
Reducing the total bandwidth of a sparse unsymmetric matrix

Jennifer A. Scott
Computational Science and Engineering Department,

Rutherford Appleton Laboratory.

J.A.Scott@rl.ac.uk

Joint work with John Reid

Background

We want to solve

Ax = b

where A is large sparse and unsymmetric

Band solvers: aim to exploit the band structure of A.
Attractive because

• With no interchanges, band form preserved during Gaussian
elimination

• Thus simple data structures that allow straightforward code to
be developed

CSC05

Block triangular form

Note: if A is reducible, we first reduce A to block triangular form

A11

A21 A22

A31 A32 A33

A41 A42 A43 A44

.

,

where All, l = 1, 2, . . ., are square.

We then solve Ax = b by using block forward substitution

Aiixi = bi −
i−1
∑

j=1

Aijxj, i = 1, 2, . . . ,

Thus we apply the band solver to the irreducible diagonal blocks

Aiixi = ci

.

CSC05

Total bandwidth

Symmetric case: upper band = lower band

Unsymmetric case: distinct upper and lower bandwidths u and l

x

x

x

x x x x

Interchanging rows 1 and 4

x x x x

x

x

x x

Row (column) interchanges keep lower (upper) band fixed but
widens upper (lower) band

Seek to minimise total bandwidth, which we define to be
min(l, u) + l + u

CSC05

Reverse Cuthill McKee

Suppose for a moment that A = {aij} is symmetric

A number of band reducing algorithms have been developed based
on the adjacency graph G(A).

One node for each row of A with node i a neighbour of node j if
aij 6= 0.

Symmetric permutations of A correspond to relabelling nodes of
G(A).

A widely used algorithm is Cuthill-McKee: orders nodes by
increasing distance from a chosen starting node s. This groups
the nodes into level sets at the same distance from s.

CSC05

Reverse Cuthill McKee (cont.)

Since nodes in level set l can have neighbours only in level sets
l−1, l, and l+1, the reordered matrix is block tridiagonal with
blocks corresponding to the level sets.

Therefore, want small level sets likely if there are lots of them.

Good start nodes are those that are at a (nearly) maximum
distance apart (pseudo-diameter).

Reverse Cuthill-McKee ordering because can reduce profile.

MATLAB function symrcm is an implementation of RCM

CSC05

Unsymmetric case?

Little appears to have been done for unsymmetric A.

Obvious thing to do is apply RCM to A + AT (symrcm).

Works well if sparsity pattern of A is close to symmetric.

We consider three alternative approaches:

• Apply RCM to the row graph

• Apply RCM to bipartite graph

• Develop an unsymmetric RCM algorithm

CSC05

Row graph

Row graph is adjacency graph of AAT .

Nodes of G(AAT) correspond to rows of A and nodes i and j

are neighbours if and only if there aik 6= 0 and ajk 6= 0 for some k.

Order rows of A by applying RCM algorithm to G(AAT). Ensures
rows with entries in common are nearby. Then order columns
according to their last entry.

Potential disadvantage: costly because AAT may contain many
more entries than A.

CSC05

Bipartite graph

Bipartite graph of A has a node for each row and a node for each
column and row node i is a neighbour of column node j if aij 6= 0.

Start with row r: first level set contains the columns with a non
zero entry in row r.

Next level set contains the rows that have entries in at least one
of the columns in the first level set, and so on.

Thus, starting the Cuthill-McKee algorithm with any node, the
level sets are alternately sets of rows and sets of columns.

CSC05

Bipartite graph (cont.)

Permuting rows of A by row level sets and cols by column level
sets yields a block bidiagonal form

A11

A21 A22

A32 A33

A43 A44

.

,

where Alm is the submatrix of A corresponding to rows of row
level set l and cols of column level set m.

Example: 4 row level sets, 3 col. level sets

× × ×
× × ×

× × ×
× ×

× × × ×
× × ×

× ×
× ×

CSC05

Unsymmetric RCM

Working with the bipartite graph means that upper and lower
bandwidths are treated equally.

Rather than applying symmetric code to bipartite graph, may be
better to develop special-purpose code for unsymmetric matrices.
We have developed a prototype.

Level sets are alternately sets of rows and set of columns but
choices are based on total bandwidth (min(l, u) + l + u) of A.

CSC05

Unsymmetric bandwidth reduction algorithm

For unsymmetric A:

• Reduce A to block triangular form

• For each diagonal block

– Apply unsymmetric RCM (or other variant)

CSC05

Importance of reduction to block triangular form

This table shows the effect on the total bandwidth of preordering
to block triangular form (for block triangular form, we report the
total bandwidth for largest block).

Block triangular form

Initial A + AT Row Initial A + AT Row

circuit 3 36231 17658 10441 22795 1903 1330

extr1 7798 2575 171 7211 240 145

lhr34c 57141 27428 3296 22984 982 669

rdist2 3198 2380 169 267 267 121

Remaining results are all for block triangular form.

CSC05

Chemical engineering example

bayer03 Block form

A+AT Row

CSC05

Preliminary results for the different variants

Initial RCM

A + AT Row Bipartite Unsym.

4cols 13305 846 460 565 504

circuit 3 22795 1903 1330 1321 1297

extr1 7211 240 145 149 148

lhr34c 22984 982 669 720 721

rdist2 267 267 121 117 120

The narrowest bands and those that are within 3 per cent of the
narrowest are in bold.

Appears to be little to choose between the last three variants.

CSC05

Refinement: an example

Consider the symmetric matrix with semi-bandwidth 5
0 × ×
× 0 0 ×

× 0 0 × ×
× 0 0 0 × × ×

× 0 0 0 ×
× 0 0 0 ×

× 0 0 0

× × × 0 0 0

× 0 0 0

a49 and a94 are critical entries (that is, they lie on the outer band).

Semi-bandwidth reduced to 4 by interchanging rows 4 and 5 and
cols 4 and 5.

CSC05

Hill-climbing

Lim et al. (2004) propose a hill-climbing algorithm for reducing
the semi-bandwidth of a symmetric matrix.

• For each critical entry aij in lower-triangular part, try and
interchange row i with row k < i or col. j with col. k > j to
reduce the number nc of critical entries.

• While semi-bandwidth is b, each interchange reduces nc by 1.

• When nc = 0, repeat with semi-bandwidth b − 1.

• Continue until no interchanges found to reduce nc for current
semi-bandwidth.

CSC05

Unsymmetric hill-climbing

We have adapted this idea to reduce the lower and upper
bandwidths (l and u) of an unsymmetric matrix.

We alternate between making row interchanges while the column
permutation is fixed and making column interchanges while the
row permutation is fixed.

While making row interchanges we first try and reduce l (without
increasing u) and then reduce u (without increasing l).

Similarly, while making col. interchanges we first try and reduce
u (without increasing l) and then reduce l (without increasing u).

Note: Hill-climbing is a local search method that never makes
things worse.

CSC05

Effect of hill climbing

RCM RCM + HC

A + AT Row Bipartite Unsym. A + AT Row Bipartite Unsym.

4cols 846 460 565 504 718 435 549 481

circuit 3 1903 1330 1321 1297 1715 1228 1227 1123

extr1 240 145 149 148 190 119 120 131

lhr34c 982 669 720 721 850 626 591 601

rdist2 267 121 117 120 112 93 111 120

CSC05

Node centroid algorithm

Lim el al. (2004) propose an alternative method for obtaining an
initial ordering.

They define Nλ(i) to be neighbours j of i for which |i− j| ≥ λb,
where b is the semi-bandwidth and λ ≤ 1 is a parameter.

Node centroid w(i) is defined as the average node index over
i ∪ Nλ(i).

The nodes are ordered by increasing w(i).

They apply two iterations of node centroid ordering followed by
one iteration of hill-climbing, and repeat

CSC05

Unsymmetric node centroid

We have adapted this idea to the unsymmetric case by alternating
between permuting rows and columns.

While permuting rows, only first and last entries of each row are
relevant. Use to choose a desirable position w(i) for each row i,
biasing the choice towards the lesser of l and u.

We sort the rows in order of increasing w(i).

Start with an RCM ordering and apply sequence of major steps:
two iterations of node centroid row ordering,
one iteration of row hill-climbing,
two iterations of node centroid column ordering,
one iteration of column hill-climbing.

Continue until total bandwidth ceases to decrease
(max 10 steps).

CSC05

Unsymmetric bandwidth reduction algorithm (refined)

For unsymmetric A:

• Reduce A to block triangular form

• For each diagonal block

– Apply unsymmetric RCM (or other variant)

– Refine by applying node centroid algorithm plus hill climbing

CSC05

Effect of adding node centroid algorithm

Identifier RCM + HC RCM + NC + HC

A + AT Row Bipartite Unsym. A + AT Row Bipartite Unsym.

4cols 718 435 549 481 502 395 458 443

circuit 3 1715 1228 1227 1123 1356 1065 1074 1095

extr1 190 119 120 131 130 115 119 116

lhr34c 850 626 591 601 546 558 528 533

rdist2 112 93 111 120 92 89 90 88

CSC05

Chemical engineering example

extr1 Block form

A+AT Unsymmetric

CSC05

Detail for extr1

1200 1300 1400 1500 1600

1200

1300

1400

1500

1600

A+AT

1200 1300 1400 1500 1600

1200

1300

1400

1500

1600

Unsymmetric algorithm

Unsymmetric algorithm reduced bandwidth by half compared with
applying A + AT to block triangular form.

CSC05

Band solver versus general sparse solver

We end by presenting factorization times for the HSL band solver
MA65, used with RCM+NC+HC, and MA48.

The factorization was performed repeatedly until the accumulated
time was at least 1 second (on a single 3.06 GHz Xeon) and the
average is reported.

MA48 MA65

4cols 0.069 0.220

circuit 3 0.008 0.298

extr1 0.003 0.010

lhr34c 1.150 1.120

rdist2 0.038 0.025

It appears that MA48 performs very well on highly unsymmetric
and sparse blocks while MA65 is more suited to blocks that are
denser and more symmetric.

CSC05

Concluding remarks

• We have explored using RCM-based algorithms to reduce the
total bandwidth of sparse unsymmetric matrices

• Unsymmetric variants of hill-climbing and the node centroid
algorithm have been introduced and used to reduce bandwidths
further

• Timing against a general sparse solver suggest that using a
band solver with our new ordering can sometimes be faster.

Further details

Reducing the total bandwidth of a sparse unsymmetric

matrix, J. K. Reid and J. A. Scott, RAL-TR-2005-001

http://www.numerical.rl.ac.uk/reports/reports.shtml

CSC05

