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Introduction
Let

F =
(

f1 f2 ... fm
)T

be a mapping F : ℜn →ℜm. Assume that F is continuously differentiable in the domain
of interest and let F ′(x) denote the Jacobian matrix of F at x.

Given vectors s ∈ℜn and w ∈ℜm, we can compute

b = F ′(x)s via one forward pass of automatic differentiation (AD).

cT = wT F ′(x) via one reverse pass of AD.
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Assumptions
• Jacobian matrix is sparse

• The sparsity pattern of the Jacobian matrix is known a priori and independent of
the actual values of x.
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Exploiting Sparsity - Curtis, Powell and Reid (1974)
Let F ′(x)≡ A,

j l

A =
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i2

k2
i3

k3
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ai2 l

ak2 j

ai3 l

ak3 j
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0
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0
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.
.

b =

0
ai1 j

ak1 l

ai2 l

0
0

ak2 j

ai3 l

0
0

ak3 j

Columns j and l are structurally orthogonal i.e. there does not exist a row index i for
which both ai j 6= 0 and ail 6= 0. Determine the unknowns in columns j and l of matrix
A from the product As = b (obtained via one forward pass).
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Examples
Partition the columns of A into structurally orthogonal groups of columns,

A =




×
× ×
× ×
× ×
× ×




, S =




1 0

0 1

0 1

0 1

0 1




Partition the columns of AT into structurally orthogonal groups of columns,

A =




× × × × ×
×

×
×

×




, W T =

[
1 0 0 0 0

0 1 1 1 1

]
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The Arrowhead Example

A =




× × × × ×
× ×
× ×
× ×
× ×




We need 5 matrix-vector multiplications either by forward or by reverse AD.
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Bi-directional Determination of Sparse Jacobian Matrices
Obtain vectors s1,s2, ...,spc and w1,w2, ...,wpr such that matrix-vector products

bi = Asi, i = 1,2, ..., pc or B = AS

and the vector-matrix product

cT
j = wT

j A, j = 1,2, ..., pr or CT = W T A

determine the m×n matrix A uniquely.
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Computing the Arrowhead Matrix

A =




× × × × ×
× ×
× ×
× ×
× ×




,S =




1 0

0 1

0 1

0 1

0 1




,W T =
[

1 0 0 0 0
]

Two forward passes and one reverse pass are sufficient to determine A.

If the seed matrices S and W are such that the nonzero entries of A can be read-off
from the products AS = B and W T A = CT than we have direct determination
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Efficient Bi-directional Determination of Sparse Jacobian
Matrices

Obtain vectors s1,s2, ...,spc and w1,w2, ...,wpr such that matrix-vector products B = AS
and the vector-matrix product CT = W T A determine the m× n matrix A uniquely and
pr + pc is minimized.

A p-coloring of graph G = (V,E) is a function φ : V →{1, ..., p} such that φ(vi) 6= φ(v j)
if {vi,v j} ∈ E.

Let A ∈ℜm×n. Define Gb(A) = (U ∪V,E) where U corresponds the set of column ver-
tices and V corresponds the set of row vertices and for u j ∈U and vi ∈V , {vi,u j} ∈ E
if ai j 6= 0.
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A Graph Coloring Formulation
Bi-directional p-coloring: A mapping φ : {U∪V}→{1,2, ..., p} is called a bi-directional
p-coloring of bipartite graph Gb = (U ∪V,E) if the following conditions apply:

1. φ is p-coloring.

2. The set of colors used on vertices in U and V are disjoint, i.e. for u j ∈U and vi ∈V
φ(u j) 6= φ(vi).

3. Every path of length 3 in Gb(A) uses at least 3 different colors.

The bi-chromatic number, χb, of Gb(A) is the smallest p for which Gb(A) has a bi-
directional p-coloring.
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Example
Given a sparse matrix A, obtain a bi-directional p-coloring of Gb(A) such that p =
pr + pc is minimized.
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Figure 1: Optimal bi-directional p-coloring of the arrowhead example
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Bi-directional Determination of Sparse Jacobian Matrices
• Bi-coloring is NP-hard.

• Heuristic methods

– Hossain and Steihaug [1998], Coleman and Verma [1998], Gebremedhin, Manne
and Pothen [2004]

• Exact methods

– Let
ρmax : maximum number of nonzeros in any row,
κmax : maximum number of nonzeros in any column.
A lower bound on the number of matrix-vector (or vector-matrix) products in
one dimensional determination of A is min(κmax,ρmax).

– Find a good lower bound on the number of matrix-vector (vector-matrix) prod-
ucts in bi-directional determination.
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Optimal Bidirectional Determination - An Integer Linear
Programming Formulation (ILP)

Variables used in the ILP formulation of bi-directional p-coloring follows.

• 0-1 variable w j denotes whether (w j = 1) or not (w j = 0) color j, 1≤ j ≤ pU has
been assigned to some vertex u ∈U .

• 0-1 variable w j denotes whether (w j = 1) or not (w j = 0) color j, pU + 1 ≤ j ≤
pU + pV has been assigned to some vertex v ∈V .

• 0-1 variable xi, j denotes whether (xi, j = 1) or not (xi, j = 0) vertex i, 1≤ i≤ n has
been assigned color j,1≤ j ≤ pU .

• 0-1 variable xi, j denotes whether (xi, j = 1) or not (xi, j = 0) vertex i, n + 1 ≤ i ≤
m+n has been assigned color j, pU +1≤ j ≤ pU + pV .
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An ILP Model for Optimal Bi-directional Determination

minimize
pU +pV

∑
j=1

w j (1)

pU

∑
j=1

xi, j = 1, for i ∈U (2)

pU +pV

∑
j=pU +1

xi, j = 1, for i ∈V (3)

xi, j + xl, j′ + xi′, j + xl′, j′ ≤ (w j +w j′ +1) (4)

(for every path vi−ul − vi′ −ul′ of length 3)
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w j ≤ ∑
i∈U

xi, j for j = 1, ..., pU (5)

w j ≤ ∑
i∈V

xi, j for j = pU +1, ..., pU + pV (6)

∑
i∈U

xi, j ≤ nw j for j = 1, ..., pU (7)

∑
i∈V

xi, j ≤ mw j for j = pU +1, ..., pU + pV (8)

w j+1 ≤ w j for j = 1, ..., pU −1 (9)

w j+1 ≤ w j for j = pU +1, ..., pU + pV −1 (10)

w j ∈ {0,1}, for 1≤ j ≤ pU + pV (11)

xi, j ∈ {0,1}, for i ∈U ∪V,1≤ j ≤ pU + pV (12)
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Null Color Elimination
Null Color: Consider a p-coloring problem with colors 1...p for a graph G(V,E). As-
suming that G can be optimally colored with p− 1 colors, consider a solution where
color i is not used: (n1,n2, ...,ni−1,ni(= 0),ni+1, ...,np), where ni denotes the number
of vertices colored with color i. The color i for which ni = 0 is known as the null color.

Example, the assignment (1,0,2,3) is equivalent to (1,3,2,0), (0,1,2,3), (1,2,0,3).

The constraints (9) and (10) ensures that in a feasible solution, the null colors will not
be present.
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Complexity
Number of variables:

(n+1)pU +(m+1)pV

Number of 3-paths:

num3paths =
m

∑
i=1

(ρi−1)

[
∑

j:ai j 6=0
(κ j−1)

]

Number of constraints:

(num3paths∗ pU ∗ pV )+(m+n)+2(pU + pV )+(pU + pV −2)
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Experimental Results

Matrix Statistics One-directional* Bi-directional

ρmax κmax DSM Exact Direct Cover Exact

RG CG TG RG CG TG

ibm32 8 7 8 8 0(1) 8(0) 8(1) 1(1) 6(0) 7(1)

ash219 2 9 4 4 0(1) 5(0) 5(1) 0(1) 4(0) 4(1)

ash331 2 12 6 6 0(1) 6(0) 6(1) 0(1) 6(0) 6(1)

ash608 2 12 6 6 0(1) 7(0) 7(1) 0(1) 6(0) 6(1)

impcol-a 8 5 8 8 6(0) 0(1) 6(1) 6(0) 0(1) 6(1)

impcol-c 8 8 8 8 1(1) 4(0) 5(1) 1(1) 3(0) 4(1)

* column partitioning
RG : total number of row groups
CG : total number of column groups
TG : RG + CG
ρmax: maximum number of nonzeros in any row
κmax: maximum number of nonzeros in any column
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Conclusion

• Formulation of optimal bi-directional determination.

• Large problems are difficult solve:

– Memory constraints

– Symmetry

• More elaborate numerical tests are needed.
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