Algorithm based on spectral analysis to detect numerical blocks in matrices

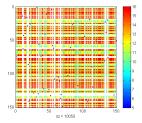
Luce le Gorrec¹ with I. Duff, P.A. Knight, S. Mouysset, D. Ruiz

 1 IRIT

Sparse Days 2017 Toulouse, September 2017

What does it mean ?

On a perfect matrix



No obvious block structure on this matrix.

A B F A B F

Image: Image:

What does it mean ?

On a perfect matrix

Finding permutations of rows and columns which highlight the block structure of the matrix.

(B)

_ ⊿ _ _ _

What does it mean ?

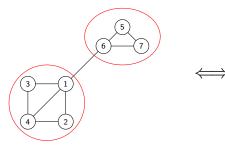
On a perfect matrix

Detecting the blocks. No *a priori* information about their number or their size.

(日) (周) (三) (三)

• Community Detection

- Preconditioning of linear systems
- Clustering, Biclustering



ſ	- x	1	1	1		1	1
	1	X		1			
	1		x	1			
	1	1	1	х			
					x	1	1
	1				1	х	1
	_				1	1	x

3 K K 3 K

• Community Detection

• Preconditioning of linear systems

• Clustering, Biclustering

A B F A B F

- Community Detection
- Preconditioning of linear systems
- Clustering, Biclustering

(B)

Existing algorithms

Spectral

- 1 Find a singular vector.
- 2 Sort the rows/cols in the \nearrow order of the vector.
- 3 Cut the vector into 2 blocks (its + and entries).
- 4 Loop on previous process.

Drawbacks :

- \rightarrow Only one cut per ite
- → Bipartition may not fit with the matrix structure

Papers : [Fritzsche2007], [Newman2006]

Function optimisation

• Optimise a quality clustering function.

Drawbacks :

- \rightarrow Depends on the chosen measure.
- \rightarrow NP-Hard optimisation problem.

Papers : [Aloise2010],[Campigotto2014]

Combination

 Like "Spectral" but the cut optimises a quality measure.

Drawbacks :

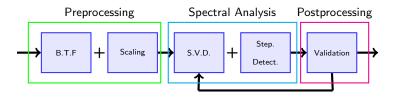
- \rightarrow Only one cut per ite
- \rightarrow Depends on the chosen measure

Papers : [Benson2016],[Vecharynski2014]

글 > - + 글 >

Our algorithm :

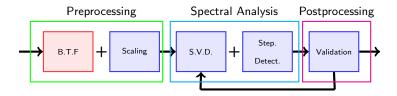
- Is a stage algorithm,
- Belongs to the first category, but
- Can find several blocks per iteration.



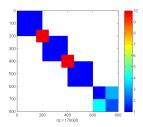
To find the blocks : analysis of the singular vector pattern, mainly based on tools from signal processing.

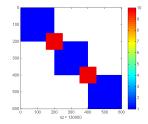
A B < A B </p>

General pattern



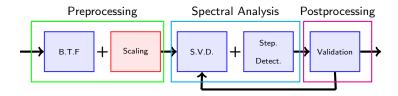
BTF permutation to find the dense blocks.



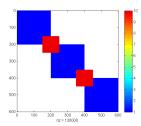


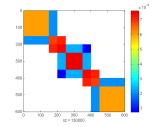
∃ >

General pattern

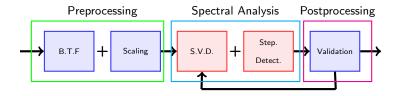


Doubly stochastic scaling to highlight the numerical blocks.

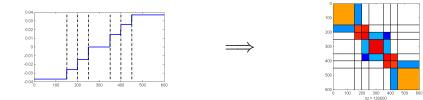




General pattern

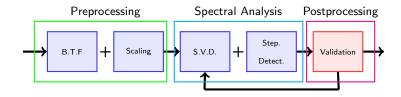


Dominant singular vectors (potentially only 1) allow to detect these blocks.



× 10⁻³

Our algorithm General pattern



If several iterations :

- Clustering overlapping.
- Removal of the no needed clusters.
- Convergence test.

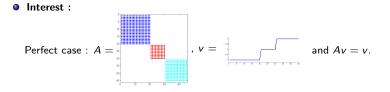
()

Doubly Stochastic Scaling

Concept :

For a fully indecomposable matrix A, finding two diagonal matrices R and S such that

$$RASe = e, SA^T Re = e, \text{ with } e = (1...1)^T$$



Non perfect case : A has a structure near to a block structure $\Rightarrow v$ has a structure near to staircase.

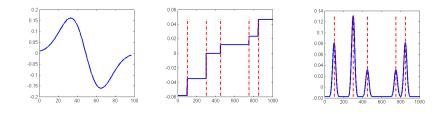
Remark :

Ae = e, so the dominant singular vectors are taken in e^{\perp} .

A B F A B F

Signal Processing

- Filters can detect steps in a signal.
- The singular vector : a signal we want to detect the steps.
- Convolution product between a signal and a filter.
- $\Rightarrow\,$ The maxima correspond to the steps in the signal.



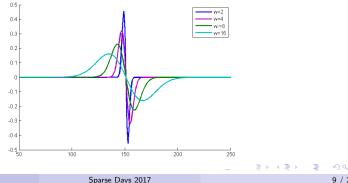
filter

vector

convolution

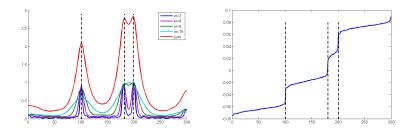
Signal processing

- Important filter parameter : the width
- Small width : detects small blocks. noise sensitive. Big width : noise resistant, detects only the largest blocks.
- \Rightarrow Convolution product for different sizes of width. Sum of the results to detect small blocks and be noise resistant.

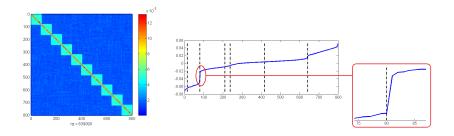


Signal processing

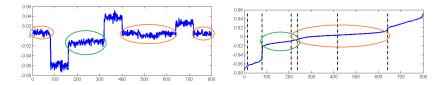
- Important filter parameter : the width
- Small width : detects small blocks, noise sensitive. Big width : noise resistant, detects only the largest blocks.
- \Rightarrow Convolution product for different sizes of width. Sum of the results to detect small blocks and be noise resistant.



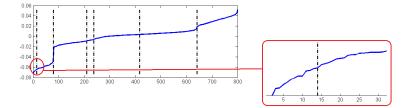
- $1\,$ Those corresponding to the sharp edges.
- 2 Those corresponding to the smooth edges.
- 3 The spurious.



- $1\,$ Those corresponding to the sharp edges.
- 2 Those corresponding to the smooth edges.
- 3 The spurious.



- $1\,$ Those corresponding to the sharp edges.
- 2 Those corresponding to the smooth edges.
- **3** The spurious.



- $1\,$ Those corresponding to the sharp edges.
- 2 Those corresponding to the smooth edges.
- 3 The spurious.
- \Rightarrow Need of an edge refinement process

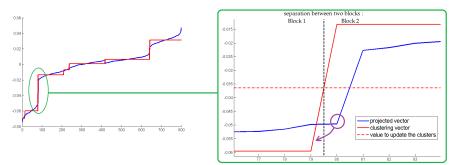
Edge refinement : Headlines of the process

• Creation of the clustering characteristic vector.

1 1

Edge refinement : Headlines of the process

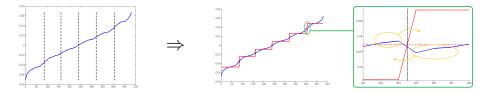
- Creation of the clustering characteristic vector.
- Projection of this vector in the space of the singular vectors :
 - highlights separations to shift (sharp case).



∃ ► < ∃ ►</p>

Edge refinement : Headlines of the process

- Creation of the clustering characteristic vector.
- Projection of this vector in the space of the singular vectors :
 - highlights separations to shift (sharp case).
 - highlights indices to exchange (smooth case).



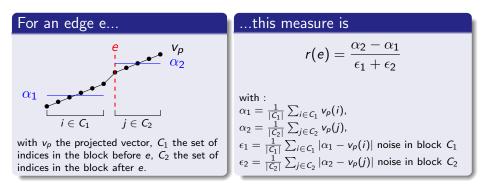
- N

Edge refinement : Headlines of the process

- Creation of the clustering characteristic vector.
- Projection of this vector in the space of the singular vectors :
 - highlights separations to shift (sharp case).
 - highlights indices to exchange (smooth case).
 - highlights spurious separation (spurious case).
- Update of the clustering.
- Loop on the previous process.
- After convergence, remaining separations correspond to sharp and some smoother steps.

Need of a sharpness measure to :

- Characterise the spurious edges,
- Keep only the sharpest edges.

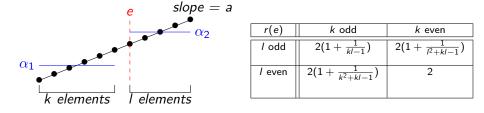


ヘロト 人間 ト ヘヨト ヘヨト

Spurious and sharpest edge characterisation

An obvious spurious edge :

its value depending on k and l:

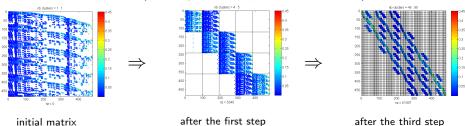


- Spurious edges : an edge is spurious if its measure is under this threshold.
- Sharpest edges : keeping the edges with a value over 4.5 provides good results.

• • = • • = •

Number of clusters

- Block detection process applied on each singular vector in the set.
- Possibility of finding a new set of vectors.
- \Rightarrow The number of clusters can quickly become huge.



RBSB matrix (University of Florida Sparse Matrix Collection)

 \Rightarrow Process of cluster amalgamation after each iteration.

.

Modularity measure :

$$\mathcal{Q}_r = \frac{1}{m} \sum_{k=1}^{r_c} \left(v_k^T A A^T v_k - \frac{1}{m} |C_k| \right) \ge 0$$

- Test for pairwise amalgamation that maximise the increase of the quality measure.
- Loop until local maximum is reached.
- No pairwise amalgamation improvement implies no improvement by any type of amalgamation on a current state.

• • = • • = •

Modularity

Non-linear upper bound of the modularity :

$$\mathcal{Q}_{r} \leq 1 - \frac{1}{\textit{nb}_{\textit{Clust}}} = \mathcal{K}_{r}$$

Calling ρ the ratio

$$\rho = \frac{\mathcal{Q}_{r}^{upd} - \mathcal{Q}_{r}^{ref}}{\mathcal{K}_{r}^{upd} - \mathcal{K}_{r}^{ref}} = \frac{\mathcal{Q}_{r}^{upd} - \mathcal{Q}_{r}^{ref}}{\frac{1}{nb_{clust}} - \frac{1}{nb_{clust}}},$$

A new clustering is accepted iff $\rho > \epsilon$, with $\epsilon \in [0.01, 0.1]$ a threshold.

 \Rightarrow A new clustering is accepted only if the gain of modularity worths it.

イロト 不得 トイヨト イヨト

Community detection

Methodology

- The algorithm works on $A + 10^{-8} I_n$.
- Use of the Newman's Modularity to compare algorithms.
- Too many clusters : a last amalgamation on the adjacency matrix.

Modularity = 0.3303, 8 clusters

Modularity = 0.4188, 4 clusters

Zachary's Karate club Network

Community detection

Results

			Modularity		
Network	Size	Best	Ours	Louvain	Edge Betweeness
Karate	34	0.4198	0.4188 (4ite) (2sv)	0.4188 (8ite)	0.4013
Dolphins	62	0.5285	0.4723 (6ite) (4sv)	0.5188 (7ite)	0.5194
les Miserables	77	0.5600	0.5545 (6ite) (2sv)	0.5556 (8ite)	0.5381
A00	83	0.5309	0.5268 (4ite) (3sv)	0.5259 (9ite)	0.5050
Politics Books	105	0.5272	0.4757 (7ite) (3sv)	0.4986 (6ite)	0.5168
Football Clubs	115	0.6046	0.5985 (7ite) (3sv)	0.6046 (6ite)	0.5996
USAir	332	0.3682	0.3201 (10ite) (3sv)	0.3518 (15ite)	0.1364
netsciences	379	0.8486	0.8227 (8ite) (3sv)	0.8440 (13ite)	0.8422
s838	512	0.8194	0.7954 (9ite) (3sv)	0.7185 (17ite)	0.8155

Louvain Algorithm : [Blondel2008] Edge Betweeness : [Newman2004]

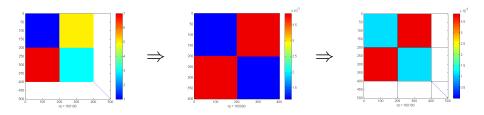
3

イロト イポト イヨト イヨト

Algorithm : currently in testing phase

\Rightarrow Exact on perfect matrices.

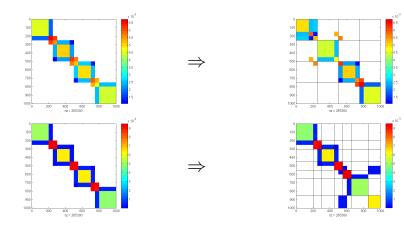
 \Rightarrow Good results on density matrices.



Algorithm : currently in testing phase

 \Rightarrow Exact on perfect matrices.

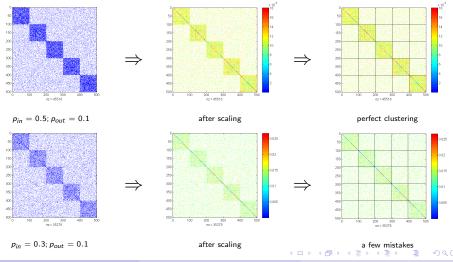
 \Rightarrow Good results on density matrices.



∃ ► < ∃ ►</p>

Algorithm : currently in testing phase

 \Rightarrow Exact on perfect matrices. \Rightarrow Good results on density matrices.



- Generalisation to the case of rectangular matrices.
- Scalability.
- Application in biology.
- Application as a preconditioner.
- Behaviour of other modularity measures.
 Remark : doubly stochastic scaling ⇒ homogenisation of several modularity measures.

Thank you for your attention.

Any questions ?

Sparse Days 2017

(B)