6

c31 = v2

c32 = c43 = v1

c41 = v3

c54 = cos(v4)
c64 = − sin(v4)

1 2

4

5 6

1 2

5 6 c41 = c41 +c43 ·c31

c42 = c43 · c32

c51 = c54 · c41

c52 = c54 · c42

c61 = c64 · c41

c62 = c64 · c42

(a) (b) (c) (d) (e) (f)

Fig. 1.1. (a) Code for F , (b) G, (c) code for the cji, (d) G′, (e) G′′, (f) accumulation code

G is a directed acyclic graph whose vertices v1, v2 correspond to the n = 2 input
variables, v5, v6 to the m = 2 output variables, and v3, v4 to the intermediate values
in the evaluation of F . The local partial derivatives cji = ∂vj

∂vi
may be seen as labels

on the respective edges (i, j) ∈ E and are computed by code as in the example in

∗Abstract for the SIAM Workshop on Combinatorial Scientific Computing (CSC05)
† Department of Electrical Engineering and Computer Science, Vanderbilt University, 2201 West

End Avenue, Nashville, TN 37235, USA (andrew.m.lyons@vanderbilt.edu)
‡Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Av-

enue, Argonne, IL 60439, USA (utke@mcs.anl.gov)

1



Fig. 1.1(c). The combinatorial problem is minimizing the number of fused multiply-
add operations during the accumulation of F ′ as the application of the chain rule
where incident edge labels are multiplied and labels of parallel edges are added. The
problem can be represented by purely structural vertex or edge elimination in G or
face elimination in the corresponding directed line graph [5] and is conjectured to be
NP-hard. In the example we show in Fig. 1.1(f) the code resulting from eliminating
vertices 3 (see Fig. 1.1(d)) and 4 (see Fig. 1.1(e)). The last four assignments in
Fig. 1.1(f) representing the edge labels of the bipartite G′′ in Fig. 1.1(e) are the
entries of F ′. In a small example as the one shown in Fig. 1.1(f) there are not many
choices but we consider larger examples with hundreds of edges.

The complexity of the minimization problem requires the use of heuristics [1]. We
introduce the code generation controlled by sequence of heuristics as implemented in
the AD tool OpenAD. The first stage of addressing data locality is within the accu-
mulation code. We introduce basic data locality heuristics, such as so-called sibling
degree, for the code generation in the context of vertex, edge, and face elimination.
Runtime measurements for practical examples illustrate the relevance of giving either
the data locality or the operations count minimization preference in the code gen-
eration. In particular, we analyze the effect of the data locality heuristic with and
without subsequent compiler optimization.

The second stage is the data locality, not just within the accumulation code (in
the example Fig. 1.1(f)) but in relation to the computation of the local partials and
the function evaluation code itself (in the example Fig. 1.1(a) and (c)). We compare
Jacobian accumulation code introduced above with code that performs preaccumula-
tion only at a statement level.

REFERENCES

[1] A. Albrecht, P. Gottschling, and U. Naumann. Markowitz-type heuristics for computing Jacobian
matrices efficiently. In ICCS 2003, volume 2658 of LNCS, pages 575–584, Berlin, 2003.
Springer.

[2] Shaun A. Forth, Mohamed Tadjouddine, John D. Pryce, and John K. Reid. Jacobian code
generated by source transformation and vertex elimination can be as efficient as hand-coding.
ACM Trans. Math. Softw., 30(3):266–299, 2004.

[3] A. Griewank and S. Reese. On the calculation of Jacobian matrices by the Markovitz rule. In
G. Corliss and A. Griewank, editors, Automatic Differentiation: Theory, Implementation,
and Application, pages 126–135, Philadelphia, 1991. SIAM.

[4] Andreas Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differen-
tiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia, PA, 2000.

[5] U. Naumann. Optimal accumulation of Jacobian matrices by elimination methods on the
dual computational graph. Math. Prog., 3(99):399–421, 2004. published online at
www.springerlink.com.

[6] U. Naumann, J. Utke, and A. Walther. An introduction to using and developing soft-
ware tools for automatic differentiation. In P. Neittaanmäki, T. Rossi, S. Koro-
tov, E. O nate, J. Périaux, and D. Knörzer, editors, Proceedings of the European
Congress on Computational Methods in Applied Sciences and Engineering (ECCO-
MAS 2004), Jyväskylä, Finland, 2004. University of Jyväskylä. published online at
http://www.mit.jyu.fi/eccomas2004/proceedings/pdf/702.pdf.

2


