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The Big Picture

We are working toward support preconditioners for
finite-element matrices

We viewed the characterization of the algebraic
connectivity of finite-element hypergraphs as a way to
explore this topic

We made some progress (definitions and some
theorems) but did not yet prove the main result

However, we did find a way to construct support
preconditioners for finite-element matrices (including
both elliptic problems and elasticity)!



Outline of the Talk

The algebraic connectivity of hypergraphs

Minimally-rigid-substucture preconditioners don’t work

Fretsaw Preconditioners



Cheeger Bounds for Laplacians

Let A be the Laplacian of a weigted undirected graph G

A models a network of resistors: Ax = b, b = currents,
x = potentials

Φ = mincut C{
capacity(C)

|S|
s.t. C = (S, S̄), |S| ≤ n

2
}

Cheeger’s bounds: λ2

2
≤ Φ ≤

√
2∆λ2

The lower bound on λ2 is the interesting one: if the
graph does not have a small cut (small per vertex) then
λ2 is large



How is This Related To Preconditioning?

Many support preconditioners drop edges from the
graph to create the preconditioner

By Cheeger’s bound, if you do not make any cut much
smaller, then λ2 will not shrink too much (but the
eigenvectors may differ; λn is bounded by 2∆ in any
case)

We also thought that generalizing Cheeger’s bound to
finite-elements matrices will give us tools to do other
types of spectral analyses (it did)



Cheeger’s Bounds for Finite Elements: the Issues

The issues:

how to define the (hyper)graph

how to define cuts (not what you think)

how to define capacity(C)

how to define Φ and how to relate it to λmin > 0



Finite-Element Hypergraphs and their Cuts

Mesh nodes are vertices in the graph

Nodes’ values are vectors (e.g. x-y-z forces or
displacements)

Each element e (element matrix Ae) corresponds to a
hyperedge

A cut is a set of edges whose removal (exclusion from
the global matrix’s assembly) creates a new mechanism,
a reduction in the rank of A =

∑
Ae



The Capacity of a Cut

The minimal work possible under a unit vector of forces
that is orthogonal to rigid-body motions (i.e., to
null(A)) and that strains only elements in the cut,

lim
α→∞

min
x⊥nullA

xT

(∑
e�∈C Ae +

∑
e∈C αAe

)
x

xTx



Cheeger Bounds: Status

This generalizes perfectly the case of Laplacians

Note that cuts do not really cut; they add a mechanism

The upper bound on λmin is easy

We still can’t prove a lower bound...

An application for the lower bound: σ(UUT, VVT) ≤
‖V+U‖2

2 ≤ ‖V+‖2
2‖U‖2

2 = λmin(VVT)‖U‖2
2



The Next Idea: Cool but Flawed

Consider support preconditioners, like Vaidya’s, that
drop edges from a graph (nonzeros from a Laplacian)

We can try to generalize by dropping elements from a
finite-element model (exclude Ae’s from the assembly
process)

A spanning-tree preconditioner is a
minimally-connected substructure of a resistor network

Let’s try to precondition elasticity problems with a
minimally-rigid substructure

(To get good performance we may need to drop less, but
let’s explore the principle)



Minimally-Rigid Substructure

For two-dimensional trusses, rigidity can be
characterized combinatorially

There are combinatorial algorithms to find a
minimally-rigid substructure of a 2D truss (e.g., an
O(n2) algorithm by Bruce Hendrickson)

Can we use this to constuct effective preconditioners?
No, there is a serious flaw



Minimally-Rigid Structures can be Hard to Factor

The minimally-connected subgraph of a Laplacian (a
spanning tree) can always be factored with no fill in
O(n) time

But a minimally-rigid substruc-
ture can be as hard to factor as a
generic planar truss (has Θ(

√
n)

separators)
We decided not to persue this for
now



Dropping Elements, or...

In some cases, a rigid substructure can be a lot easier to
factor

But this is not always true (at least for trusses; see the
previous example), and when it does, we do not know
how to find these substructure



Cutting Slits: Fretsaw Preconditioning

We don’t drop elements (cut away
material)
We cut the “glue” that connects el-
ements, but such that the struc-
ture remains rigid (we do not cre-
ate new mechanisms)
This requires duplicating some
nodes (augmenting the matrix
with more rows/columns)
Works for any type of solid el-
ement (and triangularized truss)
for both elliptic problems and
elasticity (and probably more)



Fretsaw Preconditioning

1. Compute the dual (simple) graph H of the
finite-element hypergraph; adjacency is determined by
a local path condition

2. Compute a good spanning tree T of H

(maximum-weight, low stretch, etc); or even augment
the tree as in Vaidya or Spielman-Teng

3. Determine node duplications; another local condition

4. Cut in-between elements whenever there is no edge
in T (shift element indices to new duplicate
rows/columns)

5. Assemble the preconditioner



Get Ready for the Animation!



The Original Mesh



The Dual Graph of the Mesh



A Spanning Tree of the Dual Graph



A Spanning Tree of the Dual Graph



We Cut the Slits p



This Requires Duplication of Some Nodes



The Preconditioner Ready for Assembly



The Details of Node Duplication



Factoring and Applying the Preconditioner: Schur
Complement Preconditioning

Fill: None

How? We order the rows/columns from a free node in a
leaf element, recursively

To precondition, augment r with zeros, solve, restrict to
original nodes to form z

This is equivalent to preconditioning with the Schur
complement of the preconditioners, after eliminating
the duplicate nodes (Gremban/Miller style)



Fretsaw for Finite-Elements vs. Vaidya for Laplacians

Fretsaw augments the system by cutting infinitesimal
slits in the “material”; Vaidya cuts away material

In both cases one extreme generalized eigenvalue is
bounded by 1; the preconditioner is weaker

In both cases the bound on the other extremal
eigenvalue can be computed by path analysis

In both cases the construction selects a subgraph of a
(simple) graph

When the selected subgraph is a tree, no fill

We can apply the fretsaw framework to Laplacians, but
there may be no benefit to this



Fretsaw vs. Gremban/Miller’s Support Trees

Almost no connection

Except that we use Gremban/Miller’s
augmented-preconditioner framework

But the preconditioners are completely different



Experimental Results: Elasticity
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(figure is coarser than in the experiment)



Experimental Results: Poisson
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Different element matrices, dual adjacency rule



Discussion and Conclusions

A class of support preconditioners for finite-elements

Preconditioning in a larger space by dropping elements
in the dual graph

Relatively easy to apply to different problems

Most of the diagonally-dominant constructions apply

The problem specific aspect: defining adjacency in the
dual graph and assigning edge weights (we’re still
working on the path lemmas)



That’s It


