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A. T. Weaver, S. Gürol, J. Tshimanga, M. Chrust, A. Piacentini

Technical Report TR/PA/17/119

Publications of the Parallel Algorithms Team

http://www.cerfacs.fr/publication/



“Time”-parallel diffusion-based correlation operators
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Abstract

Correlation operators based on the solution of an implicitly formulated diffusion equation
can be implemented numerically using the Chebyshev iteration method. The attractive prop-
erties of the algorithm for modelling correlation functions on high-performance computers have
been discussed in a recent paper. The current paper describes a straightforward variant of that
algorithm that allows the matrix-vector products involved in the sequential pseudo-time dif-
fusion process to be performed in parallel. Contrary to the original algorithm, which requires
solving a sequence of linear systems involving a symmetric positive-definite (SPD) matrix,
the “time”-parallel algorithm requires solving a single linear system involving a nonsymmetric
positive-definite (NSPD) matrix. The key information required by the Chebyshev iteration for
solving the NSPD problem is an estimate of the extreme eigenvalues of the NSPD matrix. For
the problem under consideration, the extreme eigenvalues of the NSPD matrix are the same as
those of the original SPD matrix, and can be pre-computed using a Lanczos algorithm. The
convergence properties of the algorithm are studied from a theoretical perspective and using
numerical experiments with a diffusion-based covariance model employed with a variational
data assimilation system for the global ocean. Results suggest that time-parallelization can
reduce the run-time of an implicit diffusion-based correlation operator by greater than a fac-
tor of two. It can be implemented practically using a hybrid parallelization approach that
combines Message Passing Interface tasks in the spatial domain with Open Multi-Processing
threads spanning the pseudo-time dimension. The sensitivity of the results to preconditioning,
to the choice of first guess and to the stopping criterion is discussed.

1 Introduction

Correlation operators are central to variational data assimilation. In three- and four-dimensional
variational data assimilation (3D-Var and 4D-Var), they are required for modelling background
error [Berre, 2015]. In weak-constraint 4D-Var, they are needed for representing errors in the
numerical model as well as background error [Rabier and Fisher, 2015]. Developing correlation
operators, and inverse correlation operators, for representing observation error is an area attracting
increasing attention for improving the use of satellite data in 3D-Var and 4D-Var [Desroziers, 2015].
Correlation operators are also fundamental to ensemble-variational assimilation (EnVar) where they
are needed to localize low-rank sample covariance matrices constructed from ensemble perturbations
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[Lorenc, 2015]. For Monte Carlo applications, the “square-root” of a correlation operator provides a
practical tool for generating random samples that can be used to perturb model input parameters.
With these different applications comes the need to develop general correlation operators that can
represent diverse error structures, are appropriate for systems with large state vectors, and can
execute efficiently on high-performance computers.

Correlation operators derived from diffusion-like operators have been developed extensively over
the years for ocean and atmospheric data assimilation [Carrier and Ngodock, 2010; Dobricic and
Pinardi, 2008; Purser et al., 2003a,b; Weaver and Courtier, 2001]. Diffusion-based correlation
operators have also been developed in other fields, such as seismic inversion [Bui-Thanh et al.,
2013], uncertainty quantification [Gmeiner et al., 2017] and geostatistics [Lindgren et al., 2011].
Diffusion operators can be formulated using explicit or implicit discretization schemes, but implicit
schemes are more flexible and robust for correlation modelling [Mirouze and Weaver, 2010; Weaver
and Mirouze, 2013]. The current study focuses on implicitly formulated diffusion operators and
their application to variational data assimilation in global ocean models.

Weaver et al. [2016] (hereafter WTP16) proposed the use of an iterative algorithm based on
the Chebyshev iteration (CI) method [Gutknecht and Röllin, 2002] to provide an approximate
solution of each symmetric positive-definite (SPD) linear system in the M -step sequence of an
implicitly formulated diffusion operator. CI has several attractive properties for the problem under
consideration.

1. WTP16 show that the convergence properties of CI are similar, albeit slightly inferior, to those
of conjugate gradients (CG) for the implicit diffusion problem under consideration. CG re-
quires the evaluation of inner products on each iteration, for estimating the algorithm param-
eters and, possibly, for re-orthogonalizing residual vectors to combat the effects of round-off
error. In a parallel domain decomposition, these inner products require costly global Message
Passing Interface (MPI) communications, in addition to the local MPI communications be-
fore each system matrix application. CI requires only local MPI communications and is thus
better suited for high-performance computers.

2. CI has small memory requirements and is straightforward to implement as it only requires
the ability to perform matrix-vector multiplications with the implicit diffusion system matrix.
This can be a major practical advantage over other methods such as multigrid or direct solvers
that require structural knowledge of the system matrix and/or the availability of a hierarchy
of grids. This is the case for global ocean models where complex boundary geometry and
non-standard grids make these alternative methods less practical.

3. CI is a linear solver. Fixing the total number of CI iterations (K) and formulating the
complete correlation operator as a product UUT, where CI is used to solve the sequence of
M/2 linear systems in U and the adjoint of CI is used to solve the sequence of M/2 linear
systems in UT, allows the intrinsic SPD property of a correlation matrix to be preserved
numerically regardless of the desired solution accuracy (value of K). WTP16 show that
adequate solutions can be obtained using a modest convergence criterion (value of K). The
SPD-preserving formulation is thus especially convenient for reducing the cost of the operator
without introducing numerical inaccuracies in the gradient of the cost function required by
the variational minimization algorithm.

CI is a parameter-dependent method that requires estimates of the extreme eigenvalues of the
implicit diffusion system matrix. These can be estimated prior to entering the variational mini-
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mization algorithm using a Lanczos method [Saad, 2003, pp. 185–186]. Alternatively, the simpler
power method [Golub and Van Loan, 1996, pp. 330–332] can be used to estimate the maximum
eigenvalue, which is sufficient since the minimum eigenvalue of the system matrix is approximately
equal to one.

The implicit diffusion operator described in WTP16 is now a standard component of NEMOVAR
[Balmaseda et al., 2013; Mogensen et al., 2012; Waters et al., 2015], a variational data assimilation
platform for the Nucleus for European Modelling of the Ocean (NEMO) model [Madec, 2008].
The new operator produces more realistic correlations near complex boundaries and has improved
scalability properties compared to the previous implicit diffusion operator that was built from
a product of one-dimensional implicit diffusion (recursive filter-like) components. Nevertheless,
further improvements are necessary to reduce the computational cost of the correlation model for
applications involving high-resolution models or “large” correlation length scales. Large length
scales are typical in a multi-scale covariance model formulation [Mirouze et al., 2016], and are
often required in the localization operator of EnVar, especially when using a large ensemble size
[Ménétrier and Auligné, 2015] or scale-dependent localization [Buehner and Shlyaeva, 2015]. Large
length scales combined with a high-resolution model will increase the condition number of the
system matrix, with the consequence of slowing down, possibly significantly, the convergence rate
of CI.

There are different ways the cost of the correlation operator can be reduced while still remaining
within the framework of CI. One possibility is to employ selective use of single precision in the CI
solver. Preconditioning is another possibility, with domain decomposition preconditioners, such as
Additive Schwarz or Restricted Additive Schwarz [Cai and Sarkis, 1999], seemingly well suited for
the problem at hand. Furthermore, for large-scale correlations, the diffusion computations could
be done more economically on a grid with resolution comparable to the scale itself, which could be
much coarser than the resolution of the native analysis grid.

In this paper we explore another approach, which aims at improving the parallel aspects of the
algorithm to allow for faster execution of the correlation operator on high-performance computers.
In particular, we show how the implicit diffusion problem can be reformulated in a way that allows
the costly matrix-vector products involved in the M -step (pseudo-time) diffusion processes to be
performed in parallel on each iteration of the CI solver. The approach falls into the general class
of time-parallel algorithms, whose development is an active area of research in numerical modelling
(for a review see Gander [2015]) and more recently in data assimilation [Fisher and Gürol, 2017;
Rao and Sandu, 2016]. The time-parallel formulation of implicit diffusion presented in this paper
builds on an idea described in [Zhu, 1994, chapter 5], which first involves recasting the sequential
M -step implicit diffusion operator in terms of a single nonsymmetric positive-definite (NSPD) linear
system. The new aspects in this paper are the application of this technique to correlation modelling
as well as the use of CI to solve the resulting NSPD system. Furthermore, we complement the latter
with a theoretical analysis of the convergence properties of CI for this particular NSPD problem.

The structure of the paper is as follows. The formulation of a correlation matrix in terms of
an implicitly formulated diffusion operator is described in section 2. The beginning of this section
contains background material required to develop the NSPD formulation that is presented towards
the end of the section. The CI algorithm used to solve the NSPD problem is described in section 3.
Different aspects of the algorithm are discussed, including its theoretical convergence properties,
and the choice of preconditioners and first guess. Numerical experiments using the NEMOVAR
system are presented in section 4. The NSPD formulation is evaluated in terms of convergence
behaviour and solution accuracy, and compared to the standard SPD formulation, which is the
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benchmark. Section 5 gives a summary and discussion. Appendix A describes a minor correction to
the CI algorithm that was derived and applied in WTP16. Appendix B outlines the mathematical
basis that ensures convergence of CI for the NSPD problem under consideration. Appendix C
describes the properties of a block-diagonal preconditioning matrix that can be considered as a
cheaper alternative to the ideal, block lower triangular form of the preconditioning matrix used in
the experiments.

2 Diffusion-based correlation operators

2.1 General formulation and background material

The starting point is the general factored form of a univariate N ×N correlation matrix C con-
structed from a self-adjoint filter L = L1/2 L1/2 (see WTP16):

C = Γ1/2 L1/2 W−1(L1/2
)T

Γ1/2 (1)

where W defines the matrix of grid-dependent weights associated with the discrete inner product
with respect to which L is self-adjoint (L = W−1 LT W), and Γ = Γ1/2Γ1/2 is a diagonal matrix of
normalization factors to ensure that the diagonal elements of C are approximately equal to one. In
this paper we consider the class of self-adjoint filters built from an elliptic operator that describes
implicit diffusion over a pseudo-time step interval 0 ≤ m ≤M , where m is an integer and M is
taken to be even in order to obtain a practical expression for the operator L1/2.

For the implicit diffusion-based filters, L1/2 and
(
L1/2

)T
=
(
LT
)1/2

have the specific form

L1/2 =
(
A−1

)M/2(
L1/2

)T
=

((
AT
)−1)M/2

 (2)

where the elements of the self-adjoint matrix A are associated with the discrete representation of
the operator 1−∇ · κ∇ involving the gradient operator ∇, divergence operator ∇·, and diffusion
tensor κ. The elements of κ have physical units of length squared. The correlation functions
described by the implicit diffusion model are closely related to those from the Matérn family in
Rd where d determines the dimensionality of the gradient and divergence operators [Guttorp and
Gneiting, 2006; Weaver and Mirouze, 2013]. If κ is constant and boundaries are ignored then the
kernel (correlation function) of the correlation operator C is given by

c
d
(r) =

21−M+d/2

Γ(M−d/2)
rM−d/2KM−d/2

(
r
)

(3)

where r =
√

(x− x′)T κ−1 (x− x′) is a nondimensional distance measure between points x and x′

in Rd, KM−d/2(·) is the Bessel function of the second kind of order M − d/2, and Γ(·) is the Gamma
function. For this special case, the normalization matrix in Eq. (1) is simply Γ = γ

d
I
N

where I
N

is
the N ×N identity matrix, and

γ
d

= 2dπd/2
Γ(M)

Γ(M − d/2)

√
|κ|,

|κ| denoting the determinant of κ.
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The directional length scales of the correlation functions are controlled by κ, which is a d× d
symmetric positive-definite (and hence invertible) matrix. The fatness of the tails of the correlation
functions, which in spectral space is related to the decay rate of the correlation spectrum at high
wavenumbers, is controlled by the pseudo-time parameter M . There is a simple relationship between
κ and the inverse of the tensor D−1 describing the curvature of the correlation function (3) near
its peak [Weaver and Mirouze, 2013]:

κ =

(
1

2M − d− 2

)
D. (4)

Michel et al. [2016] refer to D−1 as the local correlation tensor (LCT), while Weaver and Mirouze
[2013] refer to the inverse of the LCT (D) as the Daley tensor in view of its interpretation as a
generalized length scale following a conventional definition given in the classical textbook by Daley
[1991]. The LCT or Daley tensor is of significant practical interest since it can be estimated from
an ensemble of simulated errors [Belo Pereira and Berre, 2006; Michel et al., 2016; Weaver and
Mirouze, 2013; Yaremchuk and Nechaev, 2013]. Equation (4) then provides a way of defining the
diffusion tensor given an estimate of D and a specific value of M . Equation (4) can also be used
approximately to introduce spatial dependence in κ when spatially varying estimates of D are
available.

In the rest of the paper, we are concerned with finding efficient algorithms for performing

matrix-vector multiplications with L1/2, and the corresponding adjoint operator
(
L1/2

)T
. Using

the self-adjointness identity, A = W−1 AT W, it is possible to transform (2) into the equivalent
form (see WTP16)

L1/2 = W−1/2 L̂1/2 W1/2(
L1/2

)T
= W1/2 L̂1/2 W−1/2

}
, (5)

which involve symmetric matrices

L̂1/2 =
(
Â−1

)M/2
=
(
L̂1/2

)T
Â = W1/2 A W−1/2 = ÂT

}
. (6)

This alternative representation, which involves a single inversion of the SPD matrix Â instead of
a pair of inversions of self-adjoint positive-definite matrices A and AT, is more convenient for the
iterative algorithms considered in this paper.

2.2 Symmetric and nonsymmetric formulations

We will work primarily with the operator L̂1/2 in what follows, which will require frequent reference
to the half-interval parameter M/2. To lighten notation, we introduce the following definition:

M ′ ≡M/2.

Let {ψ
m
}, m = 1, . . . ,M ′, denote the sequence of N -dimensional vectors generated by the M ′-step

diffusion operator L̂1/2 acting on a given input vector ψ
0
. To apply L̂1/2, WTP16 propose an

iterative approach to solve each of the SPD linear systems involved in the M ′-sequence of implicit
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diffusion steps:

Âψ
1

= ψ
0

Âψ
2

= ψ
1

...

Âψ
M′ = ψ

M′−1

 . (7)

Note that Â itself depends on M through the parameterization (4) and that the condition number

of Â will increase when the value of M decreases (see Fig. 5a in WTP16). Apart from sharing the

same N × N SPD matrix Â, the equations in (7) are linked in the sense that the solution of one
equation constitutes the right-hand side (rhs) of the next equation in the sequence. The algorithm
is purely sequential as the equations need to be solved one after another, following the sequence of
increasing pseudo-time steps.

Our goal in this paper is to break this temporal chaining between the consecutive solution steps
of the system in order to allow the matrix-vector products involving Â to be carried out in parallel.
For this purpose, we start by reformulating (7) as a single large linear system. Following Zhu [1994],
this can be done by recasting the system (7) as

Âψ
1

= ψ
0

−ψ
1

+ Âψ
2

= 0
...

−ψ
M′−1

+ Âψ
M′ = 0

 ,

or, in compact form,
AΨ = ζ (8)

where

Ψ =


ψ

1

ψ2

...
ψ

M′

 , ζ =


ψ

0

0
...
0


and

A =


Â

−I
N

Â
. . .

. . .

−I
N

Â

 . (9)

The system matrix (9) is NSPD and of size NM ′ ×NM ′. In what follows, and for reasons that
will become clearer later in the paper when discussing the actual solution algorithm, we will refer
to Eq. (8) as a parallel linear system.

The solution of Eq. (8) is a vector that concatenates the solutions of the individual equations
in system (7). The solution of interest is the final state ψ

M′ produced by the implicit diffusion
process acting on the initial state ψ0 . To emphasize this point, we can write Eq. (8) explicitly as a
transformation from ψ0 to ψ

M′ using the notation

AΨ = Eψ0

ψ
M′ = FTΨ

}
, (10)
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where
Eψ0 = ζ,

E and F being rectangular matrices of size NM ′ ×N , given by

E =


I
N

0
N

...
0

N

 and F =


0

N

...
0

N

I
N

 .

From Eq. (10), the operator L̂1/2 in Eq. (1) can be formally identified as

L̂1/2 =
(
L̂1/2

)T
= FT A−1 E. (11)

It is straightforward to show that A−1 has the following block lower triangular structure:

A−1 =


Â−1(
Â−1

)2
Â−1

...
...

. . .(
Â−1

)M ′ (
Â−1

)M ′−1 · · · Â−1

 . (12)

The action of the extension operator E and restriction operator FT in Eq. (11) is to extract the

element in the lower left-hand corner of the matrix (12), which shows that L̂1/2 defined by Eq. (11)

is equivalent to L̂1/2 in Eq. (6).
An important point for the iterative solution methods considered in the next section is that

the NSPD matrix A and SPD matrix Â have the same eigenvalues. This result follows from
the particular block triangular structure of A, which leads to a simple relationship between the
characteristic polynomials of A and Â:

det
(A− λ I

NM′

)
=
(
det (Â− λ I

N
)
)M ′

(13)

where det( P ) stands for the determinant of the square matrix P, and λ is an eigenvalue. Equa-

tion (13) implies that the eigenvalues of A are identical to those of Â, with algebraic multiplicity
at least equal to M ′.

2.3 Hybrid time-sequential/time-parallel diffusion

It is possible to define L̂1/2 (and
(
L̂1/2

)T
) as a combination of time-sequential and time-parallel

operations using the formulation

L̂1/2 =

L∏
l=1

(
FT

ml
A−1

ml
E

ml

)
(
L̂1/2

)T
=

1∏
l=L

(
ET

ml

(AT
ml

)−1
Fml

)


(14)
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where L defines the number of sequential steps (1 ≤ L ≤M ′), and ml is an integer (1 ≤ ml ≤M ′)
that defines the block size of the mlN ×mlN matrix Aml

and of the mlN ×N matrices Eml

and Fml
. For a given M , the values of ml and L must satisfy

∑L
l=1ml = M ′. The purely time-

sequential formulation corresponds to L = M ′ and ml = 1, l = 1, . . . ,M ′, while the purely time-
parallel formulation corresponds to L = 1 and m1 = M ′. Since the number of blocks can be different

on each step, the order of the operations is important and must be reversed in
(
L̂1/2

)T
in order to

maintain symmetry. This is ensured in Eq. (14) by reversing the bounds of the multiplication index

l in the expression for
(
L̂1/2

)T
.

3 The solution algorithm

3.1 The Chebyshev iteration

The solution algorithm considered in this study is CI. WTP16 discuss its advantages over other
methods for solving the linear systems in (7) within the context of correlation modelling for varia-
tional data assimilation. Here, we summarize the salient features of the method that are relevant
to the current study.

First, consider the sequential system (7). The iterate ψk
m

produced by CI at iteration k on the
mth step of the sequence is such that its error ek

m
= ψk

m
−ψ∗

m
with respect to the exact solution

on the mth step, ψ∗
m

= Â−1ψm−1 , is

ek

m
= ϕ

k
(Â) e0

m
(15)

where ϕ
k

is the polynomial that is the unique solution of

min
ϕ(0) = 1

deg(ϕ) ≤ k

max
λ∈[λmin,λmax]

|ϕ(λ)|.

In words, ϕ
k

is the polynomial of degree at most k and with unit value at the origin, which has the
smallest maximum amplitude on the interval bounded by the minimum (λmin) and maximum (λmax)

eigenvalues of Â. The kth shifted and scaled Chebyshev polynomial of the first kind provides the
unique solution of this problem [Gergelits and Strakoš, 2014]. Equation (15) can also be expressed
as

rk

m
= ϕ

k
(Â) r0

m
(16)

where
rk

m
= Âψk

m
−ψ

m−1
= Â ek

m

is the residual vector.
The practical implementation of CI involves exploiting recurrence relations such that the poly-

nomials ϕ
k

themselves never need to be computed explicitly (see appendix A in WTP16, and ap-
pendix A in this paper which describes a minor correction to the algorithm presented in WTP16).
All that is needed are estimates θmin and θmax of the extreme eigenvalues λmin and λmax on which
the parameters of CI depend. The extreme eigenvalues can be estimated accurately using a Lanczos
algorithm.

The convergence rate of CI is independent of the rhs. Exploiting this property, WTP16 recom-
mend using CI with a fixed number of iterations (K) to solve each of the M ′ linear systems in L̂1/2
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and using the adjoint of CI with the same number of iterations to solve the M ′ linear systems in(
L̂1/2

)T
. A modest value of K (e.g., chosen to achieve a 10−3 or 10−4 reduction in the norm of

the residual) is generally sufficient to obtain an acceptable representation of the correlation matrix
(see Fig. 10 in WTP16). The fixed-iteration implementation of CI, together with its adjoint, allows
the SPD property of C to be preserved exactly in numerical applications. This feature is especially
convenient for reducing the computational cost of CI without introducing numerical inaccuracies in
the gradient-based minimization algorithms used in variational assimilation. Furthermore, using a
stopping criterion based on a fixed number of iterations rather than the residual norm implies that
CI is entirely free of scalar product evaluations. As such, in a parallel domain decomposition, CI
does not require any costly global MPI communications.

CI may be used to solve NSPD linear systems as well as SPD linear systems, provided that the
eigenvalues lie in the open right half of the complex plane [Manteuffel, 1977]. For the time-parallel
implicit diffusion problem, the eigenvalues are real and, as discussed earlier, identical to those of
the SPD matrix Â. For the augmented system, the iterate Ψ

k
produced by CI at iteration k is

such that (cf. Eq. (15))1

E
k

= ϕ
k
(A)E

0
(17)

where E
k

= Ψ
k
−Ψ∗ is the error with respect to the exact solution Ψ∗ = A−1ζ. Furthermore, and

in analogy with Eq. (16),

Ξ
k

= ϕ
k
(A) Ξ

0
(18)

where

Ξ
k

= AΨ
k
− ζ =

 ξk
1

...
ξk

M′


is the residual vector on the kth iteration.

The CI algorithm applied to the NSPD linear system is presented in Algorithm 1. This algorithm
is similar to Algorithm 2 in WTP16 but is written in terms of the NSPD matrix and with a corrected
value for the β

1
coefficient (see appendix A for an explanation). The convergence properties of

Algorithm 1 are discussed in the next section, with mathematical details given in appendix B.
When the stopping criterion is based on a fixed number of iterations K, Algorithm 2 can be used
to compute the α

k
and β

k
coefficients prior to entering the main computational loop, which is

convenient for constructing the adjoint of CI. The resulting fixed-iteration version of CI is given in
Algorithm 3. Further discussion about the adjoint of the algorithm is deferred until section 3.5.

The application of A is the most costly step in Algorithm 3. This cost is dominated by the
application of the M ′ block-matrices Â and by the local MPI communications that are required,
before Â is applied, to update the halos of the spatial subdomains in a parallel decomposition
(see appendix C in WTP16). The application of Â and the local MPI communications are applied
separately to each subset of the input vector that corresponds to a particular time level. These oper-
ations can be performed in parallel to reduce the overall run-time. This is the key point that makes
Algorithm 3 potentially advantageous compared to the time-sequential diffusion algorithm based

1Note the notation here where a subscript (superscript) denotes the CI iteration counter k on vectors associated
with the NSPD (SPD) system. The subscript on vectors associated with the SPD system denotes the step counter
m.
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Algorithm 1 Chebyshev Iteration

1: Ξ0 = AΨ0 − ζ := initial residual (input)
2: p0 = −Ξ0

3: σ = (θ
max

+ θ
min

)/2
4: δ = (θ

max
− θ

min
)/2

5: α
0

= 1/σ
6: β

1
= (δ α

0
)2/2

7: k = 0
8: while stopping criterion not satisfied do
9: q

k
= Ap

k

10: Ψ
k+1

= Ψ
k

+ α
k
p

k

11: Ξ
k+1

= Ξ
k

+ α
k
q

k

12: p
k+1

= −Ξ
k+1

+ β
k+1

p
k

13: k = k + 1
14: α

k
= 1/(σ − β

k
/α

k−1
)

15: β
k+1

= (δ α
k
/2)2

16: end while

Algorithm 2 Chebyshev iteration parameters for fixed K

1: σ = (θmax + θmin)/2
2: δ = (θ

max
− θ

min
)/2

3: α
0

= 1/σ
4: β

1
= (δ α

0
)2/2

5: for k = 1, . . . ,K − 1 do
6: α

k
= 1/(σ − β

k
/α

k−1
)

7: β
k+1

= (δ α
k
/2)2

8: end for

Algorithm 3 Chebyshev iteration with fixed K

1: Initialize parameters using Algorithm 2
2: Ξ

0
= AΨ

0
− ζ := initial residual (input)

3: p
0

= −Ξ
0

4: for k = 0, . . . ,K − 1 do
5: q

k
= Ap

k

6: Ψ
k+1

= Ψ
k

+ α
k
p

k

7: Ξ
k+1

= Ξ
k

+ α
k
q

k

8: p
k+1

= −Ξ
k+1

+ β
k+1

p
k

9: end for
10: Ψ

K
:= solution (output)
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on CI which was studied in WTP16. In order to be advantageous, however, Algorithm 3 must have
adequate convergence properties for the NSPD linear system under consideration. Furthermore,
the matrix-vector products must be implemented in parallel in a cost-effective way. This requires
careful consideration of technical aspects of the parallel computing environment and data assimi-
lation system. The remainder of the paper will focus on the first point (convergence properties).
Some discussion of the second point (parallel implementation) is given section 4.8.

3.2 Convergence properties

Algorithm 3 generates a sequence of residual vectors following relation (18). For a general polynomial-
based iteration, ϕ

k
is chosen such that

‖Ξ
k
‖ ≤ ‖ϕ

k
(A) ‖ ‖Ξ

0
‖ (19)

is small, where ‖ · ‖ denotes the 2-norm. If A is diagonalizable then ‖ϕ
k
(A) ‖ converges to zero

uniformly as k →∞ if and only if |ϕ
k
(λn) | → 0 as k →∞ for every eigenvalue λn of A [Manteuffel,

1977]. Since the NSPD matrix (9) is not diagonalizable, convergence of a polynomial-based method
such as CI is not ensured by only verifying convergence of the polynomials.

In order to understand the convergence properties of a nondiagonalizable matrix, we need to
examine the Jordan form of A. Theorem 2.2 of Manteuffel [1977] states that the convergence of
a general polynomial-based iteration applied to the nondiagonalizable matrix A requires that the
M ′ − 1 derivatives of the polynomials, as well as the polynomials themselves, converge to zero
uniformly as k →∞ for every eigenvalue λn of A. The shifted and scaled Chebyshev polynomials
satisfy these conditions [Manteuffel, 1975, Theorem 2.12, p. 27]. This ensures that Algorithm 3 will
converge, despite the fact that A is nondiagonalizable.

From Eq. (19), it can be seen that ‖ϕ
k
(A)‖ gives a measure of the amount by which the norm

of the error is reduced after k iterations. A specific reduction is achieved by choosing k such that

‖Ξ
k
‖ ≤ ε ‖Ξ

0
‖

where ε is the tolerance, and 0 < ‖ϕ
k
(A)‖ ≤ ε < 1.

For the SPD system, the number of iterations (ks) required to reach a given tolerance ε is
bounded by [Axelsson, 1996, p. 181]

ks ≤
1

2

√
χ ln

(
2

ε

)
(20)

where

χ =
λmax

λmin

is the condition number of Â. Equation (20) is derived under the assumptions that ε� 1 and
χ� 1. Experiments presented in section 4, however, suggest that this equation provides a sharp
upper bound on ks even when these assumptions are only modestly satisfied.

For the NSPD system, ‖ϕ
k
(A) ‖ behaves like

∣∣ϕ(M′−1)

k (λ
n
)
∣∣/(M ′ − 1)! as k →∞, rather than

like |ϕ
k
(λn)| as in the SPD case, where the superscript (j) on ϕ

k
denotes the jth derivative of

ϕ
k
. This result is derived in appendix B (see Theorem 2). The dependence of ‖ϕ

k
(A) ‖ on the

11



derivatives of the Chebyshev polynomials slows down the rate of convergence of CI for the NSPD
system. Manteuffel [1975] shows that

|ϕ(j)
k

(λn)| ≤ η(λn , j) k
j |ϕ

k
(λn)| (21)

where η(λn , j) is a constant that depends only on λn and the order of the derivative (j). From the
term kj , it is clear that convergence will be degraded for increasing j.

3.3 Preconditioning

The convergence rate of CI may be accelerated using a preconditioning matrix P ≈ A−1. It can
be applied to the augmented system either as a left preconditioner,

PAΨ = Pζ,

or as a right preconditioner,

AP Ψ′ = ζ

Ψ = P Ψ′

}
.

Equation (12) suggests that P should have the block lower triangular matrix form

P =


P
P2 P
...

...
. . .

PM ′ PM ′−1 · · · P

 (22)

where P ≈ Â−1. The ideal preconditioner is P = A−1, which corresponds to setting P = Â−1 in
Eq. (22). For this ideal case, the CI parameters are (σ, δ) = (α

0
, β

1
) = (1, 0) since λmax = λmin = 1,

and convergence to the exact solution is achieved in a single iteration from an arbitrary first guess.
The preconditioned NSPD matrices PA and AP have the same eigenvalues. Moreover, their

eigenvalues are multiples of those of the preconditioned SPD matrices PÂ and ÂP as can be readily
deduced by examining the characteristic polynomial of PA (or AP). This has two consequences.
First, the extreme eigenvalues of PA (or AP) required by CI can be computed by applying the

Lanczos algorithm to the simpler matrix PÂ (or ÂP). If P can be factored as P = P1/2
(
P1/2

)T
then the eigenvalues can also be computed by applying the Lanczos algorithm to the symmetric

matrix
(
P1/2

)T
ÂP1/2. The second consequence is that left and right preconditioning lead to

identical iterates with CI. This occurs since CI depends only on the (extreme) eigenvalues of the
preconditioned matrix, which are identical for the left- and right-preconditioned matrices. The
right-preconditioned CI algorithm is presented in Algorithm 4. The first guess in Algorithm 4 is
defined as a transformation of the rhs, the details of which are discussed in the next section.

The direct use of Eq. (22) in the preconditioning transformation Ψ = P Ψ′ leads to operations
of the form

ψ
m

= Pmψ′
1

+ · · ·+ Pψ′
m

for m = 1, . . . ,M ′.

These computations can be expensive as they involve
∑m
i=1 i applications of P and require accessing

the input states ψ′
i

on all previous time levels 1 ≤ i ≤ m. The recursive formula

ψm = P
(
ψm−1 +ψ′

m

)
for m = 1, . . . ,M ′, (23)

12



Algorithm 4 Right-preconditioned Chebyshev iteration

1: Initialize parameters using Algorithm 2
2: ζ := rhs (input)
3: Ψ

0
:= Gζ

4: Ξ
0

= AΨ
0
− ζ

5: p
0

= −Ξ
0

6: for k = 0, . . . ,K − 1 do
7: u

k
= P p

k

8: q
k

= Au
k

9: Ψ′
k+1

= Ψ′
k

+ α
k
p

k

10: Ξ
k+1

= Ξ
k

+ α
k
q

k

11: p
k+1

= −Ξ
k+1

+ β
k+1

p
k

12: end for
13: Ψ

K
= P Ψ′

K
:= solution (output)

with ψ0 = 0, provides a much more efficient algorithm to apply P . On a given time level, Eq. (23)
requires the input state on that level and only one application of P. However, whereas the appli-
cation of the M Â blocks in A (Eq. (9)) can be done in parallel, the application of the P blocks in
P via Eq. (23) is sequential since the state on time level m− 1 must be evaluated before the state
on time level m can be evaluated. The application of P cannot be too costly if we are to benefit
from applying the blocks of A in parallel. For this reason, we consider only simple preconditioners
in what follows.

We will use the subscript notation P
P−1 when we need to distinguish preconditioners P that

have different blocks P. Otherwise, we will omit the subscript to simplify notation. In section 4
we will examine the effect of two simple preconditioners of the form (22). The first (P

I
) employs

P = I
N

; the second (P
D

) employs P = D−1 where D is a diagonal matrix defined by the diagonal

of Â.
Rather than preconditioning the augmented system directly, another approach is to precondition

the sequence of SPD systems in (7), using a left or right preconditioning matrix P ≈ Â−1, and to
form the augmented system from the resulting preconditioned sequence. This procedure leads to a
simpler, block-diagonal form of the preconditioner:

P̃ =

P
. . .

P

 . (24)

However, as shown in appendix C, Eq. (24) is not ideal in the sense that employing it with the ideal

block matrix P = Â−1 results in convergence of CI in M ′ iterations (not one). This block-diagonal

preconditioner will be denoted by P̃
P−1 when we need to identify the block matrix P.

3.4 First guess

The first guess affects the residual vector used to initialize the CI algorithm. An appropriate choice
of first guess (initial residual vector) can improve the accuracy of the iterative solution (see Eqs (15)-
(16) and Eqs (17)-(18)), especially when the iterative algorithm is employed with a modest stopping

13



criterion. For the case where the linear systems in (7) are solved in sequence, the solution of each
system may be taken as a good initial iterate for the next system in the sequence. This corresponds
to choosing the first guess to be the rhs of each member of the sequence.

For the augmented system, using the rhs as first guess results in only the first element of the
augmented system having a non-zero value. The preconditioners presented in the previous section
can be used to provide a potentially better guess. Since P is constructed such that P ≈ A−1, it
suggests that the first guess can be chosen as

Ψ
0

= G ζ =


Pψ

0

P2ψ
0

...

PM ′ψ
0

 if G = P , (25)

or

Ψ
0

= G ζ =


Pψ0

0
N

...
0

N

 if G = P̃ . (26)

We distinguish G used to compute the first guess from the transformation P used for the precon-
ditioner, as we can choose them to be different. Likewise, for the SPD system, the first guess can
be chosen as

ψ0

m
= Gψ

m−1
for m = 1, . . . ,M ′ (27)

where G is a preconditioner for the SPD system. In section 4 we will examine the effect of different
choices of first-guess fields for the SPD and NSPD systems (see Tables 1 and 2).

3.5 Adjoint of the Chebyshev iteration

A correlation model would typically employ Algorithm 4 for the solver in L̂1/2 and the adjoint

of Algorithm 4 for the solver in
(
L̂1/2

)T
. The adjoint of Algorithm 4 is given in Algorithm 5. It

is derived by transposing each line of Algorithm 4 and reversing the order of the operations, as
would be done following a standard automatic differentiation procedure. Algorithm 4 is initial-
ized with the rhs, whereas Algorithm 5 is initialized with the adjoint vector associated with the
“solution”. The exactness of the adjoint algorithm is checked numerically by verifying that, for
vectors ψ

0
= W1/2v

1
and ψ

1
= W1/2v

2
with vectors v

1
and v

2
arbitrary and dimensionless, the

inner product
(
L̂1/2ψ0

)T
ψ1 = ψT

0

(
L̂1/2

)T
ψ1 is satisfied to machine precision, where the left- and

right-hand sides of the identity employ the forward and adjoint solvers, respectively.

4 Numerical experiments

4.1 Experimental design

The experimental design is similar to that of WTP16. The methods described in this paper have
been implemented in NEMOVAR. Numerical experiments using this system are described in this
section. The ocean model configuration is global, with an average resolution of about 1◦ except
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Algorithm 5 Adjoint of Algorithm 4

1: Initialize parameters using Algorithm 2
2: Ψ

K
:= adjoint “solution” (input)

3: Ξ
K

= p
K

= 0
4: for k = K − 1, . . . , 0 do
5: Ξ

k
= Ξ

k+1
− p

k+1

6: q
k

= α
k
Ξ

k

7: u
k

= ATq
k

8: s
k

= PTu
k

9: p
k

= β
k+1

p
k+1

+ α
k
Ψ

K
+ s

k

10: end for
11: Ξ

0
= Ξ

0
− p

0

12: Ψ0 = Ψ
K

+ AT Ξ0

13: ζ = −Ξ0 + GTΨ0 := adjoint “rhs” (output)

within a few degrees of the Equator where the meridional resolution is increased to around 1/3◦.
The configuration is identical to the one used by Balmaseda et al. [2013].

In this paper the iterative solvers are applied to a correlation model based on a fully 3D implicit
diffusion operator. This is the main difference between the experimental set-up here and that of
WTP16 where experiments were performed with a 2D implicit diffusion operator. The diffusion
operator is formulated in general orthogonal curvilinear coordinates and discretized using centred
finite differences. Neumann boundary conditions are applied at coastlines, at the ocean-atmosphere
interface, and at the irregular ocean bottom defined by bathymetry.

The diffusion tensor κ is taken to be diagonal. The diagonal elements κ1, κ2 and κ3 control
the directional length-scales of the correlation function along the coordinate axes (horizontal and
vertical). In the orthogonal curvilinear coordinate system of the global model, the horizontal axes
roughly correspond to the geographical axes λ and φ on the (assumed) spherical Earth, except from
mid- to high latitudes in the Northern Hemisphere (NH) where they deviate from the geographical
axes to account for the two NH poles located over North America and Asia on the tri-polar grid.
The vertical (z-)axis is everywhere perpendicular to the sphere.

An idealized distribution of values for the 3D diffusion tensor elements is considered for the ex-
periments here. The diagonal elements are taken to be spatially dependent with their value at each
grid-point (i, j, k) defined according to Eq. (4) (with d = 3). Specifically, we take κ1(i, j) = D2

1/(2M − 5),
κ2(i, j) = D2

2/(2M − 5) and κ3(k) = D2
3/(2M − 5), where D1 = ρ1 e1, D2 = ρ2 e2 and D3 = ρ3 e3

are directional length-scales; e1 = e1(i, j), e2 = e2(i, j) and e3 = e3(k) are the local scale fac-
tors associated with the curvilinear grid; and ρ1, ρ2 and ρ3 are positive proportionality con-
stants. For the experiments, values of ρ1 = ρ2 = 5 and ρ3 = 1.5 are used. Within R = 500 km
of coastlines, the horizontal length scales are reduced according to D1 7→ max(D1 rcoa/R, e1) and
D2 7→ max(D2 rcoa/R, e2) where rcoa is the chordal distance to the nearest coastal point. The local
grid-steps e1 and e2 define the minimum-allowed zonal and meridional length-scales, respectively.

Algorithms 4 and 5 terminate after a fixed number of iterations K. In order to determine K, CI
is first applied using a stopping criterion based on a specified convergence tolerance on the residual
norm (see below). Unless stated otherwise, this stopping criterion will be used in the remainder of
this paper to study and compare the convergence properties of CI for the SPD and NSPD systems.

The stopping criterion for each member m of the sequence of SPD linear systems (7) is defined
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according to the reduction of the ratio of the 2-norm of the residual on the kth iteration to the
2-norm of the initial residual:

εk
m

=

∥∥Âψk
m
−ψK

m−1

∥∥
2∥∥Âψ0

m
−ψK

m−1

∥∥
2

(28)

where ψK
m−1

denotes the approximate solution of the linear system associated with the previous
member in the sequence. The stopping criterion for the NSPD system is also based on the reduction
of the ratio of the 2-norms of the kth residual and initial residual:

ε
k

=

∥∥AΨ
k
− ζ
∥∥

2∥∥AΨ
0
− ζ
∥∥

2

. (29)

Contrary to Eq. (28), which measures the convergence of a given member of the sequence, Eq. (29)
is a global measure of the convergence of all members in the pseudo-time interval. Sensitivity
experiments using alternative stopping criteria are described in section 4.6.

4.2 Convergence properties

We start by considering the convergence behaviour of CI when solving the SPD system

Âψ1 = ψ0 with ψ0

1
= 0. (30)

Equation (30) can be considered as the first linear system (m = 1) in the sequence (7) associated

with the operator L̂1/2 (Eq. (5)). The rhs is defined as ψ0 = W1/2v where v is a normally dis-
tributed random vector with zero mean and unit variance. The first guess (ψ0

1
) is a zero field.

Figure 1 shows the relative residual norm εk
m

as a function of CI iteration for values of M ′ ranging
from 2 to 10. The lowest value (M ′ = 2 or M = 4) corresponds to a fat-tailed covariance operator
and the highest value (M ′ = 10 or M = 20) to a near-Gaussian covariance operator. The opera-
tional implementations of NEMOVAR at ECMWF and Met Office employ a value in between these
extreme values (M ′ = 5 or M = 10). The same rhs has been used for all the experiments that use
different values of M ′. The convergence rate is linear and increases as M ′ increases, consistent
with the behaviour of the condition number of Â, which decreases as M ′ increases (cf. Fig. 5 in
WTP16). The convergence curves resulting from solving the remaining SPD systems in sequence,

Âψ
m

= ψ
m−1

with ψ0

m
= 0; m = 2, . . . ,M ′, (31)

are virtually identical to those for m = 1.
The solid lines in Fig. 1 show the corresponding values predicted by the rhs of the inequality

(20). The logarithmic identity ln(y/x) = log10(y/x) ln(10) has been used to express the rhs of (20)
in terms of log10(ε) in accordance with the vertical scale used in Fig. 1. The analytical estimates
are in very close agreement with the actual values. The inequality (20) thus provides a tight upper
bound on the number of iterations required to achieve a specified reduction of the relative residual
norm. This suggests that, for the SPD system, the rhs of (20) can be used directly to determine K
for the correlation model, without the need to apply CI first in a trial problem as recommended by
WTP16.

The left panel in Fig. 2 shows the evolution of the relative residual norm ε
k

as a function of CI
iteration when solving the NSPD system (10):

AΨ = Eψ0 with Ψ0 = 0

ψ
M′ = FTΨ

}
(32)
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Figure 1: The residual norm relative to the initial residual norm as a function of CI iteration. The
plotted symbols are the actual values obtained by solving the SPD system (30) for different values
of M ′. The plotted lines are the values estimated from the analytical expression (20). The vertical
axis uses a logarithmic scale.

where ψ0 is the same vector used for the experiments with the SPD system. The first guess (Ψ
0
)

is a zero field as in the SPD case. The convergence of the NSPD system is slower than for the SPD
system as it depends on the derivatives of the Chebyshev polynomials as well as the Chebyshev
polynomials themselves (see Eqs (56) and (57) in appendix B). For increasing values of M ′, it
displays an increasingly nonlinear behaviour in the early iterations, but a faster convergence rate
in the later iterations. The nonlinear behaviour in the early iterations can be understood from the
inequality (21), which will be influenced by the multiplicative term η(λ

n
, j)kj , particularly when

|ϕ
k
(λn)| is not small as is the case in the early iterations. The faster convergence rate for larger

M ′ when k is large is presumably related to the fact that the conditioning of the block components
Â improves as M ′ increases, and this aspect becomes dominant in determining the convergence
behaviour in the later iterations.

The nonlinear behaviour is more clearly visible in the right panel in Fig. 2, which highlights
the initial convergence behaviour. The scale on the vertical axis covers four orders of magnitude,
which is an acceptable tolerance for a correlation model, as discussed earlier in section 3.1 and in
WTP16. In the remainder of the paper, we will focus on this range when discussing the convergence
properties of the solver.

Figure 3(a) shows the total number of CI iterations required to solve the sequence of M ′ SPD
systems to a tolerance of εk

m
< 10−4 (black triangle symbols). The total number increases as M ′

increases even though each individual system requires fewer iterations to solve as M ′ increases. The
corresponding values required to solve the NSPD system (32) to a tolerance of ε

k
< 10−4 are also

shown (blue plus symbols). The total iteration counts remain relatively stable for different values
of M ′, contrary to what is observed with the SPD system.

Figure 3(b) compares the total number of Â-matrix-vector products as a function of M ′. From
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Figure 2: The residual norm relative to the initial residual norm as a function of CI iteration when
solving the NSPD system (32) for different values of M ′. The rhs is ζ = Eψ0 where ψ0 is the same
as that used for solving the SPD system in Fig. 1. The vertical axis uses a logarithmic scale. The
right panel shows the same curves as the left panel but with a refined vertical scale to focus on the
initial convergence behaviour.
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the perspective of Fig. 3(b), the NSPD formulation is of no interest compared to the SPD formu-

lation especially for large values of M ′. However, if the Â-matrix-vector products can be perfectly
parallelized in the “time” dimension (m) on each CI iteration then the overall run-time can be
reduced by a factor equal to the ratio of the total iteration counts required by the SPD and NSPD
formulations. Figure 3(a) then suggests that the NSPD formulation can provide a potential speed-
up by a factor with an upper bound between two and three for the values of M ′ considered. From
this “time”-parallel perspective, there is a clear advantage with the NSPD formulation, as discussed
further in sections 4.7 and 4.8.

4.3 Sensitivity to the initial residual

For the SPD systems, the CI convergence properties are insensitive to the initial residual. This is
not the case with the NSPD system, however, as illustrated in this section. The initial residual
depends on the rhs and the choice of first guess.

We consider initially the sensitivity to changes to the rhs, while continuing to use a zero field
for the first guess. Figure 4 shows the convergence curves when the NSPD system is solved with a
rhs taken to be the solution ψ

M′ = FTΨ of Eq. (32):

AΨ = Eψ
M′ with Ψ

0
= 0

ψ
M

= FTΨ.

}
. (33)

The solution of Eq. (33) corresponds to the result of applying the complete diffusion operator

L̂ = L̂1/2L̂1/2. The plateau-like feature in the relative residual norm appears earlier in the iterative
process and the total iteration counts increase as a result (cf. right panel in Fig. 2).

Figures 5(a) and 5(b) show the evolution of the relative residual when CI is initialized with a first
guess taken to be a non-zero transformation P

I
of the rhs. The different panels are associated with

each of the NSPD systems in the two-member sequence describing the complete diffusion operator
L̂ = L̂1/2L̂1/2:

AΨ = Eψ
0

with Ψ
0

= P
I
Eψ

0

ψ
M′ = FTΨ

}
, (34)

AΨ = Eψ
M′ with Ψ

0
= P

I
Eψ

M′

ψ
M

= FTΨ

}
. (35)

Using the transformation P
I

to define Ψ
0

amounts to initializing the state on each time level with
the non-zero rhs available on the first step of each sequence (see Eq. (25)). This choice of first guess
results in a systematic reduction in the number of iterations compared to the number required with
a zero first guess, for all values of M ′ considered except for M ′ = 2 which requires slightly more
iterations for the first NSPD system (cf. blue plus and red triangle symbols in Figs 6(a) and 6(b)).
Other choices of first guess were less successful in reducing the number of iteration counts (see
Table 2).

Since the convergence behaviour of the NSPD system in the early iterations is sensitive to
the initial residual, it raises the question of how to define the value of the fixed iteration K in
Algorithms 4 and 5. For a fixed tolerance, the number of iterations required to solve the first and
second NSPD systems in the factored form of L̂ can differ by several iterations, with the second
system generally requiring more iterations than the first system for the stopping criterion (29) (see
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Figure 3: (a) The total number of CI iterations required to solve the M ′ SPD systems (black

diamond symbols) and the single NSPD system with M ′ time-blocks (blue plus symbols) in L̂1/2. A
convergence tolerance of εk

m
< 10−4 (Eq. (28)) is used for the SPD system, and ε

k
< 10−4 (Eq. (29))

for the NSPD system. The first guess is a zero field. (b) The total number of Â-matrix-vector
products associated with the iteration counts in (a). Values are plotted as a function of M ′. The
ratio of the iterations required for the SPD problem and those required for the NSPD problem in
panel (a) indicates the potential run-time speed-up that can be achieved by performing the M ′

Â-matrix-vector products in parallel.
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Figure 4: As the right panel in Fig. 2 but for the NSPD system (33) which has rhs ζ = Eψ
M′ where

ψ
M′ is the solution of the NSPD system (32). This figure thus illustrates the convergence behaviour

of the NSPD system in the second component of the complete diffusion operator L̂ = L̂1/2L̂1/2.

the values of K1 and K2 in Table 2). A reasonable strategy is to choose K as the arithmetic mean
of these two values, and to use this value of K in both the forward and adjoint CI algorithms to
enforce exact numerical symmetry of L̂. In variational data assimilation, K must be diagnosed
prior to entering the minimization (inner) loop.

4.4 Solution accuracy

The solution of interest is the final state ψ
M

obtained by applying the full L̂ operator to ψ0. To
assess the accuracy of the solution for a given stopping criterion, we examine the relative error norm

ε∗ =

∥∥ψ
M
−ψ∗

M

∥∥
2∥∥ψ∗

M

∥∥
2

(36)

where ψ∗
M

is the “exact” solution on step M , obtained by solving each member of the SPD sequence
to a very high accuracy, here taken as εk

m
< 10−15. Solving the corresponding NSPD systems to an

accuracy of ε
k
< 10−15 results in a nearly identical solution to ψ∗

M
. It is more interesting to assess

the solution accuracy when a more moderate tolerance is specified, similar to one that would be
used in practice for the correlation model. Consider the case when the stopping tolerances εk

m
and

ε
k

are set to 10−4. The relative error ε∗ is shown for different M in Fig. 7 for both the SPD-based

and NSPD-based formulations of L̂. The results are displayed for two choices of the first guess: a
zero field and a non-zero field determined from the rhs (see figure legend). The non-zero first-guess
fields that have been employed in these figures correspond to the ones that gave best results of all
those considered (see Tables 1 and 2).

Several features can be observed from these figures. With a zero first guess, the SPD formulation
produces a more accurate solution than the NSPD formulation (cf. black triangle and blue cross
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(a) ζ = Eψ0
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(b) ζ = Eψ
M′

Figure 5: (a) As in the right panel in Fig. 2 but with the first guess defined as Ψ0 = P
I
Eψ0 (see

Eq. (34)). (b) As Fig. 4 but with the first guess defined as Ψ0 = P
I
Eψ

M′ (see Eq. (35)).
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(b) NSPD systems (33) and (35)

Figure 6: The total number of CI iterations required to solve (a) the first NSPD system and (b)

the second NSPD system in the factored operator L̂ = L̂1/2L̂1/2 where each NSPD matrix has M ′

time-blocks. A stopping criterion of ε
k
< 10−4 is used. Values are plotted as a function of M ′. The

different symbols correspond to different choices of the first guess as indicated by the transformation
in the legend (see Eq. (25)).
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Figure 7: The relative norm of the error in the solution on the final step (Eq. (36)) when solving the
sequence of M SPD systems with a stopping criterion of εk

m
< 10−4 (Eq. (28)), and when solving

the sequence of two NSPD systems with a stopping criterion of ε
k
< 10−4 (Eq. (29)). The different

symbols correspond to different choices of the first guess as indicated by the transformation in the
legend (see Eq. (25)). The true solution is obtained by solving the sequence of M SPD systems to
a very high accuracy (εk

m
< 10−15). Values are plotted as a function of M . The vertical axes use a

logarithmic scale.

symbols). Whereas the solution errors with the NSPD formulation are relatively stable as a function
of M , those with the SPD formulation (and zero first guess) increase steadily with M , probably
due to an accumulation of errors affecting the rhs of the sequence of SPD systems. When M = 20
the SPD and NSPD formulations have similar accuracy.

Compared to the results with zero first guess, the use of the rhs as first guess with the SPD
system leads to a significantly more accurate solution (up to an order of magnitude) and successfully
counteracts the accumulated-error effect that occurs with large values of M (cf. black diamonds
and orange circles). The accuracy of the iterative solution of the NSPD system is also significantly
improved when using a first guess that exploits information about the rhs (cf. red triangle with
blue cross symbols). Here, results with Ψ

0
= P

I
ζ are displayed; other choices of non-zero first

guess were also beneficial but not to the same extent (see Table 2).
For both the SPD- and NSPD-based formulations, these results suggest that the computational

cost of the algorithm can be reduced by relaxing the stopping tolerance (reducing the number of
iterations), while still achieving an acceptable solution accuracy using a non-zero first guess. This
is evident from Tables 1 and 2, which show that the solution error resulting from using an increased
tolerance (10−3) and rhs-based first guess is comparable to the error obtained using a reduced
tolerance (10−4) and zero first guess (cf. ε∗ in rows 1, 2 and 3 in Table 1 for the SPD formulation;
ε∗ in rows 1, 4 and 5 in Table 2 for the NSPD formulation).
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G P εk
m

ε∗ K Â-prod

0
N

I
N

10−4 8.0× 10−4 18 180

I
N

I
N

10−4 1.1× 10−4 18 180

I
N

I
N

10−3 9.7× 10−4 14 140

D−1 I
N

10−4 5.6× 10−4 18 180

I
N

D−1 10−4 6.0× 10−4 18 180

Table 1: A summary of results from experiments with the SPD formulation of L̂ (Eq. (7)) and
different first-guess fields, as defined by the transformation (27) acting on the rhs (first column),
and different preconditioners (second column) for the case M = 10. The third column gives the
convergence tolerance (Eq. (28)). The fourth column gives the solution accuracy ε∗ achieved after
the final (Mth) diffusion step (Eq. (36)). The fifth column gives the number of iterations required
to satisfy the tolerance indicated in the third column. The sixth column gives the total number of
Â-matrix-vector products (= K ×M) required by L̂.

4.5 Preconditioning

In this section we examine the impact of employing the simple preconditioners described in sec-
tion 3.3. First, consider the diagonal preconditioner D−1 for the SPD problem. This preconditioner
does not change the total iteration counts compared to the unpreconditioned case (see Table 1). The
convergence properties of CI for the SPD problem are linked to the condition number of the SPD
matrix [Gergelits and Strakoš, 2014]. In the experiments, the condition number estimated from the
extremal Ritz values is unaffected by this preconditioner (not shown). This can be explained by
the following simplified analysis.

Consider the time-implicit discretization of the 3D diffusion equation with constant diffusion co-
efficients (κ1, κ2, κ3). Assuming that the spatial derivatives are discretized using centred finite differ-
ences and that the grid steps (e1, e2, e3) are constant then it is straightforward to compute the eigen-
values of the associated system matrix following the approach described in section 3.2 of WTP16.
The extreme eigenvalues are λmin ≈ 1 and λmax ≈ 1 + 4X where X = κ1/e

2
1 + κ2/e

2
2 + κ3/e

2
3. The

condition number is then χ ≈ 1 + 4X. When the system matrix is preconditioned by D−1, the ex-
treme eigenvalues become λmin ≈ 1/(1 + 2X) and λmax ≈ (1 + 4X)/(1 + 2X), which are identical
to those of the unpreconditioned system up to a constant scaling factor 1/(1 + 2X). The condition
number, however, remains unchanged.

For the NSPD problem, the results with different preconditioners for the case M ′ = 5 are sum-
marized in Table 2. The diagonal preconditioner P̃

D
has no impact as might be expected in view of

the results above for the diagonally preconditioned SPD problem. The simple block lower triangular
preconditioner P

I
has a detrimental impact as can be seen by the increased number of iterations

required to satisfy the specified tolerance. Nevertheless, the solution is more accurate than the
solutions obtained with the other preconditioners, which suggests that the stopping criterion is
inappropriate with this preconditioner. This point will be revisited in the next section.

The block lower triangular preconditioner P
D

has only a small impact for the case M ′ = 5

25



G P ε
k

ε∗ K1 K2 Â-prod

0
NM′ I

NM′ 10−4 2.3× 10−3 37 44 405

I
NM′ I

NM′ 10−4 0.5× 10−3 36 38 370

P̃
D

I
NM′ 10−4 1.3× 10−3 38 44 410

P
I

I
NM′ 10−4 0.3× 10−3 33 37 350

P
I

I
NM′ 10−3 4.7× 10−3 25 34 295

P
D

I
NM′ 10−4 0.9× 10−3 39 45 420

P
I

P̃
D

10−4 0.3× 10−3 33 37 350

P
I

P
I

10−4 0.1× 10−3 61 67 640

P
I

P
D

10−4 0.2× 10−3 33 36 345

P
I

P
D

10−3 1.8× 10−3 26 34 300

Table 2: A summary of results from experiments with the NSPD formulation of L̂ (Eq. (10)) and
different first guess fields, as defined by the transformations (25) or (26) acting on the rhs (first
column), and different preconditioners (second column) for the case M = 10. The third column
indicates the specified convergence tolerance (Eq. (29)). The fourth column gives the solution
accuracy ε∗ after the final (Mth) diffusion step (Eq. (36)). The fifth (sixth) column gives the
number of iterations required to reach the specified tolerance for the first (second) NSPD system

associated with the square-root factors of L̂. The last column gives the total number of Â-matrix-
vector products (= (K1 +K2)×M ′) required by L̂.
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considered in the table. Contrary to P
I
, however, it does not degrade performance. In this respect,

it is likely that the block matrices D−m
′
, for m′ < m, in P

D
are important for properly scaling

(downweighting) the contributions from the components ψ
m′ on previous steps m′ in determining

the effect of the preconditioner on the component ψ
m

on the current step m.
The impact of P

D
for other values of M ′ is examined in Figures 8(a) and 8(b), which show,

as a function of M ′, the total number of iterations required to solve each of the coupled systems
associated with L̂ = L̂1/2L̂1/2:

AP
D

Ψ′ = Eψ0 with Ψ′
0

= P−1
D

P
I
Eψ0

ψ
M′ = FTP

D
Ψ′

}
, (37)

AP
D

Ψ′ = Eψ
M′ with Ψ′

0
= P−1

D
P

I
Eψ

M′

ψ
M

= FTP
D

Ψ′

}
. (38)

These are similar to systems (34) and (35) but are right-preconditioned by P
D

. The inverse trans-
formation P−1

D
has been introduced so that the first guess is Ψ

0
= P

I
Eψ

0
, as desired. Notice,

however, that P−1
D

is not required by Algorithm 4 since this algorithm is initialized directly with
the residual Ξ0 . Figures 8(a) and 8(b) indicate that P

D
is particularly beneficial for values of M ′ > 5

and somewhat neutral for values of M ′ ≤ 5. Figures 9(a) and 9(b) show that the convergence curves
with P

D
are noticeably more linear than the corresponding curves for the unpreconditioned problem

for all values of M ′ considered (cf. Figs 5(a) and 5(b)).

4.6 Stopping criterion to determine K

Results from the previous section suggest that there is no clear relationship between the residual
2-norm and the solution accuracy as defined by ε∗ in Eq. (36). As such, a stopping criterion based
on the residual 2-norm might not always be appropriate for estimating the number of CI iterations
K required to solve the NSPD system to a desired accuracy. In particular, results showed that it
is clearly inappropriate with the (albeit poor) right-preconditioner P

I
.

Other stopping criteria are possible. For the preconditioned problem, it is possible to define the
stopping criterion based on the PTP-norm of the residual instead of the 2-norm of the residual.
This is a natural stopping criterion with the left-preconditioner since∥∥PAΨ

k
−Pζ

∥∥
2

=
∥∥AΨ

k
− ζ
∥∥

PTP
(39)

where ‖( · )‖
PTP

=
√

( · )T PTP ( · ). If P = A−1 then ‖AΨ
k
− ζ‖

PTP
= ‖Ψ

k
−Ψ∗‖2 where Ψ∗ =

A−1ζ is the exact solution. This limiting case shows that the PTP-norm is an approximate measure
of the 2-norm of the solution error. Another possibility is to use a stopping criterion based on the
2-norm of the actual solution error, which first requires an accurate solve of the system to estimate
Ψ∗. Since we are only interested in the solution on the final step M ′, we may also consider the
targeted variant of the solution error,

∥∥ψk

M′
−ψ∗

M′

∥∥
2
.

The different choices of the stopping criterion that have been considered are summarized in
Table 3. They are distinguished by the expression for the tolerance ε(n)

k = a/b where the argument
of the norm in a is based on either the residual or solution error. For the residual-based norms, the
argument of the norm in b is either the initial residual or rhs. For the solution-error-based norms,
the argument of the norm in b is either the initial solution error or the exact solution. With a
zero first guess, the initial residual (initial solution error) and rhs (solution) are equivalent. With a
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(b) NSPD systems (35) and (38)

Figure 8: As Figs 6(a) and 6(b) but with preconditioning (red triangles). For comparison, the values
without preconditioning (P = INM ′) are also shown (blue crosses). In both experiments, the first
guess is defined according to the rhs transformation G = P

I
. The blue crosses are equivalent to the

red triangles in Figs 6(a) and 6(b).
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Figure 9: (a) As Figs 5(a) and 5(b) but with P
D

used as preconditioning matrix (see Eqs (37) and
(38)).
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ε(n)

k = a
/
b

(n) a b

(1)
∥∥AΨ

k
− ζ
∥∥

2

∥∥AΨ
0
− ζ
∥∥

2

(2)
∥∥AΨ

k
− ζ
∥∥

2

∥∥ζ∥∥
2

(3)
∥∥AΨ

k
− ζ
∥∥

PTP

∥∥AΨ
0
− ζ
∥∥

PTP

(4)
∥∥AΨ

k
− ζ
∥∥

PTP

∥∥ζ∥∥
PTP

(5)
∥∥Ψ

k
−Ψ∗

∥∥
2

∥∥Ψ
0
−Ψ∗

∥∥
2

(6)
∥∥Ψ

k
−Ψ∗

∥∥
2

∥∥Ψ∗∥∥
2

(7)
∥∥ψk

M′
−ψ∗

M′

∥∥
2

∥∥ψ0

M′
−ψ∗

M′

∥∥
2

(8)
∥∥ψk

M′
−ψ∗

M′

∥∥
2

∥∥ψ∗
M′

∥∥
2

Table 3: A summary of the stopping criteria that have been used for determining the number of
fixed iterations K for solving the NSPD system with CI. Note that ε(1)k = ε

k
in Eq. (29).

non-zero first guess, measuring a relative to the initial residual norm or initial solution error norm
is consistent with the minimization properties of CI (see section 5), while measuring a relative to
the norm of the signal (rhs or solution) would seem preferable when the first guess is already “close”
to the solution.

Table 4 summarizes the results from using the different stopping criteria to solve Eqs (37)
and (38) to a tolerance of ε(n)

k < 10−3. The basic experiment is the same as the one associated
with the last row in Table 2 that uses the baseline stopping criterion (Eq. (29)). Those results
have been repeated in the first row of Table 4 for easy reference. The different stopping criteria
produce different total iteration counts, with those based on the solution-error norm leading to fewer
iterations than those based on the residual norm (cf. cases n = {1, 3, 4} and cases n = {2, 5, 7}).
Satisfying the targeted solution-error norm (case n = 8) requires the most iterations and as a
result leads to the smallest error ε∗. Note that for this experiment, ε∗ is equivalent to the stopping
criterion itself.

When the normalization factor b is defined by the initial residual norm (cases n = {1, 3}) or
initial error norm (cases n = {5, 7}), fewer iterations are required to solve the first system than
the second system (K1 < K2). The opposite (K2 < K1) occurs when b is defined by the norm of
the rhs (cases n = {2, 4}) or the norm of the exact solution (cases n = {6, 8}), presumably since
the first guess for the second system, which is based on the solution after M/2 steps, is already
a decent estimate of the solution of the full M -step diffusion problem. Interestingly, however, the
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ε(n)

k ε∗ K1 K2 K Â-prod

ε(1)k 1.8× 10−3 26 34 30 300

ε(2)k 1.2× 10−3 34 26 30 300

ε(3)k 2.7× 10−3 25 30 27 275

ε(4)k 4.3× 10−3 33 22 27 275

ε(5)k 4.3× 10−3 24 27 25 255

ε(6)k 2.6× 10−3 30 24 27 270

ε(7)k 2.3× 10−3 26 28 27 270

ε(8)k 0.8× 10−3 35 27 31 310

Table 4: Results from solving Eqs (37) and (38) (where G = P
I

and P = P
D

) for the case M = 10,
using the different stopping criteria described in Table 3. A tolerance of ε(n)

k < 10−3 has been used
in all n = 1, . . . , 8 cases. Columns 2-4 and 6 are as described in the caption for Table 2. Column 5
is the average of K1 and K2.

average values of K1 and K2 are the same or similar with both types of normalization. For the
practical purpose of determining K for the correlation model, both types of normalization can then
be expected to give similar results.

4.7 Hybrid time-sequential/time-parallel formulation

Equation (14) describes a hybrid formulation of L̂1/2 involving a combination of time-sequential
and time-parallel operations. Results using the allowable hybrid combinations when M ′ = 5 are
displayed in Table 5, where the second column indicates the number of time-blocks m

l
in the

NSPD matrices A
ml

on each of the l = 1, . . . , L sequential steps. In order to quantify the potential

run-time improvement that can be achieved by parallelizing the Â-matrix-vector products in the
different formulations, we define the following average speed-up factor:

speed-up =
1

L

L∑
l=1

(
m

l
Ks

K̂
ml

)
(40)

where Ks is the number of iterations required to solve the system with the SPD matrix (Ks = 18 in

Table 5), and K̂
ml

is the number of iterations required to solve the system with the NSPD matrix
A

ml
. The speed-up factor is bounded below by 1 with the purely time-sequential formulation and

bounded above by M ′Ks/K̂M′ with the purely time-parallel formulation. The maximum speed-up

factor for M ′ = 5 is 2.7 and reaches 2.9 when K̂
M′ is determined using the solution-error stopping

criterion ε(5)k (in this case the solver terminates after 31 iterations instead of 34 iterations when
using the residual stopping criterion ε(1)k ). Table 5 shows that useful speed-up factors can also be
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L m
l K̂

ml
speed-up

5 1, 1, 1, 1, 1 18, 18, 18, 18, 18 1

4 1, 1, 1, 2 18, 18, 18, 21 1.2

3 1, 2, 2 18, 20, 21 1.5

3 1, 1, 3 18, 18, 23 1.6

2 2, 3 20, 23 2.1

2 1, 4 18, 28 1.8

1 5 34 2.7

Table 5: A summary of results from experiments with the hybrid sequential/parallel formulation

of L̂1/2 for the case M ′ = 5. The first guess and preconditioning transformations are G = P
I

and
P = P

D
. The first column indicates the number of sequential steps (Eq. (14)). The second column

indicates the number of time-blocks in the NSPD matrix on each of the l = 1, . . . , L sequential
steps. The third column gives the number of iterations required to satisfy the tolerance ε

k
< 10−4

on each of the sequential steps. It is taken as the average of the number of iterations required on
the corresponding sequential step of each square-root component L̂1/2 of L̂. The fourth column
indicates the potential speed-up factor that can be achieved with time-parallelization (Eq. (40)).

achieved with the hybrid formulations 1 < L < M ′.
Figure 10 shows the reduction of the relative residual norm for the systems with different values

of m
l
. The convergence behaviour is very similar during the first 5 iterations, which results in a

one-order of magnitude reduction in the residual norm. The curves are approximately linear for
values of m

l
≤ 3. Note that modifying ml affects the structure of Aml

but does not affect the

conditioning of the block components Â of A
ml

as they depend on the diffusion tensor (4) which is
a function of the fixed value M (not m

l
). This explains why fewer iterations are required to solve

the Aml
-matrix systems in the hybrid formulation, for the cases 1 < m

l
< M ′, than the systems

with the equivalent number of time-blocks associated with Figs 8(a) (cf. total iteration counts for
values of M ′ = 2, 3 and 4).

4.8 Parallel implementation in NEMOVAR

The NSPD formulation of an implicitly formulated diffusion equation employed to model a corre-
lation operator has been demonstrated to provide a potential speed-up of up to a factor between
two and three. Considering that the time spent on the execution of the correlation operator in the
current ECMWF operational 3D-Var (NEMOVAR) system with horizontal grid resolution of 1/4◦

amounts to approximately two thirds of the total run-time, this would translate to a potential ap-
plication speed-up of up to 1.8, assuming a perfect parallel implementation. Such improvement can
be considered to be critical for enabling production of a future high-resolution eddy-resolving ocean
analysis in an operational environment with tight run-time constraints. Here, we limit ourselves to
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Figure 10: The residual norm relative to the initial residual norm as a function of CI iteration
when the NSPD matrix Aml

is composed of identical Â blocks but different number of time levels

m
l
. The Â blocks are associated with the diffusion operator with M = 10. The first guess and

preconditioner transformations are defined by G = P
I

and P = P
D

. The rhs is the same in all
experiments.

a discussion of possible implementation strategies of the time-parallel scheme.
The implicitly formulated SPD diffusion operator Â is parallelized in the spatial dimension. The

global domain is decomposed into a structured grid of ms sub-domains with each block belonging
to one MPI task. The operator Â is applied in parallel on each sub-domain and message passing
is employed for exchanging halos during each Chebyshev iteration (see appendix C in WTP16).
It should be noted that message passing is also used for both local and global communications in
other components of the 3D-Var system, which are also parallelized. The parallel implementation
of A could be considered in combination with the scheme used to parallelize the Â operator in the
spatial domain. The total number of tasks p would be split between the spatial ms and temporal
mt dimensions such that msmt = p. In practice, there would be both computational and communi-
cation overhead associated with the parallel implementation in the pseudo-time and space domains.
This becomes apparent when one considers the sub-diagonal block of A or the implementation of
the preconditioner. This strategy for implementing time-parallelization would lead to the problem
of determining the optimal pair (ms,mt) of space-time sub-domain decomposition that maximizes
the computation-to-communication ratio. The pairs (p, 1) and

(
p/M ′,M ′

)
correspond, respectively,

to the limiting cases of no parallelization and complete parallelization in the pseudo-time domain.
This approach would be fairly straightforward to implement, but far from optimal for other compo-
nents of NEMOVAR, where the processors allocated in the pseudo-time dimension would be idle.
This may still be acceptable for specific applications, such as the estimation of normalization factors
using a Monte Carlo (randomization) technique [Weaver and Courtier, 2001], which are dominated
by the cost of the diffusion operator.

An alternative parallel implementation would require introducing a hybrid parallelization model
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combining MPI tasks in the spatial dimension with Open Multi-Processing (OpenMP) threads
spanning the pseudo-time dimension. In practice, this would amount to adding an outer dimension
to the arrays employed by the diffusion operator and corresponding to the pseudo-time. OpenMP
directives would need to be inserted only at a high level in loops over this new parallel dimension.
A practical advantage of such approach becomes apparent when considering preconditioning or
the operations associated with the sub-diagonal block of A. Since all the time-levels are visible
to a given MPI task assigned to a spatial sub-domain, no message passing would be required
in their implementation. Attention would need to be paid to the MPI communications between
OpenMP threads. If the message passing for each time level was to be performed in parallel, a
thread safe MPI implementation would need to be available. Alternatively the message passing
would have to be performed by the master thread and would become a sequential operation. A
hybrid implementation also opens up the possibility to parallelize other components of the data
assimilation system, allowing for a potentially more uniform acceleration of the code.

5 Summary and Discussion

In this paper we have shown how a diffusion-based correlation operator can be formulated implicitly
in a way that avoids the sequential “time”-stepping of conventional diffusion. The advantage of this
approach is that it opens the way to perform in parallel the costly matrix-vector operations required
on each step of the diffusion process. The new formulation requires solving a single linear system
involving a nonsymmetric positive definite (NSPD) matrix. Following WTP16 who advocated
the use of the Chebyshev iteration (CI) to solve the symmetric positive-definite (SPD) matrix
systems of the sequential diffusion-based correlation operator, we have proposed here to use the
same algorithm to solve the NSPD system. Linearity and the absence of global communications are
the two properties of CI that make it an attractive algorithm for the problem under consideration.
In this paper, however, the problem is complicated by the nonsymmetric and nondiagonalizable
properties of the system matrix that must be inverted. Understanding the convergence properties
of CI for this problem is therefore vital to determine whether a “time”-parallelized NSPD-based
system can be a viable alternative to the sequential SPD-based system. This has been the main
purpose of the paper.

The new formulation of the correlation operator has been implemented in the NEMOVAR global
ocean variational data assimilation system. Based on numerical experiments with that system and
supported by theoretical results, we can summarize the main findings of this study as follows.

• Convergence. Even though the NSPD matrix is nondiagonalizable, CI is guaranteed to con-
verge [Manteuffel, 1975, 1977]. For the SPD system, the convergence rate depends on the
properties of the shifted and scaled Chebyshev polynomials. For the NSPD system, the
convergence rate also depends on the properties of the derivatives of the shifted and scaled
Chebyshev polynomials. As a result, CI applied to the NSPD system converges more slowly
than CI applied to the SPD system.

• Practical convergence. A high-precision solution is not required to obtain an adequate repre-
sentation of correlation functions for data assimilation. Reducing the 2-norm of the residual
or solution error by three- to four-orders of magnitude is generally adequate. Therefore, in
the numerical experiments, we focused on evaluating the convergence properties of CI for
achieving an accuracy in this range.
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• Eigenvalues. The NSPD matrix under consideration has a special structure such that its
eigenvalues are real and given by those of the SPD matrix with algebraic multiplicity of M
where M is the number of implicit iterations. The extreme eigenvalues required by CI can
therefore be estimated using an eigenvalue algorithm (e.g., Lanczos) applied to the simpler
SPD matrix.

• Initial residual. When CI is applied to the NSPD system, it has a nonlinear convergence
behaviour, especially in the early iterations, and strong sensitivity to the initial residual,
contrary to what occurs when CI is applied to the SPD system. The nonlinear behaviour
increases as M increases. For the SPD system, the number of iterations required to reduce
the residual 2-norm (relative to the initial residual 2-norm) can be accurately estimated us-
ing an analytical relationship from Axelsson [1996]. For the NSPD system, no such simple
relationship exists to the best of our knowledge.

• First guess. For the SPD problem, defining the first guess to be the right-hand side instead
of a zero field results in nearly a one-order of magnitude improvement in the accuracy of the
solution when seeking a four-order of magnitude reduction of the residual 2-norm relative to
its initial value. A similar relative improvement in solution accuracy can be obtained for the
NSPD problem using a first guess whose value at each “time” level is equal to the right-hand
side of the SPD problem. For the NSPD problem, this simple choice of first guess also results
in a reduction in the number of iterations for the modest convergence tolerance considered.

• Preconditioning. The structure of the exact inverse of the NSPD matrix suggests that a
preconditioner should have a block lower triangular form where the block matrices involve
powers of the approximate inverse of the SPD matrix. Defining the block matrices as powers
of the inverse of the diagonal of the SPD matrix results in an inexpensive preconditioner
that is particularly effective for accelerating convergence when M > 10. Results with the
preconditioner for values of M ≤ 10 can also accelerate convergence, although the gain is less
clear and may not offset the extra cost of applying the preconditioner. For the SPD problem,
the diagonal preconditioner has no impact.

• Stopping criterion. To preserve symmetry, the correlation model should be formulated in
“square-root” factors where each factor represents M/2 steps of the diffusion operator and
involves the solution of an NSPD system. CI should be employed with the same fixed number
of iterations, K, when solving each NSPD system. To determine an appropriate value of K,
CI is first applied to a trial problem with a particular stopping criterion. Here, we proposed
to define K as the arithmetic mean of the number of iterations required to solve each NSPD
system in succession; i.e., to apply the full M -step diffusion operator. While the 2-norm of
the residual mostly gave an adequate measure of the solution error, it was argued that a
more reliable stopping criterion should be based on the 2-norm of the actual solution error,
especially in the presence of a general preconditioner. With a non-zero first guess, measuring
the reduction of the 2-norm of the solution error with respect to either the 2-norm of the
initial solution error or the 2-norm of the solution itself was shown to lead to a similar value
of K, when computed as an average of the values required for solving each system.

• Parallel speed-up. In terms of the total number of applications of the SPD matrix, solving the
single NSPD system with CI is more costly than solving the sequence of SPD systems with
CI. However, solving the NSPD system requires fewer iterations than solving the sequence
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of SPD systems, thus providing scope for reducing run-time by performing the matrix-vector
computations in parallel. In particular, in the case of a perfectly “time”-parallelized NSPD
system, we have shown that there is potential to reduce the diffusion operator run-time by
a factor between two and three. Different possible ways of implementing a “time”-parallel
diffusion operator have been discussed within the context of NEMOVAR. Most promising is
the use of a hybrid parallelization approach that combines MPI tasks in the spatial domain
with OpenMP threads spanning the pseudo-time dimension. This will be investigated with
NEMOVAR in future work.
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Appendix A: Correction to the CI algorithm presented in
WTP16

Orthogonal polynomials like the shifted and scaled Chebsyhev polynomials satisfy a general three-
term recurrence relation (Eq. (A1) in WTP16):

ϕ−1(t) = 0,
ϕ0(t) = 1,

ϕk+1(t) =

(
t− µk+1

νk+1

)
ϕk(t)−

(
τk+1

νk+1

)
ϕk−1(t),

(41)

where k ≥ 0. The coefficients νk+1, µk+1 and τk+1 are related to the step sizes αk and βk+1 in the
CI algorithm according to (Eqs (A4), (A13) and (A14) in WTP16)

αk = − 1

νk+1
, (42)

βk+1 =
τk+2

νk+1
, (43)

τk+1 = −
(
µk+1 + νk+1

)
. (44)

Here, we are interested in the specific case k = 0, which was overlooked in WTP16. For k = 0, the
third equation in (41) becomes

ϕ1(t) =
t− µ1

ν1
. (45)

The shifted and scaled Chebyshev polynomials are given by

ϕk(t) =
Tk
(
χt
)

Tk
(
χ0)

(46)
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where

χt = χ(t) :=
t− σ
δ

, (47)

and σ and δ are the CI parameters defined in lines 1 and 2 of Algorithm 2. Since T1(t) = t, equating
Eqs (45) and (46) for k = 1 gives

t− µ1

ν1
=
T1
(
χt
)

T1
(
χ0)

=
(t− σ)/δ

−σ/δ
=
t− σ
−σ

,

implying that µ1 = σ and ν1 = −σ, and hence from Eqs (42) and (44) that

α0 =
1

σ
, (48)

β1 = −τ2
σ
. (49)

To determine τ2, we use the third expression in (A29) from WTP16 with k = 2:

τ2 =
δ

2

(
T0(χ0)

T1(χ0)

)
= − δ

2

2σ
(50)

since T0(t) = 1. Substituting Eq. (50) in Eq. (49) and using Eq. (48) gives

β1 =
(δ α0)2

2
. (51)

The βk+1 coefficients for k > 0 are the same as given in WTP16:

βk+1 =

(
δ αk

2

)2
. (52)

Comparing Eqs (51) and (52) shows that the correct β1 coefficient is a factor of 2 larger than the
coefficient used in WTP16. The corrected algorithm is consistent with Algorithm 5 in Gutknecht
and Röllin [2002].

The impact of the correction is minor in terms of total iteration counts, but does lead to a more
consistent convergence behaviour of the solver between steps in the m = 1, . . . ,M ′ sequence and
better agreement with the theoretical bound ks (Eq. 20).

Appendix B: Convergence properties of the Chebyshev iter-
ation

The N×N SPD matrix Â can be written in terms of its n = 1, . . . , N eigenpairs (λn ,vn) as

Â =
N∑
n=1

λ
n
v

n
vT

n
.
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The eigenvalues are assumed to be ordered from smallest λ1 to largest λ
N

. The M ′N/2×M ′N/2
NSPD matrix A (Eq. (9)) can be expressed in Jordan block form as [Saad, 2003, pp. 15–16]

A = Z J Z−1 (53)

where J = diag(J1 ,J2 , . . . ,JN ), the M ′×M ′ matrix Jn being the Jordan block associated with
eigenvalue λ

n
, n = 1, . . . , N :

J
n
≡ J

n
(λ

n
) =


λ

n
1

λ
n

. . .

. . . 1
λ

n

 . (54)

Note that although A is nonsymmetric, and hence possesses potentially complex eigenvalues, its
specific structure gives rise to a spectrum of real eigenvalues, given by those of the SPD matrix Â
with algebraic multiplicity of M ′.

From Eq. (53), a general polynomial of A (here the Chebyshev polynomial ϕ
k
(A)), can be

expressed as [Higham, 2008, p. 3, Definition 1.2]

ϕ
k
(A) = Z diag

(
ϕ

k
(Jn)

)
Z−1 (55)

where

ϕ
k
(Jn)=


ϕ

k
(λn) ϕ′

k
(λn) · · · 1

(M ′−1)!ϕ
(M′−1)

k (λn)

ϕ
k
(λn)

. . .
...

. . . ϕ′
k
(λ

n
)

ϕ
k
(λn)

,
ϕ(m)

k (λ
n
) denoting the mth derivative of ϕ

k
evaluated at λ

n
. Since these derivatives exist, ϕ

k
(A) is

said to be defined on the spectrum of A [Higham, 2008, p. 3, Definition 1.1].
From the analysis above, it is apparent that the convergence of CI for a nondiagonalizable matrix

requires convergence of the derivatives of the polynomial as well the polynomial itself, as stated by
the following [Manteuffel, 1977, Theorem 2.2]:
Theorem 1 If λn is an eigenvalue of A with invariant subspace of dimension dn, then ‖ϕ

k
(A)‖ →

0 as k →∞ if and only if ϕ(j)
k

(λ
n
)→ 0 as k → 0 for every j < dn, for each eigenvalue λ

n
.

In our case, dn = M ′. Manteuffel [1975] shows that Theorem 1 is indeed satisfied by the shifted
and scaled Chebyshev polynomials.

By exploiting the special structure of A in our problem, the matrix Z can be shown to be a
unitary matrix (Z−1 = ZT) of the form

Z =
(

Z1 Z2 · · · Z
N

)
where the block NM ′ ×M ′ matrix Zn is associated with the eigenvector vn of Â:

Z
n

=


(−1)(M′−1)v

n

. .
.

−v
n

v
n

 .
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Using Eq. (55) and properties of the 2-norm [Meyer, 2000, p. 283], we can then write

‖ϕ
k
(A)‖ = ‖Zϕ

k
(J) ZT‖ = ‖ϕ

k
(J)‖ (56)

where
‖ϕ

k
(J)‖ = max

n
‖ϕ

k
(J

n
)‖, n = 1, . . . , N.

The next theorem states some convergence properties for ‖ϕ
k
(J)‖.

Theorem 2 Let the Jordan block J
n

associated with eigenvalue λn, n = 1, . . . , N , be defined by
Eq. (54). Then,

lim
k→∞

‖ϕ
k
(J

n
)‖∣∣∣∣ϕ(M′−1)

k (λn )

(M ′−1)!

∣∣∣∣ = 1. (57)

Proof. ϕ
k
(Jn) can be expressed as a Taylor series [Higham, 2008, p. 4]:

ϕ
k
(Jn) = ϕ

k
(λn) In + ϕ′

k
(λn) Nn + · · · +

ϕ(M′−1)

k (λ
n
)

(M ′ − 1)!
NM ′−1

n
(58)

where J
n

= λ
n
I
n

+ N
n
. From Eq. (54), the matrix N

n
has zero elements except for a superdiagonal

of 1s, and satisfies NM ′

n
= 0. Dividing Eq. (58) by the coefficient of the last term in the series gives(

(M ′ − 1)!

ϕ(M′−1)

k (λn)

)
ϕ

k
(Jn) =

(M ′ − 1)!ϕ
k
(λn)

ϕ(M′−1)

k (λn)
In +

(M ′ − 1)!ϕ′
k
(λn)

ϕ(M′−1)

k (λn)
Nn + · · ·

+
(M ′ − 1)!ϕ(j)

k
(λn)

j!ϕ(M′−1)

k (λn)
Nj

n
+ · · ·+ NM ′−1

n
.

Taking the norm of the above expression and noting that ‖Nj
n
‖ = 1 for j < M ′, and |ϕ(j)

k
(λn)/ϕ(M′−1)

k (λ
n
)| → 0

as k →∞ for j < M ′ − 1, we obtain the result (57). �

Appendix C: Block-diagonal preconditioning of the NSPD
system

Consider the sequence of SPD systems in (7) where each member in the sequence is preconditioned to

the left by P ≈ Â−1. An augmented NSPD system can be formed from the resulting preconditioned
sequence as

P̃AΨ = P̃ζ, (59)

where P̃ is defined by Eq. (24). As with PA, the eigenvalues of P̃A are multiples of the eigenvalues
of PA. Compared to the block lower triangular preconditioner P , the block-diagonal preconditioner
P̃ has the advantage that its M blocks can be applied in parallel.

An obvious drawback with Eq. (24) is that employing it with the ideal preconditioner for the

SPD matrix (P = Â−1) does not result in an ideal preconditioner for Eq. (59). To see this, it

is instructive to examine the update equation on the first iteration of Algorithm 3 with P̃ as a
preconditioner. Given a first guess Ψ0 , the update equation for Ψ is

Ψ1 = Ψ0 − α0

(P̃AΨ0 − P̃ ζ)
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where the term in parentheses corresponds to the initial search direction (p0). The update equations
for the individual elements of Ψ1 are

ψ1
1

= ψ0
1
− α

0

(
PÂψ0

1
− Pψ

0

)
ψ1

2
= ψ0

2
− α

0

(
−Pψ0

1
+ PÂψ0

2

)
...

ψ1

M′
= ψ0

M′
− α0

(
−Pψ0

M′−1
+ PÂψ0

M′

)

 .

It is easy to see that with P = Â−1, and hence α0 = 1, only the first component ψ1
1

converges to

the exact solution (ψ1
1

= Â−1ψ
0
). The exact solutions for the other states ψ

m
, m = 2, . . . ,M ′, will

be retrieved successively after M ′ iterations. This number is related to the special structure of the
preconditioned system matrix, as explained below.

The matrix P̃A has block-matrix form similar to A:

P̃A =


PÂ

−P PÂ
. . .

. . .

−P PÂ

 .

When P = Â−1, the eigenvalues of the matrix P̃
Â
A are all equal to 1 with algebraic multiplicity

of N ×M ′. Furthermore, P̃
Â
A− I

NM′ is a nilpotent matrix; i.e.,

ρ(P̃
Â
A) ≡

(P̃
Â
A− I

NM′

)M ′
= 0,

implying that M ′ is the degree of the minimal polynomial of P̃
Â
A. Algorithm 3 will then stop at

iteration M ′ since

‖Ξ
M′‖ ≤ ‖ϕM′(P̃Â

A)‖ ‖Ξ
0
‖ ≤ ‖ρ(P̃

Â
A)‖ ‖Ξ

0
‖ = 0.
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