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ABSTRACT

Time of emergence of anthropogenic climate change is a crucial metric in risk assessments surrounding

future climate predictions. However, internal climate variability impairs the ability to make accurate state-

ments about when climate change emerges from a background reference state. None of the existing efforts to

explore uncertainties in time of emergence has explicitly explored the role of internal atmospheric circulation

variability. Here a dynamical adjustment method based on constructed circulation analogs is used to provide

new estimates of time of emergence of anthropogenic warming over North America and Europe from both a

local and spatially aggregated perspective. After removing the effects of internal atmospheric circulation

variability, the emergence of anthropogenic warming occurs on average two decades earlier in winter and one

decade earlier in summer over North America and Europe. Dynamical adjustment increases the percentage

of land area over whichwarming has emerged by about 30%and 15% inwinter (10%and 5% in summer) over

North America and Europe, respectively. Using a large ensemble of simulations with a climate model, evi-

dence is provided that thermodynamic factors related to variations in snow cover, sea ice, and soil moisture

are important drivers of the remaining uncertainty in time of emergence.Model biases in variability lead to an

underestimation (13%–22% over North America and ,5% over Europe) of the land fraction emerged by

2010 in summer, indicating that the forced warming signal emerges earlier in observations than suggested by

models. The results herein illustrate opportunities for future detection and attribution studies to improve

physical understanding by explicitly accounting for internal atmospheric circulation variability.

1. Introduction

It is well established that anthropogenic increases in

greenhouse gases (GHGs) have caused the globe as a

whole to warm over the past 50 years beyond the level of

natural variability (IPCC 2013). Consequently, concerns

have been raised regarding the vulnerability of ecosys-

tems to the rising temperatures (Scholze et al. 2006), in

particular that a shift to a different mean state might

pose an additional stress for ecosystems that have

adapted to a particular reference climate over hundreds

or thousands of years (Rockström et al. 2009). Time of

emergence (ToE) has been introduced as a framework

to depict the timing of anthropogenic climate change

and to investigate whether such changes are potentially

beyond the known adaptability of ecosystems (Giorgi

and Bi 2009). It is based on the simple notion that a new

climate state, often defined by temperature at a given

location, can be said to have ‘‘emerged’’ when it deviates

significantly from a prior reference state for a given

length of time, taking into account natural variability.

Various versions of the concept of ToE have been used

to detect shifts that have already occurred or are pro-

jected to occur in temperature (Mahlstein et al. 2011,

2012), precipitation (Giorgi and Bi 2009), climate ex-

tremes (Scherer and Diffenbaugh 2014; King et al. 2015,

2016; Bador et al. 2016), and the carbon cycle (Keller

et al. 2014), as well as to estimate the future time horizon
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of emerging climate change as a motivation to inform

human exposure to climate change (Lehner and Stocker

2015; Harrington et al. 2016) or to protect potentially

endangered ecosystems (Beaumont et al. 2011).

Similar to other frameworks used to detect climate

change, such as classical detection and attribution, ToE

is subject to uncertainties from model structural differ-

ences, choice of emissions scenario, and internal climate

variability (Deser et al. 2012; Hawkins et al. 2014).

Further uncertainties arise from the choice of ToE

metric, including differences in the definition of ToE

thresholds (e.g., standard deviation or maximum value),

the statistical test that defines robust emergence (e.g.,

significant epoch differences or simple threshold ex-

ceedance), or the temporal filtering of data to estimate

the forced signal (e.g., linear trend, running mean,

spline, or model ensemble mean). Generally, it is as-

sumed that emergence from a reference climate occurs

as a result of radiative forcing from anthropogenic in-

creases in GHGs. However, emergence might not nec-

essarily be synonymous with anthropogenic climate

change if internal multidecadal variability is substantial.

This is particularly problematic if ToE is calculated from

observations, for which the anthropogenically forced

response is difficult to quantify precisely. Large initial-

condition ensembles of historical simulations with cli-

matemodels, for which ToE of human-induced warming

can be well estimated, provide a useful tool for in-

vestigating the contribution of internal multidecadal

variability to ToE uncertainty. Recent work using large

initial-condition model ensembles has shown that un-

forced changes in atmospheric circulation can advance

or delay the emergence of anthropogenically forced

trends in regional temperature and precipitation by up

to several decades, especially in the extratropics (Deser

et al. 2012; Hawkins et al. 2016). Hence, accounting for

this internal variability could reduce the uncertainty on

estimates of ToE at local and regional scales, provide

information about the forced response that drives ToE,

and facilitate differentiation between predictable and

unpredictable components of ongoing climate change.

In this context, it is worth mentioning that unpredictable

internal variability represents an irreducible uncertainty

for estimates of ToE, in contrast to model structural

uncertainties and forcing uncertainties, which, in prin-

ciple, are reducible (Hawkins and Sutton 2009).

Past studies investigating ToE of surface air temper-

ature or precipitation have focused on a number of

different aspects and technical issues: Mahlstein et al.

(2011) detected and contrasted regions of early and

late ToE; Giorgi and Bi (2009) investigated the im-

pact of different emissions scenarios and different cli-

mate models on ToE; and Hawkins and Sutton (2012)

demonstrated how the magnitudes of both warming and

internal variability differ across climate models and how

this in turn affects estimates of ToE. While all of these

studies explicitly mention the important influence of

internal variability on estimates of ToE, to our knowl-

edge none has investigated its physical origins or has

tried to quantify its impact. This is particularly impor-

tant for the Northern Hemisphere midlatitudes, where

large uncertainties in ToE due to the influence of in-

ternal atmospheric circulation variability and the un-

certain future of the storm track (Shaw et al. 2016)

coincide with high population density, and hence an

inherent desire for more accurate climate projections.

While Deser et al. (2012) explicitly showed the effects of

internal variability on ToE, their results pertained to

future climate projections only, not to the historical

period and not to observations.

The aim of this paper is to provide new estimates of

ToE for winter and summer temperatures over North

America and Europe after accounting for the influence

of internal atmospheric circulation variability, using

both gridded observational data for the period 1920–

2015 and a large ensemble of simulations with a fully

coupled Earth system model for the period 1920–2100.

The circulation influence is removed with a dynamical

adjustment technique based on constructed circulation

analogs (Deser et al. 2016). While ToE calculated from

dynamically adjusted temperatures may not necessarily

reflect the actual ToE that ecosystems experience in

the real world, it allows for separation between po-

tentially unpredictable components of ToE (atmo-

spheric circulation) from potentially predictable ones

(thermodynamic processes, oceanic influence, etc.) and

provides physical insight into the processes governing

ToE. We calculate ToE in different ways in order to

isolate additional sources of uncertainty including im-

perfect knowledge of the forced response, length of

record, degree of temporal filtering, model biases in

internal variability, and observational uncertainty;

however, by using a single model, we do not sample

the effect of model structural uncertainty on ToE

(Hawkins and Sutton 2012).We also contrast local ToE

(at the gridbox level) with spatially aggregated ToE to

illustrate how the two perspectives differ in the con-

clusions they allow (Fischer et al. 2013; Fischer and

Knutti 2014).

The remainder of the paper is structured as follows.

Section 2 introduces the observational datasets and

model simulations used, the dynamical adjustment

technique applied, and methods used to calculate ToE.

Section 3 illustrates the effect of dynamical adjustment

on ToE, discusses the influence of model biases in

variability, and investigates potential drivers of the
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residual uncertainty. Section 4 provides a summary and

discussion.

2. Data and methods

a. Observational datasets and model simulations

We use monthly mean surface air temperature (SAT)

and sea level pressure (SLP) from the fully coupled

Community Earth System Model (CESM), version 1,

large ensemble (CESM-LE; Kay et al. 2015). The

CESM-LE consists of 40 simulations for the period

1920–2100 at a spatial resolution of approximately 18 in
both latitude and longitude. Each simulation begins

from slightly different atmospheric but identical ocean,

land, and sea ice initial conditions. In accordance with

protocols from phase 5 of the Coupled Model In-

tercomparison Project (CMIP5; Taylor et al. 2012),

historical natural and anthropogenic radiative forcings

and land use were applied from 1920 to 2005, and rep-

resentative concentration pathway 8.5 (RCP8.5) radia-

tive forcing and land use thereafter. Because of its many

simulations, the CESM-LE allows us to sample the

model’s internal variability as well as its forced response

in a robust manner. We also make use of an 1800-yr

CESM control simulation under preindustrial (1850)

radiative forcing conditions (Kay et al. 2015).

For observationally derived datasets, we use monthly

mean SAT from the Berkeley Earth Surface Tempera-

ture dataset (BEST; Rohde et al. 2013) at 18 3 18 reso-
lution and the ensemble mean SLP from the Twentieth

CenturyReanalysis (20CR; Compo et al. 2011) at 18 3 18
resolution (after bilinearly interpolating it from the

original 2.58 3 2.58 resolution) for the period 1920–2015.

The 20CR, which currently ends in 2012, is extended

from January 2013 to December 2015 by adding the

monthly SLP anomalies from ERA-Interim (Dee et al.

2011; 18 3 18 resolution) to the 1920–2012 SLP clima-

tology of 20CR. 20CR and ERA-Interim show very

good agreement during the time of overlap (1979–2012;

not shown), justifying this approach to construct a con-

tinuous SLP dataset. In addition, we use two SAT da-

tasets, the Merged Land–Ocean Surface Temperature

(MLOST) analysis (Vose et al. 2012) and the University

of Delaware dataset (Willmott and Matsuura 1995), to

test observational uncertainty.

b. Dynamical adjustment

Empirical dynamical adjustment techniques have a

long history and are motivated by the need to remove

circulation-induced SAT variability that obscures the

radiatively forced response of the climate system to in-

creasing greenhouse gases (Hurrell 1996; Thompson

et al. 2009; Wallace et al. 2012; Smoliak et al. 2015).

Although the circulation itself may respond to GHG

forcing, this response is generally much weaker than

internally generated variability in the extratropics, in-

cluding that on multidecadal time scales (Deser et al.

2012). To estimate the contribution of atmospheric cir-

culation to SAT changes, we apply a dynamical adjust-

ment methodology based on constructed circulation

analogs using SLP (Deser et al. 2016). The approach is

summarized below; full details are available in Deser

et al. (2016).

For observations, we consider the 96-yr period 1920–

2015 and apply themethod toNorthAmerica (208–908N,

1808–108W) and Europe (258–908N, 608W–40 8E) sepa-
rately. For a given ‘‘target’’ month and year (e.g., Jan-

uary 2012), we rank the remaining 95 January SLP fields

according to their similarity with the target SLP pattern

using a Euclidean distance metric. From the 80 SLP

fields with the smallest Euclidean distances, we ran-

domly select 50 and compute the optimal linear combi-

nation that best fits the SLP pattern of the target month.

Applying the same set of linear coefficients to the ac-

companying SAT fields, we obtain the associated opti-

mal linear combination of SAT. The entire process is

repeated 100 times (using random selection with re-

placement), and the resulting set of 100 optimal linear

combinations is then averaged to arrive at a best esti-

mate of the target SLP field and its associated dynami-

cally induced SAT field. Deser et al. (2016) illustrate the

importance of this iterative random selection process

and the sensitivity of the results to the choice of pa-

rameters. Also, while some of the chosen fields might

not be that similar to the target pattern, the linear

combination will assign them small weights. In practice,

our method gives very similar results to the partial least

squares regression used by Smoliak et al. 2015 (Deser

et al. 2016). Our procedure is applied to each month of

each year, so that eventually the dynamically induced

component of monthly SAT anomalies at each grid box

over North America and Europe during 1920–2015 is

obtained. Prior to applying the procedure, the SAT time

series at each grid point for each month (all Januaries,

and so on) are detrended with a quadratic fit to remove

the ostensible global warming signal [see the appendix

of Deser et al. (2016) for details on how this detrending

approach was chosen]. This step is necessary, since

otherwise months picked from the end of the record will

contribute higher SAT anomalies simply because of the

anthropogenically forced warmer background climate,

even if the SLP patterns are the same. Note that the

detrending is only for the purpose of obtaining the dy-

namical SAT contribution, SLP is not detrended and can

have a (forced) trend, which in turn can project onto the
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dynamical SAT contribution; the thermodynamic con-

tribution, or dynamically adjusted SAT, is then obtained

as a residual between the raw (not detrended) SAT and

the dynamical SAT contribution.

For the CESM-LE simulations, we obtain the con-

structed circulation analogs and their corresponding

SAT anomalies from the CESM 1800-yr preindustrial

control simulation. This is done to increase the pool of

samples from which analogs are selected (e.g., 1800 vs

96) and to allow a direct estimate of the dynamical

contribution to SAT in the absence of climate change,

alleviating the need for the detrending step described

above. We leverage the larger sample size by randomly

selecting 100 from the closest 150 SLP ‘‘analogues’’ (out

of 1800 samples) and repeat this entire procedure

100 times. The larger number of circulation analogs and

their closer resemblance to the target SLP field results

in a more certain estimate of the dynamical contribution

to SAT in the CESM-LE compared to observations as

discussed further below. In addition, we used analogs

from the historical period itself to investigate whether

this leads to significantly different results in dynamically

adjusted SAT and subsequent ToE calculations; no

significant differences were found (see Fig. S1 in the

supplemental material).

c. Time of emergence

We define the time of emergence at each grid box as

the year when the 10-yr-running-mean SATfirst exceeds

(and remains above) the average SAT during the ref-

erence period 1920–49 by at least two standard

deviations based on the variability of the 10-yr-running-

mean SAT during the reference period. ToE is com-

puted separately for each season, and for both the raw

and dynamically adjusted SAT fields. The 10-yr run-

ning mean serves to reduce the noise from interannual

variability while retaining key features of decadal-scale

fluctuations. We have tested other running-mean

lengths and found that 10 years strikes a good balance

between retaining decadal-scale variability while at the

same time not being unduly susceptible to errors from

higher-frequency noise, especially for dynamically ad-

justed SAT (see Fig. S2 and accompanying discussion in

the supplemental material). The reference period was

chosen because of the 1920 start date of the CESM-LE

and the reduced coverage and reliability of SLP mea-

surement in the Pacific–North American sector prior to

that time (Raible et al. 2014; Krueger et al. 2013). It is

acknowledged that the period 1920–49 can only serve

as a quasi-natural state from which to base detection of

ToE, since arguably anthropogenic forcing might al-

ready have had an influence (King et al. 2016), but it is

the best we can do given the data constraints. This

analysis is carried out separately for the raw and dy-

namically adjusted data during the period 1920–2015.

Finally, we note that there is no unique definition of ToE

[see, e.g., alternative approaches in Mahlstein et al.

(2012)] and that the results may vary according to the

definition of both the signal and the noise. We shall as-

sess the sensitivity of our ToE estimates to both factors

in a controlled fashion below.

Estimates of ToE based on a single realization of cli-

mate (as is the case for observations) are inherently

uncertain, as they cannot adequately sample the full

range of trends in atmospheric circulation or thermo-

dynamic processes related to conditions on land and

ocean. Therefore, there is no guarantee that a particular

SAT time series that has already emerged will not fall

below the ToE threshold again in the future, even when

the time series is low-pass filtered (Hawkins et al. 2014).

This issue challenges the robustness of ToE estimates

from observations, which might show a ‘‘false’’ ToE.

Note, however, that a false ToE might still have signif-

icant impacts on affected systems, depending on how

long SAT remains above the threshold; it simply in-

dicates that temperature has not completely shifted into

uncharted territory, where it will not drop below the

threshold any longer. We can quantify the likelihood

of a false ToE, at least within the framework of the

CESM-LE, by considering the future portion of each

simulation in our calculations. That is, we can use the full

period 1920–2100 to calculate the probability that SAT

drops below the ToE threshold in any year after 2010

(note that 2010 indicates the midpoint of the last 10-yr

period available: 2006–15).

For the model simulations, we calculate ToE in four

ways (calculations 1–4) for both the raw and dynami-

cally adjusted SAT:

1) For each ensemble member, we disregard data after

2015 (for direct comparison to observations).

2) We proceed as in calculation 1, but use the full period

of simulation until 2100. By comparing with the

results from calculation 1, we are able to assess the

rate of false positives resulting from not knowing

the future SAT evolution.

3) For the forced ToE, we use the ensemble mean SAT

time series at each grid point, but calculate ToE

based on the ToE thresholds of all individual ensem-

ble members using data until 2100. Recall that the

ensemble mean represents the model’s forced re-

sponse, which is what we aim to detect. Hence, this

way of calculating ToE represents an estimate of the

ToE of the anthropogenically forced response and

ignores uncertainties in SAT evolution due to in-

ternal variability.
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4) We proceed as in calculation 3, but use the observed

ToE threshold at each grid point (after bilinearly

interpolating the observed ToE threshold to the

model grid). This represents the ToE of the model’s

forced response given the observed variability. This

measure allows us to make inferences about how

model biases in SAT variability affect our results.

3. Results

a. Time of emergence in observations

Figure 1 shows maps of observed ToE based on raw

and dynamically adjusted SAT in December–February

(DJF) and June–August (JJA). The year of emergence

represents the midpoint of the 10-yr-running-mean pe-

riod (e.g., 1990 refers to 1986–95); note that 2010 is the

latest possible year of emergence since it represents the

last complete 10-yr running mean in the observational

record (2006–15). Stippling indicates regions where

there is a less than 10% chance, according to CESM-LE,

of a false positive in ToE. We describe results for North

America first, followed by those for Europe.

For raw DJF SAT over North America, most of

Canada emerged in 1990 whereas most of the United

States has not yet emerged (Fig. 1a). In contrast, after

dynamical adjustment, nearly the entire continent is

considered emerged by 2010 in DJF (Fig. 1b). However,

there is a greater than 10% chance that these ToE es-

timates may represent false positives (indicated by areas

without stippling). Although dynamical adjustment ad-

vances ToE over theUnited States, it delays it over parts

of north-central Canada. This indicates that dynamically

induced decadal SAT variability can augment or offset

an underlying signal of anthropogenic climate change

depending on location (see also Deser et al. 2016). For

raw SAT in JJA, the entire continent except for the

midsection and Alaska emerged by 2000 or 2010, with

earlier emergence over western Canada and Southern

California (1990) and Florida (1980) (Fig. 1c). Dynam-

ical adjustment has a smaller impact in JJA compared to

DJF, but does advance ToE over the eastern portion of

the continent by 5–10 yr and fills in the unemerged area

in the center of the continent (Fig. 1d). Unlike DJF,

about one-third of North America shows robust emer-

gence of both raw and dynamically adjusted SAT in JJA,

defined as a less than 10% chance of false positive

(stippling in Figs. 1c,d). It is worth noting that the ref-

erence period includes the exceptionally warm 1930s

over the central United States (‘‘Dust Bowl’’) in ob-

servations, and hence might prompt relatively later ToE

in that specific region.

Unlike North America, large parts of the European

continent and North Africa are emerged by 2010 in both

seasons based on raw SAT (Figs. 1a,c). The earliest

emergence occurs inDJF over eastern Europe (1970–80),

and in JJA over most of the Mediterranean region

(1990). Consequently, in the dynamically adjusted data,

the emerged area increases onlymoderately (Figs. 1b,d):

in DJF, parts of France and Spain (1980–90), as well as

Scandinavia (2010) are newly emerged, and in JJA

eastern Europe’s ToE advances by about a decade.

However, only a fraction of the allegedly emerged areas

is likely to be robust. Most spatial patterns described

here are robust across the two alternative SAT datasets,

with the exception of the eastern United States in DJF

FIG. 1. ToE of observed 10-yr-running-mean time series of SAT anomalies relative to the reference period 1920–

49 based onDJF (a) raw and (b) dynamically adjusted data and JJA (c) raw and (d) dynamically adjusted data. The

color bar shows the central year of the 10-yr-running-mean period (e.g., 1990 refers to 1986–95). Gray shading

indicates that emergence has not yet occurred. Stippling indicates a ,10% chance of false emergence.
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after dynamical adjustment, where BEST shows emer-

gence, while the other two datasets do not (Fig. S3 in the

supplemental material).

We have further tested the effect of the dynamical

adjustment on ToE in observations using the metric of

Mahlstein et al. (2011) and Mahlstein et al. (2012). Their

metric detects emergencewhen consecutive 30-yr periods

are, and remain, significantly warmer than a particular

30-yr reference period [see Mahlstein et al. (2011) for de-

tails]. This metric, which is more conservative than ours

because they have not applied any low-pass filtering to

the data, shows very few emerged grid cells in the raw

data (Fig. S4 in the supplemental material). Interestingly,

some regions that are emerged in the raw data are not

emerged after dynamical adjustment, suggesting that

even this conservative metric might show a false ToE due

to internal variability.

b. Time of emergence in CESM-LE

To put the observational results in perspective, we turn

to theCESM-LE.Wefirst examine ToE in four individual

ensemble members (Fig. 2; without assessing the rate of

false positives; i.e., no stippling): thosewith the largest and

smallest fractions of land area emerged by 2010 in winter

(members 2 and 28, respectively) and in summer (mem-

bers 6 and 27, respectively). The dynamically adjusted

results are based on calculation 1 outlined in section 2c

(i.e., treated just like the observations ending in 2015).

CESM-LE member 2 in DJF shows almost all of North

America and Europe emerged by 2010 (Fig. 2a), while

member 28 shows almost no emergence by 2010 (Fig. 2b).

These differences are somewhat reconciled when both

members are dynamically adjusted, although regional

differences remain (Figs. 2e,f). In JJA, differences be-

tween the two contrastingmembers are smaller than those

in DJF, especially when dynamically adjusted (Figs. 2c,d).

The spatial patterns of the dynamically adjusted ToE in

JJA over the United States resemble the observations, in

particular with regard to earlier emergence over the

western and southeastern United States (recall Fig. 1d).

These examples from theCESM-LE serve to illustrate the

large range of possible ToE outcomes due solely to in-

ternal variability, and that uncertainties may remain even

after dynamical adjustment, particularly in DJF.

For a more general examination of ToE within the

CESM-LE, Fig. 3 shows the median ToE across all

FIG. 2. As in Fig. 1, but for selected members of the CESM-LE based on (a)–(d) raw and (e)–(h) dynamically

adjusted data. See text for details.
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ensemble members based on raw SAT using calculation

2 in section 2c. Note that here we have included the

future segment of the simulations to estimate ToE,

which is not possible with observations. In DJF, a large

swath of western North America and all of northern

Europe are projected to emerge, on average, as late as

the 2040s or 2050s (Fig. 3a). After dynamically adjusting

DJF SAT, the median ToE over North America is ad-

vanced almost everywhere by 1–2 decades, in particular

the sector reaching from Alaska down to the middle of

the continent (Fig. 3b). Over Europe, themedian ToE in

DJF advances 20 or more years mainly at high latitudes,

while the areas bordering the Mediterranean Sea are

relatively unchanged. The distinctive northward gra-

dient in the median value of dynamically adjusted ToE

in DJF over Europe in CESM-LE resembles observa-

tions (Fig. 1) and previous observation-based studies

(Mahlstein et al. 2012). The pattern of the median dy-

namically adjusted ToE over North America does not

resemble observations.

In JJA, themedian value of raw ToE in the CESM-LE

is earliest (2000) over the eastern and western United

States, in good agreement with observations; however,

the values over Canada and the midsection of the

United States are much later (2020), unlike observations

(Fig. 3c). Europe shows a relatively uniformmedian raw

ToE in JJA, with values around 2000 in the south and

2010 in the north. Dynamically adjusting JJA SAT has

only a small effect, advancing median ToE by about a

decade at most (Fig. 3d). We defer discussion of the

remaining panels in Fig. 3 to section 3d.

The median values shown in Fig. 3 belie the wide

range of ToE across the individual members, with some

showing values in the 2080s and 2090s over particular

areas (not shown; see also Hawkins et al. 2014). Given

such late ToE close to the end of the simulation period,

the possibility of a false emergence cannot be excluded,

especially if GHG concentrations were to stabilize or

decline after 2100. Section 3f will address the rate of

false positives in ToE in more detail.

c. Land fraction emerged by 2010

To further compare model results and observations,

we use the fraction of land area over which warming has

FIG. 3. Median ToE of 10-yr-running-mean SAT anomalies relative to the reference period 1920–49 in the

CESM-LEbased onDJF (a) raw and (b) dynamically adjusted data and JJA (c) raw and (d) dynamically adjusted data.

(e),(g) As in (a),(c), but using the forced response with ToE thresholds based on the raw data. (f),(h) As in (e),(g), but

with ToE thresholds based on dynamically adjusted data. See text for details. Note that the same range of colors as in

Figs. 1 and 2 is used for twentieth-century ToE values; blue shading indicates twenty-first-century ToE values.
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emerged by 2010 [hereinafter land fraction emerged by

2010 (LFE2010)] as a spatially aggregated metric

(Fig. 4). For this comparison we use calculations 1 and 2

from section 2c. To recap, calculation 1 is based on

the simulations up to year 2015, while calculation 2 is

based on their full length (up to year 2100). In other

words, calculation 1 is much more likely to show false

emergence than calculation 2, with implications for

observations.

In DJF (Fig. 4a) the observed LFE2010 for North

America and Europe (47% and 72%, respectively)

lies within the very large range of the individual

model ensemble members (28%–93% and 7%–93%,

respectively, with median values of 51% and 64%,

respectively). This also holds true after dynamical ad-

justment, for which LFE2010 in observations increases

to 87% and 88% for North America and Europe, re-

spectively, and in the model increases to 35%–97%

(median value of 83%) and 45%–99% (median value of

78%), respectively. However, these high values may be

misleading, since they could represent false detections

of ToE because the records end in 2015. Indeed, if one

considers the full length of the simulations, the median

values for North America and Europe in the raw data

drop to 28% and 37%, respectively, and in the dynam-

ically adjusted data to 65% and 54%, respectively. That

is, LFE2010 is reduced by 23% on average over both

continents. A similar result occurs in JJA (Fig. 4c),

where the LFE2010 is reduced over North America and

Europe by an average of 13% when considering the full

length of the simulations compared to only the historical

segment. However, in contrast to DJF, JJA does not

exhibit large gains in LFE2010 as a result of dynamical

adjustment, generally less than 10% for both North

America and Europe.

In summary, for six out of the eight cases wherewe can

compare observations and simulations directly (i.e.,

calculation 1 for North America and Europe in DJF and

JJA for raw and dynamically adjusted SAT), the ob-

served value of LFE2010 exceeds the CESM-LEmedian

FIG. 4. Land fraction of North America (NA) and Europe (EU) over which warming has emerged by 2010 in

observations and CESM-LE for (a),(b) DJF and (c),(d) JJA. Blue denotes raw data, and red denotes dynamically

adjusted data. Crosses denote observations (BEST), thin vertical lines denote the individual CESM-LE ensemble

members, and thick vertical lines denote the median of the CESM-LE ensemble members. ToE is computed based

on (a),(c) the full CESM-LE and (b),(d) the CESM-LE ensemble mean plus ToE thresholds from individual

members. In (b) and (d), filled squares denote ToE calculated using the CESM-LE ensemble mean and observed

ToE thresholds. For the CESM-LE, the top and bottom parts of each panel show results based on the period 1920–

2015 and 1920–2100, respectively [see annotation in (a)].
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value. Only for raw DJF over North America and dy-

namically adjusted JJA over Europe is LFE2010 lower

than the CESM-LE median. However, in all cases the

observed value lies within the range of the individual

ensemble members, indicating that potential model

biases in temperature trends or variability are not nec-

essarily needed to explain the tendency toward lower

LFE2010 in the model compared to observations. The

role of model biases will be discussed in section 3e.

d. Time of emergence of the forced response in
CESM-LE

The metrics presented so far were intended for com-

parison with observations, for which the forced response

is per se unknown. Within CESM-LE, however, we can

start to disentangle uncertainties in ToE arising from

internal variability since the forced response can be es-

timated from the ensemble mean. Accordingly, we have

computed ToE in each ensemble member using the

CESM-LE ensemble-mean 10-yr-running-mean SAT

time series (i.e., the forced SAT response) and the ToE

thresholds from the individual ensemble members

(calculation 3 in section 2c). This constitutes an estimate

of the ToE of the forced response [referred to as the

forced ToE (FToE)] in the presence of uncertainty in

the internal variability threshold. The median values of

FToE computed from all ensemble members are shown

in Figs. 3e–h. Their spatial patterns are similar to those

of the median values of the total ToE discussed pre-

viously. However, quantitatively, the median FToE

values tend to be about 10 years earlier than the median

values of the total ToE, for both seasons, both conti-

nents, and regardless of whether they are based on raw

or dynamically adjusted data. This advance in FToE

over total ToE is because the ensemble-mean SAT time

series is smoother than the SAT time series in any in-

dividual simulation, decreasing the likelihood of drop-

ping below the ToE threshold once it has been

exceeded. Expressed in terms of LFE2010, FToE shows

larger values and a smaller uncertainty range than total

ToE for the same reason (Figs. 4c,d). The range of

LFE2010 values based on FToE encompasses the ob-

servations in DJF, but not in JJA when it lies below the

observed value for North America and above it for

Europe. This indicates that observed LFE2010 in JJA

over North America (Europe) is significantly larger

(smaller) in observations than the forced response of the

model would suggest.

e. Role of model biases in variability

Next we investigate the effect of model biases in in-

terannual SAT variability upon the estimates of ToE

and LFE2010. To get a sense of where CESM might

have toomuch or too little SAT variability, we plot maps

of the standard deviation of 10-yr-running-mean SAT

anomalies from observations alongside the mean stan-

dard deviation across the CESM-LE members (Fig. 5).

Areas enclosed by light and dark blue contours with

hatching indicate regions where the observed value lies

outside the entire CESM-LE. It is evident that CESM

has too much variability over the western United States

and eastern Europe in DJF and over northwestern

North America in JJA, as well as too little variability

over Newfoundland and along the U.S. Gulf Coast in

DJF, and in the southeastern United States in JJA

(Figs. 5c,g). In raw JJA, there are a number of regions,

such as around Hudson Bay, southwestern Canada and

the United States, or Spain, where CESM’s variability is

not outside observations, but the mean from CESM-LE

at least suggests an overestimation of variability. In-

terestingly, dynamical adjustment reconciles most of

these biases (Figs. 5d,h). Further, it is worth emphasizing

that observational uncertainties in SAT variability exist

(Lehner et al. 2017) and thus model fidelity may depend

on the observational dataset being used to benchmark

the model.

To investigate the role of these model biases in SAT

variability, we estimate ToE and LFE2010 using the

ensemble-mean SAT time series from the CESM-LE

and the observed ToE threshold (calculation 4 in section

2c; squares in Figs. 4c,d). By using the observed ToE

threshold, we control for potential biases in simulated

SAT variability, and hence any significant discrepancy

between this estimate of ToE and FToEmust arise from

differences in the ToE threshold (i.e., the SAT vari-

ability during the reference period).

In DJF, no effect frommodel bias in SAT variability is

apparent on LFE2010, as all values (indicated by the

squares) lie within the range of the model’s LFE2010,

both for the raw data and the dynamically adjusted SAT

over both continents (Fig. 4b). In other words, using the

observed ToE threshold does not produce an LFE2010

that is outside of the range produced by the model. In

JJA, however, this is not the case over North America

for either the raw or dynamically adjusted data, with a

substantially larger LFE2010 when the observed ToE

threshold is used (about 22% in raw data and 13% in

dynamically adjusted data; compare squares and thick

solid vertical lines in Fig. 4d). This suggests that over

North America in JJA, the model’s slight but wide-

spread overestimation of SAT variability has a dis-

cernible effect on the estimated FToE. Recent research

suggests an overestimated land–atmosphere coupling

might be responsible for this bias, although the obser-

vational constraint on this metric remains weak

(Merrifield and Xie 2016). In JJA over Europe, the

1 OCTOBER 2017 LEHNER ET AL . 7747



results also suggest a potential role for model bias in

SAT variability on LFE2010, as the squares lie at the

upper end or just beyond the model range (Fig. 4d).

f. The 5%–95% range of time of emergence

The 5%–95% range of uncertainty in ToE across the

CESM-LE is shown in Fig. 6. Over North America in

DJF, the largest ToE uncertainty (.25 yr) is concen-

trated in a corridor from Alaska to the U.S. East Coast

(Fig. 6a). Most of central to northern Europe shows a

similar range. These areas of largest uncertainty in ToE

are collocated with high variability in the midlatitude

westerlies and associated storm track (Strong and

Davis 2007), which is likely responsible for the un-

certainty in ToE of unadjusted DJF SAT. Position and

variability of storm tracks, in turn, might be partially

driven by interactions with the midlatitude ocean (e.g.,

Booth et al. 2012). After dynamical adjustment, the

5%–95% range of DJF ToE is greatly diminished over

both continents, with some areas showing reductions of

more than 10 years (Fig. 6b). The remaining un-

certainty in dynamically adjusted ToE is largest across

the northern portion of the eastern United States,

central Canada, and Scandinavia, with values of

2–3 decades (Fig. 6b).

In JJA, the largest 5%–95%ToE ranges based on raw

SAT occur over the southern United States and into

Mexico as well as eastern Mediterranean countries

(Fig. 6c). However, the maximum values are consider-

ably smaller than those in DJF. The uncertainty range in

JJA ToE is only slightly reduced through dynamical

adjustment (cf. Figs. 6c and 6d), in line with the expec-

tation that the large-scale circulation exerts a weaker

influence on SAT in summer compared to winter. It is

interesting to note that the regions of greatest residual

ToE uncertainty (after removing the effects of circula-

tion variability) in JJA have been identified as locations

with potentially strong land surface coupling, for

FIG. 5. Standard deviation s of 10-yr-running-mean time series of SAT anomalies from (a),(b),(e),(f) ob-

servations (BEST) and (c),(d),(g),(h) CESM-LE for (a)–(d) DJF and (e)–(h) JJA. For CESM, the mean

s across all 40 members is shown. The time series have been quadratically detrended before calculating s. Light

blue (blue) contours and hatching enclose regions where the s of all CESM-LE members is above (below) the

observed s.
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example the southern United States and eastern Medi-

terranean region (Seneviratne et al. 2013).

g. Potential thermodynamic sources of residual ToE
uncertainty

After removing circulation-induced uncertainty in

ToE, we expect any remaining uncertainty to be related

primarily to thermodynamic processes, ocean-induced

internal variability, and residual dynamical contribu-

tions not captured by the dynamical adjustment pro-

cedure. Here we provide a simple initial investigation

into physically plausible sources of this uncertainty, fo-

cusing on the role of snow cover and sea ice in winter and

soil moisture in summer. We will later remove these

uncertainties empirically from the dynamically adjusted

SAT fields to provide an empirical upper bound esti-

mate of their impact on the overall uncertainty in ToE.

Figure 7a shows maps of the local correlation co-

efficient between lagged seasonal mean time series of

snow cover (fraction of a grid cell covered by snow) and

DJF dynamic SAT for lags 23 through 12 months,

where negative lags indicate snow cover leading SAT

and positive lags indicate snow cover lagging SAT [i.e.,

lag 23 months indicates September–November (SON)

snow cover is being correlated with DJF SAT]. Here,

dynamic refers to the dynamical contribution to SAT,

that is, the time series that is subtracted from the raw

SAT to obtain the dynamically adjusted SAT. For this

calculation, the CESM-LE ensemble mean time series

of both variables are removed from each ensemble

member and then the residual time series from all

members are concatenated before computing the cor-

relations. All correlations shown are significant at 95%

confidence. Figure 7b shows the analogous correlations,

but using dynamically adjusted SAT in place of dynamic

SAT. By comparing the correlation maps for dynamic

and dynamically adjusted SAT at the various lags, we

aim to gain insight into the role of thermodynamic in-

teraction between snow cover and SAT variability.

Similar patterns are obtained using regression co-

efficients in place of correlations (not shown).

At lag 23 months, the correlation maps show that

SON snow cover in the northern United States and

southern Canada is significantly negatively correlated

only with dynamically adjusted DJF SAT, while the

correlation with dynamic DJF SAT is insignificant in the

region of interest (Figs. 7a,b). Note that a negative

correlation indicates below normal snow cover is asso-

ciated with above normal SAT, and vice versa. At lag22

and21month, significant correlations are apparent with

both SAT fields, but are larger and/or more widespread

for dynamically adjusted SAT than dynamic SAT. At

lags from 11 to 12 months, the opposite is true. The

simultaneous correlation maps show the strongest cor-

relations with both SAT fields, with maximum ampli-

tudes exceeding 0.6. Taken together, the distinctions in

the lead–lag correlation maps with dynamic and dy-

namically adjusted SAT provide some evidence, albeit

circumstantial, that once the effects of atmospheric cir-

culation variability are removed from SAT, a physically

plausible thermodynamic relationship (indicative of

two-way feedbacks) between snow cover and SAT var-

iability is revealed. Note that the correlations between

snow cover and dynamic SAT likely indicate that at-

mospheric circulation variability is impacting both

quantities.

These results, in turn, suggest that a plausible mech-

anism underlying the residual uncertainty in the

5%–95% range of dynamically adjusted ToE in these

locations (recall Fig. 6b) may be associated with snow

FIG. 6. The 5%–95% range of time of emergence in CESM-LE for (a),(b) DJF and (c),(d) JJA based on (a),(c) raw

and (b),(d) dynamically adjusted data.
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cover variability. The residual ToE uncertainty in north-

ern Canada (Fig. 6b) is likely not driven by snow cover

variations, since this region is essentially always snow

covered during DJF. Other processes, such as remote

thermodynamic influences from decadal-scale variability

in Arctic sea ice, may be important for this region [not

shown, but see related results in Deser et al. (2016)].

The largest residual uncertainty in ToE over Europe

in DJF is located in northern Scandinavia (Fig. 6b). Sea

ice concentration in the Barents Sea can influence

northern Europe SAT in winter through dynamic but

also direct thermodynamic processes (Lehner et al.

2013; Screen et al. 2014; Mori et al. 2014; Sun et al. 2015;

Sorokina et al. 2016) and could account in part for this

FIG. 7. Pointwise correlation across all CESM-LE members between lagged seasonal mean time series of (a) snow cover and DJF

dynamical SAT (i.e., dynamic) and (b) snow cover and DJF dynamically adjusted SAT (i.e., thermodynamic). (c),(d) As in (a),(b), but for

Barents Sea sea ice and SAT. The lag is given in months, for example, lag23 corresponds to the correlation between SON andDJF. Only

correlations significant at the 95% level taking into account serial autocorrelation are shown. (b) As in (a), but for sea ice in the Barents

Sea and dynamically adjusted SAT. The CESM-LE ensemble mean of each variable has been subtracted from each member prior to the

analysis (see text for details).
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residual uncertainty. To investigate the influence of sea

ice concentration (SIC) in the Barents Sea on dynamic

and dynamically adjusted SAT, we construct time series

of DJF SIC averaged over the Barents Sea for each

ensemble member, and correlate them with dynamic

and dynamically adjusted SAT at each grid cell over

Europe, again removing the CESM-LE ensemble mean

from each variable beforehand and concatenating the

time series before correlating. Although weaker than

that found for snow cover over North America, the

Barents Sea SIC correlation is significantly negative

over northern Scandinavia, and, importantly, the cor-

relations with dynamically adjusted SAT (Fig. 7d) at lags

of 23 months, and also 22 and 21 month (i.e., SIC

leading SAT), tend to be stronger than the ones with

dynamic SAT (Fig. 7c). This suggests that Barents SIC

exerts a thermodynamic influence on SAT. Also, the

pattern resembles that of the residual uncertainty range

of ToE (Fig. 7b), suggesting that residual ToE un-

certainty over Europe in DJF may result in part from

the thermodynamic influence of internal variability of

Barents Sea SIC.

In JJA, the largest residual uncertainties in ToE occur

in the U.S. southern Great Plains and the eastern

Mediterranean region, regions identified with strong

land–atmosphere coupling (Seneviratne et al. 2013).

Hence, thermodynamic soil moisture–driven SAT vari-

ability across the CESM-LE ensemblemembers could in

part be responsible for the remaining uncertainty there.

We can illustrate this relationship by correlating at each

grid box the JJA time series of column-integrated soil

moisture with that of dynamic and dynamically adjusted

SAT, after removing the CESM-LE ensemble mean

from all variables and concatenating the time series

(Fig. 8). The results show that dynamically adjusted

SAT is significantly negatively correlated with soil

moisture in the U.S. Great Plains and the Mediterra-

nean region at all lags (Fig. 8b), and importantly, shows

larger amplitude correlations than those between soil

moisture and dynamic SAT when soil moisture leads

(i.e., lags from 23 to 21 month), supporting the hy-

pothesis that thermodynamic effects of summer soil

moisture, likely with a memory from winter–spring

precipitation totals and corresponding summer latent

heat flux, are important contributors of residual un-

certainty in ToE.

As a consequence of these analyses, one would expect

the uncertainty range in ToE over North America and

Europe to be reduced when the wintertime influences of

snow cover and sea ice, and the summertime effects of

soil moisture, are accounted for. To test this at the ex-

ample of 21-month lag, we multiply the time series of

snow cover, sea ice, or soil moisture with the respective

regression coefficients derived from 21-month-lag re-

gressions (only for grid points with significant regression

coefficients), yielding an empirical estimate of the indi-

vidual linear contributions of snow cover, sea ice, and

soil moisture to the dynamically adjusted SAT. After

removal of this contribution, ToE and its 5%–95%

range are calculated again. The reason we perform this

calculation for only those grid boxes with significant

regression coefficients is that the regression involving a

bounded quantity such as snow cover can yield un-

realistically high or low coefficients, which would result

in overestimation of their contribution to SAT vari-

ability. Note that this regression approach does not ac-

count for possible collinearity of the dynamic and the

dynamically adjusted SAT variability that would reflect

the two-way feedback between, for example, snow cover

and SAT but rather assumes a one-way influence of the

thermodynamic driver onto the residual SAT variabil-

ity. Thus, such an empirical estimate should be in-

terpreted as a possible upper bound on the contribution

of snow cover, sea ice, or soil moisture to the dynami-

cally adjusted SAT variability, and hence residual ToE

uncertainty. Further dissecting this collinearity and

more comprehensively quantifying the feedback con-

tributions from thermodynamic drivers are beyond the

scope of this study.

The effect that this additional removal of thermody-

namic SAT variability has on the 5%–95% range of ToE

is illustrated in Fig. 9. In DJF over North America, re-

moving the influence of snow cover yields an additional

reduction in ToE uncertainty over the midsection of

North America, with largest values (up to 8 yr) to the

west of the Great Lakes and smaller reductions of 1–4 yr

elsewhere (Fig. 8a). Over Europe in DJF, where we only

focus on the influence of Barents Sea sea ice, there is

a significant reduction in uncertainty (.10 yr) over

northern Scandinavia but none elsewhere (Fig. 8a). In

JJA, the main regions of residual ToE uncertainty over

North America (central Canada and the U.S. Great

Plains) and Europe (the eastern Mediterranean region)

see reductions in ToE uncertainty of approximately

1–5 yr after linearly removing the local thermodynamic

influence of soil moisture (Fig. 8b). Overall, our analysis

shows that these individual thermodynamic drivers of

SAT variability in both winter and summer might ac-

count for part of the residual ToE uncertainty, but that

additional factors need to be taken into account for a full

explanation.

4. Discussion

The utility of dynamical adjustment methods for un-

derstanding the role of the atmospheric circulation on
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SAT variability and trends has been demonstrated in

recent studies (Wallace et al. 2012; Smoliak et al. 2015;

Deser et al. 2016). Here, we applied such a method to

observations and CESM simulations to study the role of

atmospheric circulation variability in estimates of ToE,

as an example of a commonly used climate change de-

tection metric. Consistent with previous studies, we find

that atmospheric dynamics has a particularly large in-

fluence in winter on terrestrial SAT variability over the

mid-to-high latitudes, with the result of advancing ToE

by multiple decades, or delaying it by a decade,

depending on whether it contributes to warming or

cooling. We find that when internal atmospheric circu-

lation variability is not accounted for in observationally

based estimates of ToE, even conservative metrics [such

as those adopted inMahlstein et al. (2012)] might show a

nonpermanent ToE in certain regions. We also find that

in some regions there exist notable differences in ToE

between observational datasets. Using the CESM-LE,

we showed that the uncertainty in detecting a robust

emergence in observations is almost as large, in terms of

number of years but also in terms of area emerged, as the

FIG. 8. As in Fig. 7, but for soil moisture and JJA.
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advancement of ToE due to removing the influence of

atmospheric circulation. However, this result also shows

that dynamical adjustment can partially compensate for

this unavoidable uncertainty in observed ToE arising

from not knowing the future. Also, in some places the

reduction in uncertainty from dynamical adjustment

(.20 yr) is almost as large as model structural un-

certainty discussed in other studies (.30 yr; Hawkins

and Sutton 2012). Note that by using a large ensemble

with a single model, we did not sample model structural

uncertainty in ToE here. This would be a crucial part

of a more comprehensive investigation of ToE and has

to be considered in the interpretation of the results here.

Further, one needs to carefully consider what exactly

‘‘emergence’’ means, since ToE has not necessarily been

used synonymously with the detection of anthro-

pogenically forced warming in observational studies.

Using the ensemble mean of CESM-LE to estimate the

forced response to increased GHGs, we demonstrated

that robust ToE of forced warming for a given location

in North America or Europe can occur as late as the

second half of the twenty-first century. Indeed, de-

pending on the models and methods used, robust ToE

may occur even later (Hawkins et al. 2014). This seems

to contradict studies suggesting that detection and at-

tribution of anthropogenic warming has already oc-

curred for some continental averages (Bindoff et al.

2013). However, our aggregatedmetric of the fraction of

land with emerged warming indicates that approxi-

mately 75% of North America and 95% of Europe have

emerged from their 1920–49 reference climate, high-

lighting that spatially aggregated metrics show higher

signal-to-noise ratios of anthropogenic climate change

than local measures (Fischer and Knutti 2014). While

this reconciles findings from traditional detection and

attribution studies with results from ToE studies such as

the one here, it also illustrates how different climate

change risk assessments may require different ap-

proaches. For example, an insurance company with a

diverse portfolio might be interested in spatially aggre-

gated risk changes (Mills 2005), while the manager of a

protected ecosystem might have more localized con-

cerns (McLeod et al. 2009).

Finally, we have explored the role of thermodynamic

processes in determining the remaining uncertainty in

ToE after the influence of internal atmospheric circu-

lation variability has been removed. While our results

are suggestive of a thermodynamic influence from snow

cover, sea ice, and soil moisture on ToE, targeted model

sensitivity experiments with controlled lower boundary

conditions are needed to properly determine the un-

derlying cause of the spread in future projections of SAT

and ToE (Seneviratne et al. 2013). This is particularly

critical for regions where a strong model sensitivity

exists for surface–atmosphere coupling (Boé and

Terray 2014).

5. Summary

This study has investigated time of emergence (ToE)

of anthropogenic warming over North America and

Europe in observations and a 40-member ensemble of

historical and future simulations with CESM. In addi-

tion to quantifying for the first time the role of internal

atmospheric circulation variability on observed ToE, we

have highlighted the utility of the CESM-LE for ex-

ploring various factors influencing the determination of

ToE and its uncertainty. In particular, knowledge of the

anthropogenically forced response in the CESM-LE

(given by the ensemble mean) allowed us to explore

uncertainties associated with various ways of estimating

ToE in cases where the forced response has to be esti-

mated empirically (such as for the single ‘‘realization’’ of

the real world). We have further demonstrated the

utility of dynamical adjustment for reducing uncertainty

in ToE estimates and in revealing the anthropogenically

forced response in both nature and the CESM-LE. Fi-

nally, we have investigated ToE and its uncertainty on

both local scales and from an aggregated perspective in

terms of the land fraction emerged.

The main findings are summarized as follows. For

observations in winter, most of Canada emerged in the

FIG. 9. Reduction in 5%–95% range of ToE in CESM-LE for (a) DJF and (b) JJA after removing an estimate of

thermodynamic influences from dynamically adjusted ToE (see text for details).
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1990s whereas most of the United States has not yet

emerged by 2010. In summer, large parts of North

America are emerged by 2010 and as early as the 1980s

over western Canada and Florida. In Europe, a consid-

erable region is emerged by 2010 in both seasons. In

winter, we find that atmospheric circulation advanced

ToE over Canada by one decade and delayed it over the

United States by two decades. After removing the in-

fluence of atmospheric circulation, most of North

America showed emergence between the 1990s and

2000s. Over Europe in winter, the difference between

unadjusted and dynamically adjusted ToE indicates that

the influence of atmospheric circulation in determining

observed ToE has been less compared to North Amer-

ica. In summer, both continents show widespread

emergence in the early 1990s with generally smaller in-

fluence of atmospheric circulation on ToE than in win-

ter. Along with these findings, the land fraction for

which human-induced warming has emerged by 2010

increased by approximately 10%–30% after dynamical

adjustment, depending on season and region.

In a longer-term perspective based on the CESM-LE

simulations, all areas in North America and Europe in

both winter and summer show robust emergence of

anthropogenic warming by approximately the 2040s–

2060s under RCP8.5. Similar to observations, removing

the influence of atmospheric circulation in CESM-LE

tends to advance ToE by about two decades in winter

and about one in summer, leading to a median emer-

gence around the 2020s–2040s.

Accounting for circulation variability via dynamical

adjustment also reduces the uncertainty in the range of

ToE, especially in winter over the main regions of jet

stream variability, according to the CESM-LE. Residual

uncertainty beyond that explained by atmospheric cir-

culation variability may be due to decadal-scale varia-

tions in snow cover and sea ice concentration in winter.

In particular, snow cover variability was found to ex-

plain parts of the residual uncertainty over the interior

United States and Canada, while Barents Sea sea ice

variability explains part of the residual uncertainty over

northern Europe.

In summer, the reduced importance of the large-scale

atmospheric circulation for temperature variability re-

sults in dynamical adjustment having only a small effect

on ToE. Similarly, the uncertainty in ToE is generally

smaller in summer than in winter, with the largest re-

sidual uncertainty coinciding with areas of strong land–

atmosphere coupling that, according to CESM-LE, are

associated with thermodynamic influences from soil

moisture variability.

Finally, we have quantified the influence of potential

model biases on the model-based ToE. For most

regions, CESM-LE shows SAT variability in agreement

with observations. There are a few regions where

CESM-LE’s SAT variability is clearly outside of ob-

servations, with overestimated variability over eastern

Europe and the western United States in winter and

underestimated variability at the U.S. East Coast in

summer. However, it is the slight but widespread over-

estimation of SAT variability in summer over North

America (and to a lesser extent over Europe) that sig-

nificantly affects the model-based estimate of ToE and

leads to an underestimated summer ToE in the model

compared to observations: 22% less land fraction

emerged by 2010 over North America for raw data, and

13% less for dynamically adjusted data (less than 5%

over Europe for both cases). Hence, CESM might un-

derestimate how early the forced warming signal in

summer emerges in observations.

While this study has not investigated the sensitivity of

the results to model structural differences or choice of

emissions scenario, our results indicate that such sensi-

tivities should be addressed within the framework of

dynamical adjustment. In particular, accounting for the

effects of internal atmospheric circulation variability on

ToE of anthropogenic warming provides an opportunity

to increase signal-to-noise ratios for detection and at-

tribution of forced climate change and enables assess-

ment of the relative contributions of dynamic and

thermodynamic processes. Our approach can be applied

to other detection and attribution methods, such as fin-

gerprinting, or to other impact targets, for example

forced changes in heat waves, precipitation, and other

facets of climate change.
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