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S1. Evolution of record-breaking temperatures in a stationary climate  

The theory states that in a stationary climate, and for a sequence of independent 

identically distributed random variables, the number of records is theoretically expected to 

decrease with time. At year 𝑛, the probability for a record to occur is 1/𝑛  (Glick 1978; Benestad 

2003). To mask this inherent decrease with time and to better visualize the trends in record 

occurrence we use the normalized form: each year the number of records is multiplied by 𝑛. 

Under this normalized form, the expected number of records in a stationary climate is constant 

and always equal to 1. 

Numerous studies (e.g. Meehl et al. 2009; Elguindi et al. 2012; Wergen et al. 2013 among 

others) have shown that until the 1980-1990s, the record evolution oscillated around this 

theoretical decay in 1/n according to natural fluctuations (interannual to multi-decadal variations; 

see Bador et al. 2015a for more details). From the 1980-1990s onwards we observe a change in 

the record evolution, with an increase in the number of warm records and a decrease in the 

number of cold records. These changes result in a shift from this theoretical record evolution 

expected in a stationary climate. In this study, we compare the simulated historical and future 

number of records to 1, the theoretical number of records expected in a stationary climate which 

is consistent with the beginning of the observations. 

 

S2. Spatial clustering of extreme events 

The clustering algorithm originates from the multivariate extreme value theory (Coles 

2001; Beirlant et al. 2004; de Haan and Ferreira 2006; Resnik 2007) and is thus perfectly 

recommended to extract homogenized spatial patterns from series of extreme temperatures 

(Bador et al. 2015b) or heavy precipitations (Bernard et al. 2013) for instance. The clustering 

algorithm is applied to the SQR observations over the period with maximum and consistent 

station data availability (1980-2010, see figure S1). Details of the methodology can be found in 

Bernard et al. (2013) but the main tools are presented below. 



First, the proximity of two stations has to be evaluated. To that end, no geographical 

information is taken into account but only time series of Tmax summer maxima. The spatial 

dependence among the time series is evaluated using a rank-based distance (Cooley et al. 2006) 

based on the comparison of the ordering between two series. This rank-based distance is adapted 

from the variogram distance often used in geostatistics (Wackernagel 2003) and is defined by 
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corresponds to the rank of the 𝑡-th year within the time 

series of maxima. 

Secondly, the stations have to be compared to each other in order to be gathered in a 𝐾 

number of clusters specified as input. The clustering algorithm used here is the Partitioning 

Around Medoids algorithm (PAM; Kaufman and Rousseeuw 1990). It divides our set of 𝑁 

stations into 𝐾 clusters and is appropriate for extremes as averaging is not required (contrary to 

the well-known k-means algorithm). The algorithm selects one of the time series as the cluster 

center, named medoid. This medoid can be understood as the station whose time series of 

seasonal maxima best represents its cluster. 

Finally, the robustness of the affiliation of a station into a cluster is evaluated using the 

silhouette coefficient (Rousseeuw 1986), defined by 𝑠𝑖(𝐾) = 1 −
𝑑𝑖𝑘

𝛿 𝑖,−𝑘
, where 𝑑𝑖𝑘represents the 

intra-cluster distance between the medoid 𝑘  and the station 𝑖 , and 𝛿 𝑖,−𝑘  corresponds to the 

smallest distance between station 𝑖 and all the other medoids except for 𝑘. In other words, the 

silhouette coefficient measures the proximity of a station to its medoids and in the same time the 

distance to its nearest neighbor’s medoid. Hence, stations with too low coefficient value will not 

be considered as significant (𝑠𝑖𝑙. 𝑐𝑜𝑒𝑓. < 0.5; see figure 1). Similarly, the robustness of a cluster 

can be assessed using the averaged silhouette coefficient, i.e. the mean value of the silhouette 

coefficients of its significant stations. 
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Supporting Table and Figures 

 

Supplementary Table: List of the CMIP5 model names and institution. 

 Model name Institution 

1 BCC-CSM1.1M BCC 

2 BNU-ESM GCESS 

3 CanESM2 CCCma 

4 CMCC-CESM CMCC 

5 CMCC-CM CMCC 

6 CMCC-CMS CMCC 

7 CNRM-CM5 CNRM-CERFACS 

8 ACCESS1-0 CSIRO-BOM 

9 CSIRO-Mk3-6-0 CSIRO-QCCCE 

10 INM-CM4 INM 

11 IPSL-CM5A-LR IPSL 

12 IPSL-CM5A-MR IPSL 

13 IPSL-CM5B-LR IPSL 

14 FGOALS-g2 LASG-CESS 

15 MIROC5 MIROC 

16 MIROC-ESM MIROC 

17 MIROC-ESM-CHEM MIROC 

18 HadGEM2-CC MOHC 

19 HadGEM2-ES MOHC 

20 MPI-ESM-MR MPI-M 

21 MPI-ESM-LR MPI-M 

22 CCSM4 NCAR 

23 NorESM1-M NCC 

24 HadGEM2-AO NIMR/KMA 

25 GFDL-CM3 NOAA GFDL 

26 GFDL-ESM2G NOAA GFDL 

27 GFDL-ESM2M NOAA GFDL 

28 CESM1-BGC NFS-DOE-NCAR 

29 CESM1-CAM5 NFS-DOE-NCAR 

 

 

  



Figure S1: (a) Map of the observed current (in 2005) summer record maximum values in France 

and (b) its yearly evolution (one line per station, ordered by increasing altitude as represented by 

the black line on the right side). Records are calculated from the longest possible time series for 

each station. The location of the maximum in France is indicated by a star and its value is given 

next to it in (a). The observed 2003 heatwave is marked in red in (b).  

 

 

  



Figure S2: Same as figure 1 for different numbers of cluster (K). 

 

 

 

  



Figure S3: Map of the year when the summer record maximum value is reached, as simulated by 

ALADIN-SCEN. Symbols refer to the five regions given by the clustering algorithm (figure 1). 

Symbols are centered on the closest ALADIN grid point to each station (shown by a solid circle). 

The relative number of stations whose record maximum value was reached in 2075 is indicated 

in the bottom-left box.  

 

 

 

 

  



Figure S4: Spatial distribution of Tmax (C) anomalies relative to the 2061-2090 climatology 

and averaged during the duration of the 2075 heatwave (days 192-221; see figure 4) in (a) the 

CNRM-CM5 simulation, (b) the ALADIN-SCEN simulation, and (c) the mean and (d) standard 

deviation of the 20-member ALADIN-LE simulations.  

 

 

 

  



Figure S5:  Daily evolution of the 500hPa geopotential height (m; in colors) and winds (m.s-1; in 

contours) anomalies (relative to 2061-2090) during summer 2075 in the CNRM-CM5 simulation. 

The anomalies are averaged during moving 10-day periods showing the atmospheric conditions 

before, during (days 192-221; resumed in the last panel) and after the 2075 heatwave. 

 


