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ABSTRACT

A computational simplification of the Kalman filter (KF) is introduced � the parametric Kalman filter (PKF).

The full covariance matrix dynamics of the KF, which describes the evolution along the analysis and forecast

cycle, is replaced by the dynamics of the error variance and the diffusion tensor, which is related to the

correlation length-scales. The PKF developed here has been applied to the simplified framework of advection�
diffusion of a passive tracer, for its use in chemical transport model assimilation. The PKF is easy to compute

and computationally cost-effective than an ensemble Kalman filter (EnKF) in this context. The validation of

the method is presented for a simplified 1-D advection�diffusion dynamics.

Keywords: data assimilation, Kalman filter, covariance dynamics, parameterisation of analysis

1. Introduction

One of the foundations of data assimilation is based on the

theory of Kalman filtering. Because of its computational

complexity and the extent of required information for its

implementation, the Kalman filter (KF) has long been

recognised as not viable for large dimension problems in

geosciences. Alternative formulations, based for example

on ensemble methods, have been developed. The ensemble

Kalman filter (EnKF) was developed by Evensen (1994).

The numerous formulations of the sequential algorithm

or its smoother version have also had an impact on the

variational data assimilation where new algorithms now

take advantage of adjoint-free formulation. Considering

other ensemble strategies, like particle filter methods in

their present formulation, the EnKF is very robust and

is used for atmospheric data assimilation with a limited

ensemble of few dozen members.

Beside all its advantages and these developments, EnKF-

like algorithms are approximations. To yield accurate

simulations in real applications require addressing several

scientific and practical considerations (see for example

the review of Houtekamer and Zhang, 2016). For instance,

to limit the filter divergence, inflation (Anderson and

Anderson, 1999) or cross-validation (Houtekamer and

Mitchell, 1998) strategies need to be employed. Another

issue is related to the sampling error. Small and moderate

ensemble sizes induce spurious long distance correlations

that can be damped by either: (1) using a static localisa-

tion strategy based, for example, on Schur product with

a compact support function (Gaspari and Cohn, 1999;

Houtekamer and Mitchell, 2001) or a dynamical localisa-

tion (Bocquet, 2016); (2) filtering of variances (Berre et al.,

2007; Raynaud et al., 2009) and length-scale (Raynaud and

Pannekoucke, 2013); or (3) taking advantage of covariance

modelling (Hamill and Snyder, 2000; Buehner and Charron,

2007; Pannekoucke et al., 2007; Kasanický et al., 2015).

Some of these issues and their solutions are actually ap-

plication dependent. This is the case, for example, for

sampling errors in atmospheric chemistry assimilation,

where the localisation based on distance is not useful to

address the issue of sampling noise between correlated

chemical variables at the same location.

The computational resources required for the time

propagation of error information that is actually needed

seems to be highly ineffectively used. Ensemble of model

integrations creates by default a sample covariance for

each pair of model grid point. Yet, it is only during the

observation update that localisation is applied and where

only a fraction of these pair of sample covariances is used.

Why spend so much computational resources in computing
*Corresponding author.

email: olivier.pannekoucke@meteo.fr

Tellus A 2016. # 2016 O. Pannekoucke et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix,

transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.

1

Citation: Tellus A 2016, 68, 31547, http://dx.doi.org/10.3402/tellusa.v68.31547

P U B L I S H E D  B Y  T H E  I N T E R N A T I O N A L  M E T E O R O L O G I C A L  I N S T I T U T E  I N  S T O C K H O L M

SERIES A
DYNAMIC
METEOROLOGY
AND OCEANOGRAPHY

(page number not for citation purpose)

D
ow

nl
oa

de
d 

by
 [

13
8.

63
.2

10
.6

3]
 a

t 0
2:

36
 2

9 
A

ug
us

t 2
01

7 

http://creativecommons.org/licenses/by/4.0/
http://www.tellusa.net/index.php/tellusa/article/view/31547
http://dx.doi.org/10.3402/tellusa.v68.31547


ensembles if in the end we eliminate a large part of the

information they provide? This actually suggests looking

for other strategies than ensembles to reduce the computa-

tion cost of a KF and that is what we propose here � a

solution applicable to chemical transport models.

The idea emerged from a seminal observation made

by R. Daley (pers. commun., 1992) that under advection

the diagonal of an error covariance matrix (i.e. the error

variance) is simply transported, that is, it remains on the

diagonal of the error covariance matrix. This also implies

that the error variance can be predicted without knowledge

of the error correlation. This was formally demonstrated

by Cohn (1993) for quasi-linear hyperbolic equations and

used in the assimilation of atmospheric constituents by

Ménard et al. (2000) and Ménard and Chang (2000) in a

realistic context with model error estimation. By fixing the

error correlation and dynamically evolving only the error

variance, Khattatov et al. (2000) developed a simplified

KF known as the suboptimal KF or sequential filter. In

Khattatov et al. (2000) the initialisation of the error vari-

ance is restricted to modest size of observation vectors as

it requires an explicit computation of the analysis error

variance via a Choleski decomposition. Dee (2003) pro-

posed a variant of this formulation that does not suffer

from this limitation using a sequential processing of the

observations. The computational simplification in the advec-

tion of the error covariance is in fact not limited to the

variance (i.e. diagonal of the error covariance matrix), but

is applicable to the whole covariance function, by trans-

porting any pair of points of the error covariance along the

characteristics of the flow. As emphasised by (Cohn, 1993),

since the number of characteristics that is needed is equal to

the number of grid point (N) of the transport model, the

computational cost of the transport of the error covariance

is of order N rather than order N�N as in a KF. This led

to the development of a fully Lagrangian KF by Lyster et al.

(2004). However, regular remapping of the Lagrangian

trajectories is needed to avoid clustering of the Lagrangian

particles. Several variants of this algorithm have been used

in the assimilation of both tropospheric and stratospheric

chemical transport problems (Lamarque et al., 2002; Eskes

et al., 2003; Rösevall et al., 2007) and for a 30 yr reanalysis

of stratospheric ozone (Allaart and Eskes, 2010) which

demonstrates the robustness of the algorithm. Despite these

successful applications, the suboptimal KF filter does not

account for diffusion, and the computation of the analysis

error variance is done explicitly, which can be computa-

tionally demanding.

Recent works have paved the way for the parametric

propagation of the error covariance matrix without en-

semble, relying on the time evolution of the error variance

and the length-scales or the associated diffusion tensor

(Pannekoucke et al., 2014, 2016). The full covariance

matrix and its propagation can be elaborated from a para-

metric covariance model, for example, covariance model

based on the diffusion or the coordinate change. However,

and as far as we know, the impact of reducing a KF to the

propagation of error variance and length-scales has not

been examined.

At first glance, the reduction of the error covariance

matrix propagation, to the propagation of its error variance

and its local correlation shape, may seem a crude approx-

imation, but it is in fact not very different from variational

data assimilation where these two ingredients are effectively

used as initial conditions for the implicit propagation of the

error covariance. Yet, in 4D-Var, the final error covariance

is generally not used to initialise the next assimilation cycle.

However, in the parametric Kalman filter (PKF), the final

error covariance is used to feed the next assimilation cycle.

Hence, the PKF presents the advantage of producing a

cycle similar to the KF.

In this work, we propose a new algorithm that details the

propagation of both the analysis variance and diffusion

tensor for a linear advection�diffusion process. The algo-

rithm also updates these error covariance parameters as

a result of the observation update, that is, how the error

variance and the diffusion tensor are modified after the

assimilation of one observation and the iteration of this

update. We limit our investigation to the case of linear

advection�diffusion equation considered as a simple and

robust description of the transport of chemical species.

This way, the work is oriented towards the application of

chemical transport model assimilation.

In Section 2, we review the description of the KF algo-

rithm, with a particular focus on the background covar-

iance matrix diagnostics and modelling. The assimilation of

a single observation is presented, leading to the iterative

assimilation of a collection of observations. Then, the PKF

is detailed in Section 3, providing the algorithms associated

with the analysis and the forecast cycle. In Section 4, a

numerical validation of the PKF is proposed within a

simple 1-D advection�diffusion setting. The conclusions of

the results and further directions are provided in Section 5.

2. Insight with the one observation experiment

2.1. Kalman’s equations

The aim of data assimilation is to estimate the true state of

a dynamical system, X t
q, at a time tq from the knowledge of

observations, Yo
q, and a prior state, X b

q. In this notation, the

time is indicated by the subscript q. A simplified description

of data assimilation is the following:

The observational operator, Hq (assumed linear here),

maps the state vector onto the observational space, so that

Yo
q ¼ HqX t

q þ eo
q, where eo

q is an observational error which is

2 O. PANNEKOUCKE ET AL.

D
ow

nl
oa

de
d 

by
 [

13
8.

63
.2

10
.6

3]
 a

t 0
2:

36
 2

9 
A

ug
us

t 2
01

7 



often modelled as a Gaussian random vector of zero mean

and covariance Rq ¼ eo
qðeo

qÞ
T
( ð�Þ is the expectation opera-

tor), denoted by eo
q � Nð0;RqÞ. The true state is unknown

and the information about its possible value is modelled by a

Gaussian probability distribution centred on a prior state X b
q

and of covariance matrix Bq, denoted by X t
q � NðX b

q;BqÞ.
Put differently, the background error eb

q ¼ X b
q � X t

q is a

Gaussian random vector of zero mean and covariance

Bq ¼ eb
qðeb

qÞ
T
, denoted by eb

q � Nð0;BqÞ. The way we estimate

the state of the truth can be formalised by using the Bayes’

rule pðX t
q=Yo

q;X b
qÞ / pðYo

q=X t
qÞpðX t

q=X b
qÞ, where p( �) denotes

the probability density function. In the particular Gaussian

setting, and for linear operators, the a posteriori density

pðX t
q=Yo

q;X b
qÞ is also Gaussian and centred on the analysis

state, X a
q with covariance matrix Aq, which verify the

Kalman’s analysis equations (Kalman, 1960)

Kq ¼ BqHT
q ðHqBqHT

q þ RqÞ
�1
;

X a
q ¼ X b

q þ KqðYo
q �HqX b

qÞ;
Aq ¼ ðI� KqHqÞBq;

8
><

>:
(1)

where Kq is the gain matrix. If the system evolution is

governed by a linear dynamics, Mq�11q, then the updated

background statistics are Gaussian, featured by the fore-

cast step Kalman’s equations

X b
qþ1 ¼ Mqþ1 qX a

q;

Bqþ1 ¼ Mqþ1 qAqðMqþ1 qÞ
T
:

(

(2)

Thereafter, we focus on one analysis and forecast cycle, and

the subscript q is dropped for the sake of simplicity.

In this formalism, eqs. (1) and (2) are the Kalman’s

equations for the covariance dynamics. This can be

summarised by

Aq ¼ ðI� KqHqÞBq;

Bqþ1 ¼ Mqþ1 qAqðMqþ1 qÞ
T
;

�

(3)

where Kq ¼ BqHT
q ðHqBqHT

q þ RqÞ
�1
. Note that the time

evolution of the error covariance matrices does not involve

the analysis state X a
q and so does the prior state X b

q in this

case, where only linear operators are considered. More-

over, in the extended KF, X a
q occurs for the computation of

the tangent linear propagator Mq�11q. In real applica-

tions, these two steps are too numerically costly to be

implemented as described by Eq.(2) and Eq.(3).

2.2. Description and modelling of correlation matrix

From a practical point of view, the potentially large size

of the background error covariance matrix limits its full

description in favour of simple local characteristics such

as the grid point variance and the local shape of the

correlation function.

For a normalised error eeb
x ¼

eb
x

rb
x
where rb

x is the back-

ground error standard deviation at point x; the correlation

between two points, x and y, is defined as the ensemble

expectation qbðx; yÞ ¼ eeb
xee

b
y . The shape of a smooth correla-

tion function rb(x, y) with respect to a grid point x can

be described with the metric tensor field g b
x defined as

ðg b
xÞkl ¼ �@2

ykyl
qbðx; xÞ. Hence, the Taylor expansion of the

correlation function rb(x, x�dx), denoted by rb
x(dx), reads

qb
xðdxÞ¼

0
1� 1

2
jjdxjj2g b

x
þ oðjjdxjj2Þ; (4)

where jjxjj2E ¼ xT Ex, and f�
a
o(g) means limx!a

jf ðxÞj
jgðxÞj ¼ 0.

Note that the formalism can be enlarged to other correla-

tion functions, for example, the exponential functions

(Pannekoucke et al., 2014).

In practice, the local metric tensor gbx can be estimated

from an ensemble either from the computation of the

correlation coefficient in the vicinity of x (Pannekoucke

et al., 2008) or from the covariance of partial derivative

of the error (Daley, 1993, p. 156; Belo Pereira and Berre,

2006) whose practical computation takes the form (see

Appendix A)

g b
x ¼ @xk ~eb

x@xl ~eb
x : (5)

This formulation of the metric tensor is particularly

adapted to the derivation of analytical length-scale proper-

ties, for example, the sampling error statistics (Raynaud

and Pannekoucke, 2013).

More than a simple diagnosis, the local metric tensor

has been considered as a simple way to set a background

error covariance model. For instance, in the background

covariance model based on the diffusion equation (Weaver

and Courtier, 2001), Pannekoucke and Massart (2008)

have proposed to relate the unknown local diffusion tensor

to the local metric tensor. Since this particular covariance

model is important for what follows, we detail this

particular formulation.

The background covariance model, based on the diffu-

sion equation, corresponds to the decomposition of the

covariance matrix B as the product

B ¼ LLT ; (6)

where L denotes the linear propagator. Hence, for a

given field a and a diffusion tensor field �, L is the time

integration of the pseudo-diffusion equation

@~ta ¼ r � ðnnnnraÞ; (7)

from ~t ¼ 0 to ~t ¼ 1=2, with ~t a pseudo-time; hence, L is

the abstract operator L ¼ e
1
2
r�ðnnnnrÞ. Here the term ‘pseudo’

means that the diffusion is not related to a physical process

but is only used as a trick to build Gaussian-like correlation

functions. In the particular case where the diffusion tensor

PKF FOR CHEMICAL TRANSPORT MODELS 3
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field is homogeneous and for initial condition a(x)�d(x)

where d stands for the Dirac distribution centred on zero,

the particular Green solution on the real plane is given by

the Gaussian function

aðx;~tÞ ¼ 1

j4pnnnn~tj1=2
e�

1
4~t
jjxjj2

nnnn�1 ; (8)

where j�j denotes the matrix determinant and jjxjj2nnnn�1¼xT nnnn�1x.

Hence, the covariance model based on the diffusion

allows constructing heterogeneous correlation functions

design from the specification of the local diffusion tensor

�x. However, in real application, the appropriate diffusion

tensor remains unknown. To overcome this situation,

Pannekoucke and Massart (2008) have proposed to con-

nect the local diffusion tensor with the local metric tensor

according to nnnnx ¼ 1
2
g�1

x . Since the metric tensor can be

deduced from an ensemble method, this allows an objective

establishing of the diffusion tensor.

For a 1-D setting, the metric tensor takes the form

g b
x ¼ 1

Lb
xð Þ2
, where Lb

x denotes the background error correla-

tion length-scale at position x. This length-scale is related

to the diffusion coefficient by Lb
xð Þ

2¼ 2nb
x.

2.3. Assimilation of a single observation

The analysis error associated with the assimilation of an obser-

vation located at xj can be deduced from the Kalman’s

analysis equation [see eq. (1)] by subtracting the truth

on both sides of the equation, giving oa�ob�K(oo � Hob)

when introducing the errors ea ¼ X a � X t, eb ¼ X b � X t

and eo ¼ Yo �HX t, and thus

ea
x ¼ eb

x þ bjðxÞ V b
j þ V o

j

� ��1

ðeo
j � eb

j Þ; (9)

where bjðxÞ ¼ eb
xe

b
x j
¼ qjðxÞrb

xr
b
j denotes the covariance

function associated with the grid-point xj with rb
j and V b

j

standing, respectively, for rb
x j

and the background error

variance, ðrb
x j
Þ2. Thereafter, the background, the analysis

and the observational variances are denoted, respectively,

by Vb, Va and Vo.

From eq. (9), the two important covariance parameters,

namely the variance field and length-scale field, can be

computed (see Appendixes B and C). The error variance is

V a
x ¼ V b

x 1� q2
j ðxÞV b

j V b
j þ V o

j

� ��1
� �

: (10)

This is a classical result of optimum interpolation (Daley,

1993, pp. 146�147) and its derivation in Appendix B

appears only for the sake of completeness.

To facilitate the analytical derivation of the length-scale,

an additional assumption of local homogeneity is intro-

duced: for the background variance fields, we assume that

@xV b
x ¼ 0 locally, while V b

j is not globally constant or
1
rb @xr

b
� ��1

x
�Lb

x. After some calculations, detailed in Ap-

pendix C, it results that the local metric tensor is given by

g a
x �

V b
x

V a
x
g b

x , in terms of diffusion tensor, since nnnnx ¼ 1
2
g�1

x , this

is also written as

nnnna
x �

V a
x

V b
x

nnnnb
x : (11)

For the particular 1-D case, the update of the length-scale

L2�2� takes the form

La
x �

ra
x

rb
x

Lb
x; (12)

where a second-order approximation of the length-scale

update is given by (see Appendix C)

La
xð Þ
�2¼V b

x

V a
x

Lb
x

� ��2þ 1

4V b
x V a

x

ð@xV b
x Þ

2

� 1

V a
x

@xðqb
j ðxÞrb

xÞ
h i2

V b
j V b

j þ V o
j

� ��1

� 1

4 V a
xð Þ2
ð@xV a

x Þ
2
:

(13)

This last formulation is much more complex than the

leading order approximation [eq. (12)], but can be con-

sidered for simple numerical experiment.

From the description of the statistical update of the

background variance [eq. (10)] and diffusion tensor [eq.

(11)], when assimilating a single observation, we are now

ready to describe the complete analysis and forecast cycle

with several observations.

3. Parametric covariance dynamics along

analysis and forecast cycles

The time propagation of covariance matrix has been

studied by Cohn (1993) with real application in chemical

transport model (CTM) by Ménard et al. (2000). However,

these algorithms did not include the effect of diffusion,

although some ideas on how to include it were discussed in

Cohn (1993). This time propagation has been simplified

under a parametric formulation (Barthelemy et al., 2012;

Pannekoucke et al., 2014, 2016). In the present contribution,

we fill the gap by including the effect of analysis and of

diffusion in the whole assimilation cycle. But for complete-

ness the whole algorithm will be described. This leads to a

parametric formulation of the analysis and of the forecast

steps, and will be called parametric Kalman filter (PKF).

3.1. Formulation of the analysis step

For the KF analysis step, with linear observational oper-

ator, the assimilation of multiple observations is equivalent

4 O. PANNEKOUCKE ET AL.
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to the iterated assimilation of single observations with an

update of the covariance statistics (Dee, 2003).

Since the real correlation functions are unknown, the

basic assumption made in the PKF is to assume a particular

shape for the correlation functions, simple enough to be

used in large dimension data assimilation systems, for ex-

ample, isotropic correlations (based on spectral space

diagonal assumption, anisotropic if diagonal in wavelet

space), or Gaussian and Mattern’s functions with the dif-

fusion formulation (Mirouze and Weaver, 2010).

The Gaussian approximation for rj can be used as an

illustration of an analytic formulation leading to a simpli-

fied version of the correlation function

qjðxÞ ¼ exp � 1

4
jjx � x jjj

2
n�1

j

	 


; (14)

where n j¼nx j
and jjx � x j jj

2
nnnn�1

j
¼ðx � x jÞ

T n�1
j ðx � x jÞ. Another

interesting aspect with Gaussian correlation function is

its link with the Green solution [eq. (8)] of the diffusion

[eq. (7)] with homogeneous diffusion tensor. Note that the

Gaussian is the first-order approximation to the solution

of the heterogeneous diffusion equation with slow spatial

variations of the diffusion tensor field. Hence, we expect

that the result of an analysis procedure, considering the

analytic Gaussian correlation, would produce a solution

close to the one deduced by using a background correlation

matrix modelled with the diffusion equation (see Section

2.2), that is, the analysis variance and local diffusion tensor

fields should be equivalent at the leading order.

Note that since the update process acts only on variance

and metric fields, the approximation of the correlation

function rj by a Gaussian does not break the constraint of

symmetry and positiveness of the resulting analysis-error

covariance matrix, even if the collection of Gaussian

functions does not form a proper correlation matrix. This

represents a real advantage of this technique.

Algorithm 1 Iterated process building analysis covariance

matrix at the leading order, underGaussian shape assumption.

Require: Fields of nb and Vb, Vo and location xj of the p

observations to assimilate

for j�1: p do

0-Initialisation of intermediate quantities

V b
j ¼ V o

x j
;V o

j ¼ V o
x j
; nnnnj ¼ nnnnb

x j

qjðxÞ ¼ exp � 1

4
jjx � x j jj

2
nnnn�1

j

	 


1-Computation of analysis statistics

V a
x ¼ V b

x 1� q2
j ðxÞ

V b
j

V b
j þ V o

j

 !

nnnna
x ¼ nnnnb

x 1� q2
j ðxÞ

V b
j

V b
j þ Vo

j

 !

2-Update of the background statistics

V b
x  V a

x

nnnnb
x  nnnna

x

end for

Return fields na and Va

Hence, the analysis covariance statistics can be computed

following Algorithm 1. This takes advantage of the equi-

valence between analysis steps, considering all observations

and an iterated analysis process where each observation is

assimilated provided an inline analysis covariance matrix,

featured by Va and �a fields, and then uses an update of the

background-error covariance.

In practice, the algorithm is parallelised following the

same update as the one often used in the EnKF, that relies

on batch of observations (Houtekamer and Mitchell, 2001):

iteratively assimilating distant observations is equivalent

(to a good approximation) to the assimilation at the same

time. Note that the algorithm of Houtekamer and Mitchell

(2001) relies on the compact support property of the cor-

relation functions. A similar algorithm based on compact

support property could have been considered here by using

eq. (4.10) in Gaspari and Cohn (1999), whose shape is close

to the Gaussian correlation. But, since the value of a

Gaussian function is close to zero for large jjx � x j jj
2
nnnn�1

j
, we

considered the correlation null beyond a distance jjx � x j jj
of few length-scales.

3.2. Formulation of the forecast step

We consider the dynamics of a passive chemical tracer

whose concentration a is governed by the linear advection�
diffusion

@taþ u � ra ¼ r � ðjjjjraÞ; (15)

where u denotes the wind field. Since the dynamics is linear,

the error eb
xðtÞ dynamics is governed by the same equations,

that is

@te
b þ u � reb ¼ r � ðjjjjrebÞ: (16)

Starting from the initial condition eb
xð0Þ ¼ ea

x , the matrix

form of the covariance dynamics is given by

Bs ¼ MsAðMsÞ
T
; (17)

where Mt denotes the linear propagator associated with the

time integration of eq. (16) from t�0 to t�t.

The aim is to determine the time evolution of the

principal diagnostic of the covariance matrix: the variance

and the local diffusion tensor. So, as specified, it is not easy

to formulate these two components and we propose to do

this through a time-splitting. This time-splitting will lead to

a tractable elementary evolution. Note that time-splitting is
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widely used in atmospheric chemistry (see, for example,

Sportisse, 2007). In this study, the splitting goes beyond the

numerical aspects, since it is employed to separate each pro-

cesses (diffusion, advection) so as to simplify their analy-

tical treatments. This helps to provide either a Lagrangian

or an Eulerian formulation of the statistics dynamics. The

forecast step proposed for the PKF results from these

manipulations.

3.2.1. Time-splitting strategy for the covariance dynamics.

For short time integration dt, a time-splitting scheme can be

used (Lie-Trotter formula), where Mdt is expanded as the

product

Mdt¼
0

Mdiff :
dt Madv:

dt þ oðdtÞ: (18)

Madv:
dt denotes the propagator, over [0, dt], associated with

the pure advection @to
b�u � 9ob�0, and Mdiff :

dt denotes the

equivalent propagator associated with the pure diffusion

@to
b�9 � (k9ob).
Hence, starting from B0�A, the time evolution of the

background covariance matrix is then given as Btþdt ¼
Mdiff :

dt Madv:
dt Bt Mdiff :

dt Madv:
dt

� �T

þoðdtÞ and approximated as

bBtþdt ¼ Madv:
dt Bt Madv:

dt

� �T
;

Btþdt ¼ Mdiff :
dt
bBtþdt Mdiff :

dt

� �T

:

8
<

:
(19)

This two-step covariance evolution can be analytically

computed under some reasonable approximations.

3.2.2. Background error variance and diffusion field

evolution associated with a pure advection. The advection

over a small time step dt can be viewed as equivalent of

the deformation of the error field ob under the action of

the transformation D(x)�x�u(x, t)dt (Pannekoucke et al.,

2014). Hence, it follows that the metric tensor field gx(t)

evolves in time as bgxðtþ dtÞ ¼ Dx
�T g D�1ðxÞðtÞDx

�1, where Dx

is the gradient deformation associated with D at x, and

D�1 denotes the reversal deformation [Pannekoucke et al.,

2014, see eq. (35)]. In terms of diffusion tensor (reminding

that nnnnx ¼ 1
2
g�1

x ),

bnnnnb
xðtþ dtÞ ¼ Dxnnnnb

D�1ðxÞðtÞDT
x : (20)

The variance resulting from a pure advection remains

constant along the characteristic curve which results in

bV b
x ðtþ dtÞ ¼ V b½D�1ðxÞ; t�: (21)

3.2.3. Background error variance and diffusion field

evolution associated with a pure diffusion. The second

step consists of a pure diffusion acting on the covariance

dynamics. This is similar to the background covariance model

based on the diffusion equation B�LLT [eq. (6)], but this

time the pseudo-diffusion eq. (7) is replaced by a physical

diffusion, Btþdt ¼ Mdiff :
dt
bBtþdt Mdiff :

dt

� �T

, wherein we consider

the diffusion of an existing Gaussian function: this can be

viewed as a first time integration with a given diffusion tensor

field leading to bBtþdt, followed by a time integration with

another diffusion tensor field [the one given by k(x)].

We make the assumption that the diffusion is locally

homogeneous [k(x) is locally constant], and approximate

the covariance function in bBtþdt by local Gaussian functions

b̂xðdx; tþ dtÞ ¼ V̂ b
x ðtþ dtÞe�1

4
jjdxjj2ðn̂nnnb

xðtþ dtÞÞ�1
: (22)

Since diffusion is self-adjoint, the two diffusion time

integrations act on the covariance as

bxðdx; tþ dtÞ ¼

V̂ b
x ðtþ dtÞ jbnnnn

b
xðtþ dtÞj1=2

jnnnnb
xðtþ dtÞj1=2

e�
1
4
jjdxjj2ðnnnnb

xðtþ dtÞÞ�1
; (23)

where j �j denotes the matrix determinant, and with

nnnnb
xðtþ dtÞ ¼ n̂nnnb

xðtþ dtÞ þ 2jjðxÞdt: (24)

Hence, the variance field resulting from the time evolu-

tion of the covariance matrix under the pure diffusion is

given by

V b
x ðtþ dtÞ ¼ V̂ b

x ðtþ dtÞ jn̂nnn
b
xðtþ dtÞj1=2

jnnnnb
xðtþ dtÞj1=2

; (25)

while the diffusion tensor field is given by eq. (24).

3.2.4. PKF forecast step.

Algorithm 2 Iteration process to forecast the background

covariance matrix at time t�t from the analysis covari-

ance matrix given at time t�0, under local homogenity

assumption.

Require: Fields of na and Va. dt�t/N, t�0

for k�1: N do

1-Pure advection

DðxÞ ¼ x þ uðx; tÞdt

n̂nnnb
xðtþ dtÞ ¼ Dxnnnnb

D�1ðxÞðtÞDT
x

V̂ b
x ðtþ dtÞ ¼ V b½D�1ðxÞ; t�

2-Pure diffusion

nnnnb
xðtþ dtÞ ¼ n̂nnnb

xðtþ dtÞ þ 2jjðxÞdt

V b
x ðtþ dtÞ ¼ V̂ b

x ðtþ dtÞ jn̂nnn
b
xðtþ dtÞj1=2

jnnnnb
xðtþ dtÞj1=2

3-Update of the background statistics

V b
x ðtÞ  V b

x ðtþ dtÞ
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nnnnb
xðtÞ  nnnnb

xðtþ dtÞ
t tþ dt

end for

Return fields nb
xðsÞ and V b

x ðsÞ

Combining the results of the two previous subsections,

we obtain the forecast step of the PKF: from an initial

analysis covariance matrix A diagnosed by the variance

field V b
x ð0Þ ¼ V a

x and the diffusion field nb
xð0Þ ¼ na

x , the

forecast step provides the variance V b
x ðsÞ and the diffusion

tensor nb
xðsÞ fields resulting from the time integration of the

linear advection�diffusion equation eq. (15) from time t�0

to t�t. The time propagation is provided by Algorithm 2.

3.2.5. Eulerian version of the PKF forecast step. Note

that Algorithm 2 is well suited for Lagrangian numerical

solution (or at least semi-Lagrangian) since it implies the

departure point D�1(x), but an Eulerian version of this

algorithm can also be written. From a combination of eqs.

(20), (24), (21) and (25), it results (see Appendix D) that the

Lagrangian algorithm 2 is equivalent to the integration over

the range [0,t] of the Eulerian-coupled system of equations

@tnnnn
b þ u:rnnnnb ¼ nnnnbðruÞT þ ðruÞnnnnb þ 2j;

@tV
b þ u:rV b ¼ �VbTr ðnnnnbÞ�1jjjj

h i
;

(

(26)

with the initial conditions given by nnnnnnnb
xð0Þ ¼ nnnna

x and

V b
x ð0Þ ¼ V a

x , and driven by the wind field u, and where

Tr( �) denotes the matrix trace operator. This result is con-

sistent with the model error-free version of eq. (4.32)

described by Cohn (1993) who has considered the case of

an advection process without diffusion (k�0) [see also

eq. (5.26) in Cohn (1993) for the 2-D case] and has partially

considered the case with diffusion. The originality of the

present contribution is to provide another route toward

the results of Cohn (1993) and fill the gap by considering

the diffusion case.

The Eulerian description offers a nice change of view

on the statistical dynamics. Under this form, it is easier

to build a regularization of the dynamics. For example,

this can be done by incorporating a nudging term that

maintains the statistics close to a climatology so to prevent

from the divergence of the statistics during long term runs.

Another example is to incorporate a model error: following

Cohn (1993), for model error given as a Gaussian random

field, this would add the model error variance in the right

side of variance equation, and add the model error local

diffusion tensor in the right side of the diffusion tensor.

Moreover, the Eulerian description provides implementa-

tion advantages in Eulerian numerical model, but it is less

numerically efficient than a semi-Lagrangian implementation.

In the sequel, only the Lagrangian version is considered.

3.2.6. Numerical cost of the PKF forecast step. From a

numerical point of view, one of the main advantages of the

PKF is its low cost: the forecast step only requires the time

propagation of the variance field and the diffusion tensor

field. The diffusion tensor is a symmetric 2�2 (3�3)

matrix in 2-D (in 3-D); hence; there are only 3 (6) fields

in 2-D (in 3-D), corresponding to the upper triangular

components of the symmetric matrix. Thus, the forecast

step describes the time evolution of 4 (7) fields in 2-D (in 3-D).

Compared with the EnKF, where dozens of forecasts have

to be computed during the time propagation of the error

covariance matrix, the PKF only requires a single time in-

tegration, with few additional fields within the state vector

(4 or 7 depending on the dimension of the problem).

Combining the parallel strategy described for Algorithm

1 (as employed in EnKF), and the time evolution of the few

fields required for the time propagation in Algorithm 2

(with also parallel strategy for this propagation), the PKF

appears as a low-cost procedure to describe the covariance

dynamics over the analysis and forecast cycles.

4. Numerical experiments

This section aims at validating the PKF equations. Two

experiments are considered: the validation of the analysis

step (Section 4.1) and the validation of the analysis-forecast

cycle (Section 4.2). The experiments are conducted within a

simplified 1-D setting. The geometry of the domain is an

Earth great circle discretised with n�241 grid points (the

space resolution is then dx�166 km). The PKF analysis

step (Algorithm 1) is done first, followed by the full

PKF loop of analysis and forecasting applied on a linear

advection�diffusion dynamics. These results are compared

with the KF [eqs. (1) and (2)], whose direct computation is

affordable in a low dimensional setting.

For the two experiments, the starting background co-

variance matrix is a heterogeneous covariance matrix,

specified as follows. The variance field is chosen as varying

from 0.5 near 08 to 1.5 near 1808 (see Fig. 1, top panel). The

background error correlation matrix is designed following

the deformation example introduced in Pannekoucke

et al. (2007). Here two choices of homogeneous correlation

function are considered: the Gaussian
�
qðdxÞ ¼ e�jjxjj

2=ð2L2
h
Þ�

and the second-order auto-regressive (SOAR)
�
qðdxÞ ¼ ð1þ

jjdxjj
Lh
Þe�

jjdxjj
Lh

�
correlation functions. The homogeneous length-

scale is set to Lh�500 km with a stretching of c�1.5 (see

Pannekoucke et al., 2007, for details). The resulting back-

ground covariance presents a large length-scale area in the

vicinity of 08 and a small length-scale area around 1808 (see
Fig. 1, bottom panel). In the weather framework, this choice

mimics the situation where small length-scale areas are often

the less predictable.
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4.1. Validation of the analysis step

To test the analysis PKF step, we consider the assimilation

of three observations located at 08, 908 and 1808. The

observational error variance is set to Vo�1 for all these

observations (crosses in Figs. 2 and 3, left panels).

The analysis covariance matrix A resulting from eq. (1)

has been computed and the diagnostic of its variance and

length-scale fields are reproduced (continuous line) in Fig. 2

when the background error correlation is Gaussian and in

Fig. 3 when it is the SOAR function. Assimilating observa-

tions in the system results in damping both the variance (left

panel) and the length-scale fields (right panel). Since the

distance between observations is large enough, their assim-

ilations are deemed independent and three reduction peaks

appear for each fields. For the length-scale, the reduction of

the length-scale, at each observation locations, is accom-

panied by a local overshoot when compared with the initial

background error length-scale field Fig. 1 (bottom panel).

The PKF analysis obtained from Algorithm 1 is repro-

duced in dash-dotted line. The resulting analysis variance

field is superposed with the Kalman’s reference (see left

panels of Figs. 2 and 3). For the length-scale field, the local

reduction due to the assimilation of each observation is

approximately reproduced except the overshoot (see right

panels of Figs. 2 and 3).

Replacing the approximation eq. (12) with the full

formulation eq. (13) in the PKF algorithm (1) improves

the approximation of the length-scale field (dashed line in

right panels of Figs. 2 and 3). This does not modify the

variance field that remains equivalent to the KF (see left

panels of Figs. 2 and 3). It appears that, compared with eq.

(13), eq. (12) provides a satisfactory representation of the

length-scale update. This justifies the use of the first-order

eq. (12) in Algorithm 1.

In the present experiment, the choice of the homoge-

neous correlation function used in the background covar-

iance setting has no impact on the results. This is due to the

fact that the discretised version of the Gaussian and the

SOAR functions are not too different in this case.

The conclusion of this experiment is that the PKF as

described in Algorithm 1 is able to reproduce the main
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Fig. 1. Background error variance field (top) and length-scale

field (bottom).
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Fig. 2. Illustration of analysis error variance (left panel) and length-scale (right panel) for the assimilation of three observations: 0, 45

and 90, when the background correlation is homogeneous and Gaussian. The Kalman reference (continuous line) is compared with the

PKF analysis using the first-order eq. (12) (dash dotted line) and the second-order eq. (13) (dashed line).
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1.5
(a) (b)

1

0.5

0
0° 45° 90° 135° 180° 225° 270° 315° 360°

Geographical position

0° 45° 90° 135° 180° 225° 270° 315° 360°

2000

1500

1000

500

0

2000

1500

1000

500

0

Geographical position

0° 45° 90° 135° 180° 225° 270° 315° 360°

Geographical position

V
ar

ia
nc

e

1.5

1

0.5

0
0° 45° 90° 135° 180° 225° 270° 315° 360°

Geographical position

V
ar

ia
nc

e

Le
ng

th
-s

ca
le

 (
km

)

Le
ng

th
-s

ca
le

 (
km

)

1.5

(c) (d)

1

0.5

0
0° 45° 90° 135° 180° 225° 270° 315° 360°

Geographical position

0° 45° 90° 135° 180° 225° 270° 315° 360°

2000

1500

1000

500

0

2000

1500

1000

500

0

Geographical position

0° 45° 90° 135° 180° 225° 270° 315° 360°

Geographical position

V
ar

ia
nc

e

1.5

1

0.5

0
0° 45° 90° 135° 180° 225° 270° 315° 360°

Geographical position

V
ar

ia
nc

e

Le
ng

th
-s

ca
le

 (
km

)

Le
ng

th
-s

ca
le

 (
km

)

Fig. 4. Diagnosis of the analysis covariance matrix at iterations 1 (a), 15 (b), 30 (c) and 60 (d) in case of a pure advection process. KF

time evolution (continuous line), the PKF (dashed line) and the PhKF (dash dotted line).
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feature of the analysis covariancematrix in terms of variance

and length-scale fields. If a high-order formulation improves

the PKF update of the length-scale, this remains costly for

practical applications. Therefore, only the update proposed

by Algorithm 1 is considered.

4.2. Covariance evolution over the analysis and

forecast cycles within a simple linear advection�
diffusion chemical model

To mimic situations encountered in chemical transport

model, a simple advection�diffusion transport of a passive

species is considered. The dynamics of the concentration

a(x,t) is given by

@taþ c@xa ¼ j@2
xa; (27)

where c denotes the velocity and k the diffusion rate. For

the simulation, the velocity is set to c�1 and the time step

dt is fixed to the advection time step dtadv�dx/c. The dif-

fusion rate is set so that the diffusion time step dtdiff�dx2/k

is equal to six times the advection time scale dtadv.

The observational network considered here is set to

measure half the domain from 1808 to 3608, with one

observation per grid-point.

The initial background is assumed to be equivalent to the

one described in the previous subsection. The correlations

used are Gaussian (the homogeneous correlation length-

scale is still fixed to 500 km).

The pure advection case (k�0), in Fig. 4, and the full

advection�diffusion case (k�0), in Fig. 5, are successively

considered. For the two situations, the results of the

covariance dynamics as described from the KF equations

are in continuous lines. The results obtained from the PKF
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Fig. 5. Diagnosis of the analysis covariance matrix at iterations 1 (a), 15 (b), 30 (c) and 60 (d) in case of an advection�diffusion
dynamics. KF time evolution (continuous line), the PKF (dashed line) and the PhKF (dash dotted line).
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analysis and forecast steps are reproduced in dashed line.

The KF and the PKF can be compared with the update

process proposed by Dee (2003) (see Ménard et al., 2000),

thereafter called parametric homogeneous Kalman filter

(PhKF), where only the variance is updated while the

correlation function is isotropic and remains constant

(dashed-dotted line).

The pure advection (Fig. 4) shows that the two KF

approximations lead to equivalent results. The PKF pro-

vides a better approximation of the KF equations than the

Dee (2003) scheme.

The advantage of the PKF compared with the Dee (2003)

scheme appears when the diffusion is switched on. For this

case, the PKF is able to reproduce the variance attenuation

due to the diffusion process, while the Dee (2003) scheme

fails to reproduce the KF reference. Compared with the KF,

the PKF is able to reproduce the time increase of the length-

scale due to the physical diffusion term k�0.

5. Conclusion

We have introduced the PKF, where a parametric repre-

sentation of the error covariance is evolved through the

analysis and the forecast steps of the KF. This applies

to the advection�diffusion of a passive tracer considered

here as a simplified version of chemical transport model.

This parametric approach reduces to a description of the

dynamics of the variance field and of the local diffusion

tensor, when the covariance matrix is modelled with a

diffusion equation. Compared with the classical KF fore-

cast step, the numerical cost of the parametric forecast step

is hugely reduced and in fact much cheaper than a typical

EnKF implementation. In 2-D (in 3-D), only four (seven)

fields are required to proceed for the time evolution: the

variance field and the fields of the upper triangular com-

ponents of the local symmetric diffusion tensor. The

dynamics has been described under a Lagrangian and an

Eulerian formulation.

The analytic formulation has been illustrated within a

simple 1-D testbed where a passive tracer evolves through

an advection�diffusion equation and is observed over a

heterogeneous network. Compared with a full KF, the

PKF shows that the parametric formulation is able to

reproduce the main features of the real variance and of the

real length-scale dynamics.

The main application of these results is to contribute to

the development of robust data assimilation schemes for

chemical transport models: with this formulation it is easy

to evolve the background error covariance matrix at low

numerical cost without an ensemble or localisation and yet

account for flow-dependency. When chemistry is included,

the PKF may actually become even more appealing, as the

issue of localisation between species is no simple solution.

Beyond the application to chemical transport models,

this parametric approach will certainly feed new develop-

ments in covariance localisation, which is an active field of

research in data assimilation with the rise of ensemble-based

four-dimensional variational data assimilation scheme. It

also provides a simple framework for adaptive observation

where the impact of new observations is approximated

by using the parametric analysis step provided here. Further

developments will be considered to incorporate, in part,

non-linearities in the propagation process as well as to

address the balance issue: the treatment of the simple linear

advection�diffusion can be seen as the outline of the

systematic description along the tangent-linear dynamics.
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7. Appendix A

A. Theoretical formulation of the metric tensor

In this section, and without loss of generality, the variance

field e2
x is assumed to be homogeneous and equal to

one. For smooth error field, the Taylor expansion, using

Einstein’s summation convention, writes exþdx¼ exþ @xi exdxiþ
1
2
@2

xixj exdxidxj þ oðjjdxjj2Þ. After multiplication by ox this leads

to the correlation function

qðx; x þ dxÞ¼
0

e2
xþex@xi exdxiþ

1

2
ex@

2
xixj exdxidxj þ oðjjdxjj2Þ:

Since @xi e2
x ¼ 2ex@xi ex , the commutation rule @xi ð��Þ ¼ @xi ð�Þ

and the homogeneity of the variance field e2
x imply that

@xi e2
x ¼ @xi e2

x ¼ 0 ¼ 2ex@xi ex or ex@xi ex ¼ 0. Similarly, by

using the identity @2
xixj e2

x ¼ @xi ð2ex@xj exÞ ¼ 2@xi ex@xj exþ
2ex@

2
xixj ex , the commutation rule and the homogeneity of

the variance field lead to @2
xixj e2

x ¼ 0 ¼ 2@xi ex@xj ex þ 2ex@
2
xixj ex

and then ex@
2
xixj ex ¼ �@xi ex@xj ex . Then, the Taylor expansion

of the correlation takes the form

qðx; x þ dxÞ¼
0

1� 1

2
@xi ex@xj exdxidxj þ oðjjdxjj2Þ;

where from the identificationwith qðx; x þ dxÞ¼1�1
2
jjdxjj2g x

þ
oðjjdxjj2Þ, it results that ðg xÞij ¼ @xi ex@xj ex . In the general

case where the variance of ox is not one, then the error is

replaced by the normalised error ~ex ¼ ex=rx that is of variance

one, and

ðg xÞij ¼ @xi ~ex@xj ~ex : (A1)
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B. Derivation of analysis variance field

The analysis variance field is thus given by

ea
xe

a
x ¼eb

xe
b
x þ b2

j ðxÞ V b
j þ V o

j

� ��2

ðeo
j � eb

j Þ
2

þ 2bjðxÞ V b
j þ V o

j

� ��1

eb
xðeo

j � eb
j Þ:

With the classical assumption of observational error

and background error decorrelation, it follows that

ðeo
j � eb

j Þ
2 ¼ V o

j þ V b
j and

eb
xðeo

j � eb
j Þ ¼ �bjðxÞ ¼ �qjðxÞrb

xr
b
j :

The analysis variance then writes

V a
x ¼ V b

x 1� qjðxÞVb
j V b

j þ V o
j

� ��1
� �

: (B1)

C. Derivation of analysis length-scale field in 1D

Analysis length-scale at a given position x is given by

ðLa
xÞ
�2 ¼ ð@xeea

xÞ
2
; (C1)

where eea
x ¼ ea

x=r
a
x, also written as

ðLa
xÞ
�2 ¼ 1

V a
x

ð@xea
xÞ

2 � 1

V a
x

ð@xr
a
xÞ

2
; (C2)

(where we have used ea
x@xea

x ¼ ra
x@xr

a
x and ðea

xÞ
2 ¼ V a

x ).

Since the update of the analysis variance field, resulting

from the assimilation of an observation located at grid-

point xj is given by eq. (10)

V a
x ¼ V b

x 1� qb
j ðxÞ

2
V b

j V b
j þ V o

j

� ��1
� �

; (C3)

and the analysis error is given by

ea
x ¼ eb

x þ qb
j ðxÞrb

xr
b
j V b

j þ V o
j

� ��1

ðeo
j � eb

j Þ; (C4)

whereby the full computation of the analysis length-scale

can be managed.

C.1. Derivation of length-scale formulation

In order to consider only the variance field, using

@xr
a ¼ 1

2ra @xV a, it follows that eq. (C2) takes the form

ðLa
xÞ
�2 ¼ 1

V a
x

ð@xea
xÞ

2 � 1

4ðV a
x Þ

2
ð@xV a

x Þ
2
: (C5)

From eq. (C4), and using ðeo
j � eb

j Þ
2 � V b

j þ V o
j and

ðeo
j � eb

j Þ@xeb � �@xbjðxÞ ¼ �rb
j @xðqb

j ðxÞrb
xÞ, it results in

ð@xea
xÞ

2 ¼ ð@xeb
xÞ

2 � @xðqb
j ðxÞrb

xÞ
h i2

V b
j V b

j þ V o
j

� ��1

:

From

ðLb
xÞ
�2 ¼ 1

V b
x

ð@xeb
xÞ

2 � 1

4 V b
xð Þ2
ð@xV b

x Þ
2
;

it follows that

ð@xeb
xÞ

2 ¼ V b
x ðLb

xÞ
�2 þ 1

4V b
x

ð@xV b
x Þ

2
:

Hence, the analysis length-scale writes

ðLa
xÞ
�2 ¼V b

x

V a
x

ðLb
xÞ
�2 þ 1

4V b
x V a

x

ð@xV b
x Þ

2

� 1

V a
x

@xðqb
j ðxÞrb

xÞ
h i2

V b
j V b

j þ V o
j

� ��1

� 1

4 V a
xð Þ2
ð@xV a

x Þ
2
:

(C6)

C.2. Derivation under local homogeneity assumption

To simplify the analytic derivation, a local homogeneity

assumption is considered for the background error variance

field.

This local homogeneity assumption for the background

variance field means that @xV b
x ¼ 0, while V b

j is not globally

constant or 1
rb @xr

b
� ��1

x
�Lb

x

Hence, removing all spatial derivatives of sb leads to the

approximation of analysis length-scale

ðLa
xÞ
�2 �V b

x

V a
x

ðLb
xÞ
�2 � V b

x

V a
x

@xq
b
j ðxÞ

� �2

V b
j V b

j þ V o
j

� ��1

� 1

4ðV a
x Þ

2
ð@xV a

x Þ
2

(C7)

Under local homogeneity assumption, the third term of the

length-scale can be simplified: it can be shown that

@xV a
x ¼ �2qb

j ðxÞ@xq
b
j ðxÞV b

x Vb
j V b

j þ V o
j

� ��1

;

leading to

ðLa
xÞ
�2 �V b

x

V a
x

ðLb
xÞ
�2 � V b

x

V a
x

@xq
b
j ðxÞ

� �2

V b
j V b

j þ V o
j

� ��1

� ðV
b
x Þ

2

ðV a
x Þ

2
ðqb

j ðxÞ@qb
j ðxÞÞ

2ðV b
j Þ

2
V b

j þ V o
j

� ��2

:

(C8)

C.3. Leading order and extension in dimension d

A crude, but simpler, approximation of the length-scale is

obtained by removing all the partial derivative of the

correlation function, leading to

ðLa
xÞ
�2 � V b

x

V a
x

ðLb
xÞ
�2
; (C9)

that is exact in x�xj (when qb
j is flat in xj).
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From the last 1-D expression for the analysis length-

scale, one can deduce that an approximation, in dimen-

sion d, of the analysis metric tensor g a
x defined by

qa
xðdxÞ¼

0
1� 1

2
jjdxjj2g a

x
þ oðjjdxjj2Þ (in dimension d) is given by

g a
x �

Vb
x

Va
x

g b
x ; (C10)

where g b
x is the background error metric tensor at x defined

by qb
xðdxÞ¼

0
1� 1

2
jjdxjj2g b

x
þ oðjjdxjj2Þ.

D. Derivation of the Eulerian version of the PKF forecast

step

First, we combine the Lagrangian version of eqs. (20) and

(24) to obtain the Eulerian version of the diffusion tensor

field dynamics:

Since D�I�dtru, eq. (20) writes n̂nnnb
xðtþ dtÞ ¼

Iþ dtruð Þnnnnb
D�1ðxÞðtÞ Iþ dtruð ÞT leading to bnnnnb

xðtþ dtÞ¼
0

nnnnb
D�1ðxÞðtÞþ ðruÞnnnnb

D�1ðxÞðtÞþnnnnb
D�1ðxÞðtÞðruÞT

h i
dtþ oðdtÞ. But

at leading order, D�1(x)�x�u(x)dt and nnnnb
D�1ðxÞðtÞ¼0

nnnnb
xðtÞ � ðurnnnnbÞxdtþ oðdtÞ. Hence, combining in eq. (24),

the infinitesimal dynamics of the diffusion tensor is given by

nnnnb
xðtþ dtÞ¼

0
nnnnb

xðtÞ � ðu:rnnnnbÞxdtþ

ðruÞnnnnb þ nnnnbðruÞT
� �

x
dtþ 2jjjjxdtþ oðdtÞ;

(D1)

from which it results that the equivalent PDE is

@tnnnn
b þ u:rnnnnb ¼ nnnnbðruÞT þ ðruÞnnnnb þ 2jjjj: (D2)

Now, we combine eqs. (21) and (25) to obtain the Eulerian

version of variance field dynamics.

By using the arguments first developed in the beginning

of the previous paragraph, eq. (21) writes

V̂ b
x ðtþ dtÞ¼

0
V b

x ðtÞ � u:rV b
x ðtÞdtþ oðdtÞ: (D3)

The difficulty now is to replace the ratio of matrix

determinant in eq. (25). Using the algebraic property that

the determinant of two invertible matrices P and Q verifies

jP�1
Qj�jQj/jPj, it follows that

jbnnnnb
xðtþ dtÞj
jnnnnb

xðtþ dtÞj
¼ jðnnnnb

xÞ
�1ðtþ dtÞbnnnnb

xðtþ dtÞj; (D4)

and from eq. (24), it follows that jðnnnnb
xÞ
�1ðtþ dtÞbnnnnb

x

ðtþ dtÞj1=2 ¼ jI� 2ðnnnnb
xÞ
�1ðtþ dtÞjjjjxdtj1=2

. Now the identity

jexp (P)j1/2�exp (Tr(P)/2), where Tr denotes the matrix

trace operator, implies at leading order that

jI� 2ðnnnnb
xÞ�1ðtþ dtÞjjjjðxÞdtj1=2¼

0

1� Tr ðnnnnb
xÞ
�1ðtþ dtÞjjjjðxÞ

h i
dtþ oðdtÞ:

(D5)

Hence, combining this last equation with eq. (21) implies

the infinitesimal dynamics

V bðx; tþ dtÞ¼
0

V bðx; tÞ � u:rV bðx; tÞdt

� Vbðx; tÞTr ðnnnnb
xÞ
�1ðtÞjjjjðxÞ

h i
dtþ oðdtÞ;

(D6)

whose equivalent PDE is given by

@tV
b þ u:rV b ¼ �VbTr ðnnnnbÞ�1jjjj

h i
: (D7)

From this analysis, it results that the Lagrangian algorithm

2 is equivalent to the integration over the range [0,t] of the

Eulerian-coupled system of equation

@tnnnn
b þ u:rnnnnb ¼ nnnnb ruð ÞTþ ruð Þnnnnb þ 2jjjj;

@tV
b þ u:rV

b ¼ �V bTr nnnnbð Þ�1
jjjj

h i
;

(

(D8)

with the initial conditions given by V b
x ð0Þ ¼ V a

x and

V b
x ð0Þ ¼ V a

x , and driven by the wind field u.
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