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Static Centrality

v

Centrality measures are widely used in network theory.

v

First introduced by Camille Jordan.

v

A theory developed in social sciences from 1950s — 1980s

v

Classical measures: Degree, closeness, betweenness.

v

Spectral measures: Katz, eigenvector, Pagerank, subgraph
centrality.



Katz Centrality

k= (I—aA)"le

v

Introduced by Katz in 1953.
« can take any value outside spectrum of A~
Useful range of  lies in (0,1/A1(A)).

(I —axA)"'e = e+ aAe+ a?A%e + - - - counts weighted
sum of walks.

v

v

v

v

As & — 0, k converges to degree centrality.

v

As « — 1/Aq, k converges to eigenvector centrality.



Example 1: Central Nodes
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Example 2: Karate

®17
oﬁ57
3082000 618 o
[
. %m%%;a o'fs
£30 #3431
%g%.m
®17
01557
300 20g 02?8
028 26951z§§°13

230 834931

%& .10

®17

01557
01922 12

32 020 18
.24%“'4:ﬁ o'fs
30 $549/31

%& .10

®17

° %5 7
028 *?é%'g%"'&%{iss
30 #549/31

%& .10



Dynamic Networks

> In many applications we are interested in a network which
evolves with time.

> Assume there is a constant number of nodes #n but that some
edges disappear/appear as time passes.

» We end up with a sequence of adjacency matrices Al
Al AM]

» Many properties of static networks can be generalised.

» We'll make use of dynamic walks, paths and distances.



Dynamic Centrality

» Dynamic closeness and betweenness defined in terms of
dynamic paths and distances.

» Dynamic degree centrality: Z 1A["’]e

> Self-induced eigenvector centrality: Perron vector of
ZM A[m

» Alternatively, scale each adjacency matrix by degree.

» Or work with the Perron vector of

ef(AlM) I
I ef(AR) T

f' ef(AfM—l]) I



Dynamic Katz Centrality
(I —aA)=1. (1 — gAlm)~Te,

» Could use variable «.
» Respects time arrow.

» |t makes sense to look at
el (I —aAl)=1... (1 —aAl")—1

too.

» There's an assumption that walks of arbitrary length are
possible at any time step.

» As o« — 0, dynamic Katz matches dynamic degree.

» But limit as @ — amax nNo longer connected to eigenvectors.



Dynamic Subgraph Centrality

Q = f(AM)f(AB) - f(AIM),

v

Define a centrality measure by computing a statistic associate
with Q.

Time's arrow respected.

Qe, diag(Q), Perron vector of Q.

For f(A) we could choose A, (I — A)~1, e, ...

We advocate the Perron vector of f(A) =1+ A as a
natural extension of eigenvector centrality.
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Example 3: Random Dynamic Graph

Degree | Katz | Katzv | f(A) =A | (I+ A)
17 5 5 5 5
13 17 17 7 7
3 7 9 2 17
12 13 2 9 12
11 9 7 12 2




Example 4: Kiel
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Example 4: Kiel

Degree | EV | Katzv | f(A) =A | (I+A)
31 343 228 343 228
228 31 31 1094 31
38 340 343 2683 1094
767 1027 | 297 31 343
119 1444 | 4929 1564 2683




Too Much Time On My Hands

» Suppose Al s fixed. What do we find using Q7



Too Much Time On My Hands

v

Suppose Al s fixed. What do we find using Q7
For variable Q a similar problem manifests itself.
For relatively small m, Q,, = f(A) ... f(Al") s

effectively rank 1.

Q. ~ uv’l.

Qm+iie = uVTQm—He = Bm+1u.

Ranking only takes into account first few time steps.
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Example 4: Kiel




Example 4: Kiel

Katz | EV | EVa
343 | 343 31
31 340 | 228
2552 | 31 119
1481 | 2552 | 38
1027 | 1481 | 343




