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The clustering problem is the task of assigning each document in a collection
to clusters of similar documents. The clustering process does not begin with
pre-specified categories; rather it is the purpose of the clustering algorithm to
discover natural categories in the collection of documents that it processes. We
assume that the initial data for the clustering algorithms consists of a similarity
matrix S = [ sij | i, j ∈ D ] where D is the set of documents and sij is a measure
of the similarity of documents i and j. Typically this matrix is obtained from
a transformed word–document matrix W by S := WT W .

A variety of methods have been developed for clustering problems, such as
the k-means method and its variants [4, 6]. These methods produce answers that
are typically very dependent on the initial data, or on the order in which doc-
uments are “seen” by the algorithm. A recent method that has been proposed
is based on the computation of eigenvectors which is called the MinMaxCut
algorithm proposed by Ding et al. [3], which does not have this defect, which is
also very accurate in clustering experiments [2, 3]. However, these algorithms
tend to become very expensive. In this abstract we develop an algorithm that
retains and even improves on the accuracy of their method, while substantially
reducing its cost.

Clustering tasks bear a strong resemblance to graph partitioning problems
[7, 1, 5], and similar matrix eigenvalue/eigenvector algorithms can be used for
graph partitioning problems. Since the quality of a cluster (the ratio of correctly
assigned documents to the total number of documents) is the main objective in
clustering, but not in graph partitioning, more stringent algorithms are needed
to obtain good results for clustering than for graph partitioning. Nevertheless,
some ideas developed for graph partitioning can be used for clustering algo-
rithms.

The two-way MinMaxCut aims to approximately minimize JMMC(A,B) :=
s(A,B)/s(A,A) + s(A,B)/s(B,B) where s(X, Y ) =

∑
i∈X, j∈Y sij and {A, B}

is the partitioning D. The continuous relaxation is equivalent to the finding the
second smallest eigenvalue λ of (D − S)q = λDq, with D = diag(d1, d2, · · · , dn)
and di =

∑
j sij .

The new algorithm that we have developed uses a hierarchical aggregation
scheme to create a collection of successively coarser approximations to the orig-
inal clustering problem. At the coarsest level the continuous relaxation of the
original objective function is minimized by means of an eigenvalue/eigenvector
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problem. Since the coarsest problem has a greatly reduced number of nodes
compared to the original clustering problem, the cost of solving the eigen-
value/eigenvector problem is made much less significant.

Simply taking the clusters on the coarsest level to create the clusters on
the original level results in significantly poorer clusters. So after each time the
algorithm goes from a coarser to then next finer level, the coarse level nodes in
each cluster are disaggregated, but then we also use a local refinement strategy
similar to the Kernighan–Lin algorithm to improve accuracy using the given
objective function as a measure of quality.

The computational results for this algorithm are very encouraging.
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