
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Parallel Hypergraph Partitioning
for Scientific Computing

Erik Boman, Karen Devine, Robert Heaphy, Bruce Hendrickson
Sandia National Laboratories, Albuquerque

Umit Çatalyürek
Ohio State University, Columbus

Rob Bisseling
Utrecht University, The Netherlands

Graph & hypergraph partitioning
• Applications in scientific computing:

– Load balancing
• minimize communication

– Sparse matrix-vector product
– Decomposition for LP
– Matrix orderings
– Parallel preconditioners

• Graph partitioning
– Commonly used, but has deficiencies

• Doesn’t accurately represent communication volume
• Not suitable for non-symmetric & rectangular matrices

Hypergraph partitioning
• Hypergraph partitioning

– More powerful than graph model
• A hyperedge connects a set of vertices

– Represents communication volume accurately
• Aykanat & Catalyurek (’95-’99)

• Problem definition:
– Given hypergraph H=(V,E’) and integer k

• where E’ is a set of hyperedges
– Partition V into k disjoint subsets

• Such that each subset has (approx.) same size and
• Number of hyperedges cut between subsets is minimized

(scaled by number of parts)
• NP-hard

– But fast multilevel heuristics work well

Graph Partitioning vs.
Hypergraph Partitioning

Assign equal vertex weight while
minimizing hyperedge cut weight.

Assign equal vertex weight while
minimizing edge cut weight.

Hyperedge cuts accurately
measure communication volume.

Edge cuts approximate
communication volume.

Hyperedges: two or more vertices.Edges: two vertices.

Vertices: computation.Vertices: computation.

Hypergraph Partitioning
Kernighan, Alpert, Kahng, Hauck, Borriello,

Aykanat, Çatalyürek, Karypis, et al.

Graph Partitioning
Kernighan, Lin, Schweikert, Fiduccia,

Mattheyes, Pothen, Simon, Hendrickson,
Leland, Kumar, Karypis, et al.

A A

Hypergraph Partitioning
• Several serial hypergraph partitioners available.

– hMETIS (Karypis) – PaToH (Çatalyürek)
– Mondriaan (Bisseling)

• Parallel partitioners needed for large and dynamic
problems.

– Zoltan-PHG (Sandia) – ParKway (Trifunovic)

• Predicition:
– Hypergraph model and partitioning tools will eventually replace

graph partitioning in scientific computing
• Except when partitioning time is important and quality matters less

1 2

3

45

6

Matrix Representation
• View hypergraph as matrix (Aykanat & Çatalyürek)

– We use row-net model:
• Vertices == columns
• Edges == rows

• Ex: 1D partitioning of sparse matrix (along columns)

x

x**y

x****y

x***=y

x**y

x***y

Sparse Matrix-Vector Product
•Matrix-vector product

– Important in scientific computing
– Iterative methods

•Communication volume associated with edge e:
Ce = (# processors in edge e) - 1

•Total communication volume :

**y

****y

***=y

**y

***y

∑=
e

eCV

XXXXXX()

Sparse Matrix Partitioning
•1D rows or columns:

– hypergraph partitioning
(Aykanat & Catalyurek)

•2D Cartesian
– Multiconstraint h.g.part.

(Catalyurek & Aykanat)

•2D recursive:
– Mondriaan (Bisseling &

Vastenhouw)
– Non-Cartesian
– Lower comm. volume

•Fine-grain model:
– Hypergraph, each nonzero

is a vertex (Catalyurek)
– Ultimate flexibility

Courtesy: Rob
Bisseling

Zoltan Toolkit: Suite of
Partitioning Algorithms

Recursive Coordinate Bisection
Recursive Inertial Bisection

Space Filling Curves
Refinement-tree Partitioning

Octree Partitioning

Graph Partitioning
ParMETIS , Jostle

Hypergraph Partitioning
NEW!

Zoltan Hypergraph Partitioner
• Parallel hypergraph partitioner

– for large-scale problems
– distributed memory (MPI)

• New package in the Zoltan toolkit
– Available Fall 2005
– Open source; LGPL

Data Layout
•2D data layout within hypergraph
partitioner.

– Does not affect the layout returned to the
application.

– Processors logically (not physically)
organized as a 2D grid

– Vertex/hyperedge communication limited
to only processors (along
rows/columns)

– Maintain scalable memory usage.
• No “ghosting” of off-processor neighbor

info.
• Differs from parallel graph partitioners and

Parkway (1D).
– Design allows comparison of

1D and 2D distributions.

p

Recursive Bisection
• Recursive bisection approach:

– Partition data into two sets.
– Recursively subdivide each set

into two sets.

– We allow arbitrary k (k ≠ 2n).
• Parallelism:

– Split both the data and processors
into two sets;
subproblems solved independently
in parallel

… …

Coarse HG

Initial HG Final Partition

Coarse Partition

Contraction Re
fin

em
en

t

Coarse
Partitioning

Multilevel Scheme
• Multilevel hypergraph partitioning (Çatalyürek, Karypis)

– Analogous to multilevel graph partitioning
(Bui&Jones, Hendrickson&Leland, Karypis&Kumar).

– Contraction: reduce HG to smaller representative HG.
– Coarse partitioning: assign coarse vertices to partitions.
– Refinement: improve balance and cuts at each level.

Multilevel Partitioning V-cycle

Contraction
• Merge pairs of “similar” vertices: matching

– Currently no agglomeration of more than 2 vertices
• Greedy maximal weight matching heuristics

– Matching is on a related graph (edges = similarities)
– Maximum weight solution not necessary

• We use
– Heavy connectivity matching (Aykanat & Çatalyürek)

• Inner-product matching (Bisseling)
• First-Choice (Karypis)

– Match columns with greatest inner product ⇒vertices
with most shared hyperedges

Parallel Matching in 2D Data Layout
• On each processor:

– Broadcast subset of vertices (“candidates”)
along processor row.

– Compute (partial) inner products of received
candidates with local vertices.

– Accrue inner products in processor column.
– Identify best local matches for received

candidates.
– Send best matches to candidates’ owners.
– Select best global match for each owned

candidate.
– Send “match accepted” messages to

processors owning matched vertices.
• Repeat until all unmatched vertices have

been sent as candidates.

Coarse Partitioning
• Gather coarsest hypergraph to each
processor.

– Gather edges to each processor in
column.

– Gather vertices to each processor in row.
• Compute several different coarse
partitions on each processor.

• Select best local partition.
• Compute best over all processors.
• Broadcast best partition to all.

Refinement
• For each level in V-cycle:

– Project coarse partition to finer
hypergraph.

– Use local optimization (KL/FM) to
improve balance and reduce cuts.

• Compute “root” processor in each processor
column: processor with most nonzeros.

• Root processor computes moves for
vertices in processor column.

• All column processors provide cut
information; receive move information.

– Approximate KL/FM
• Exact parallel version needs too much

synchronization

Results
•Cage14: Cage model of DNA
electrophoresis (van Heukelum)

– 1.5M rows & cols; 27M nonzeros.
– Symmetric structure
– 64 partitions.

•Hypergraph partitioning reduced
communication volume by 10-20%
vs. graph partitioning.
•Zoltan much faster than ParKway

0

500

1000

1500

2000

p=1 p=4 p=16 p=64

Hypergraph cuts

ParKway
Zoltan-PHG
ParMetis

Time

1

10

100

1000

10000

p=1 p=4 p=16 p=64

se
c.

Zoltan-PHG Parkway ParMetis

More Results
•Sensor placement – IP/LP
model

– 5M rows, 4M columns
– 16M nonzeros

•ParKway ran out of memory
– 1d with ghosting, not

scalable

0
200
400
600
800

1000
1200
1400
1600

p=1 p=4 p=16 p=64

se
c.

0
0.2

0.4
0.6
0.8
1

1.2
1.4

Zoltan time Zoltan cuts

Future Work
• Increase speed while maintaining quality.

– Heuristics for more local, less expensive matching
– Better load balance within our code
– K-way refinement?

• More evaluation of current design.
– 1D vs. 2D data layouts

• Incremental partitioning for dynamic applications.
– Minimize data migration.

• Multiconstraint partitioning
• Interface for 2D partitioning (sparse matrices)

• Watch for release in Zoltan later this year!

