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Static Centrality

I Centrality measures are widely used in network theory.

I First introduced by Camille Jordan.

I A theory developed in social sciences from 1950s – 1980s

I Classical measures: Degree, closeness, betweenness.

I Spectral measures: Katz, eigenvector, Pagerank, subgraph
centrality.



Katz Centrality

k = (I− αA)−1e

I Introduced by Katz in 1953.

I α can take any value outside spectrum of A−1.

I Useful range of α lies in (0, 1/λ1(A)).

I (I− αA)−1e = e + αAe + α2A2e + · · · counts weighted
sum of walks.

I As α→ 0, k converges to degree centrality.

I As α→ 1/λ1, k converges to eigenvector centrality.



Example 1: Central Nodes
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Example 2: Karate
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Dynamic Networks

I In many applications we are interested in a network which
evolves with time.

I Assume there is a constant number of nodes n but that some
edges disappear/appear as time passes.

I We end up with a sequence of adjacency matrices A[1],
A[2], . . . A[M].

I Many properties of static networks can be generalised.

I We’ll make use of dynamic walks, paths and distances.



Dynamic Centrality

I Dynamic closeness and betweenness defined in terms of
dynamic paths and distances.

I Dynamic degree centrality: ∑M
m=1 A[m]e.

I Self-induced eigenvector centrality: Perron vector of

∑M
m=1 A[m].

I Alternatively, scale each adjacency matrix by degree.

I Or work with the Perron vector of
ε f (A[1]) I

I ε f (A[2]) I
. . .

. . .
. . .

I ε f (A[M−1]) I
I ε f (A[M])

 .



Dynamic Katz Centrality

(I− αA[1])−1 · · · (I− αA[m])−1e.

I Could use variable α.

I Respects time arrow.

I It makes sense to look at

eT(I− αA[1])−1 · · · (I− αA[m])−1,

too.

I There’s an assumption that walks of arbitrary length are
possible at any time step.

I As α→ 0, dynamic Katz matches dynamic degree.

I But limit as α→ αmax no longer connected to eigenvectors.



Dynamic Subgraph Centrality

Q = f (A[1]) f (A[2]) · · · f (A[M]).

I Define a centrality measure by computing a statistic associate
with Q.

I Time’s arrow respected.

I Qe, diag(Q), Perron vector of Q.

I For f (A) we could choose A, (I− A)−1, eA, . . . .

I We advocate the Perron vector of f (A) = I + A as a
natural extension of eigenvector centrality.



Example 3: Random Dynamic Graph

Degree Katz Katz v f (A) = A (I + A)
17 5 5 5 5
13 17 17 7 7
3 7 9 2 17

12 13 2 9 12
11 9 7 12 2



Example 4: Kiel
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Example 4: Kiel

Degree EV Katz v f (A) = A (I + A)
31 343 228 343 228

228 31 31 1094 31
38 340 343 2683 1094

767 1027 297 31 343
119 1444 4929 1564 2683



Too Much Time On My Hands

I Suppose A[m] is fixed. What do we find using Q?

I For variable Q a similar problem manifests itself.

I For relatively small m, Qm = f (A[1]) · · · f (A[m]) is
effectively rank 1.

I Qm ≈ uvT .

I Qm+1e ≈ uvT Qm+1e = βm+1u.

I Ranking only takes into account first few time steps.



Too Much Time On My Hands

I Suppose A[m] is fixed. What do we find using Q?

I For variable Q a similar problem manifests itself.

I For relatively small m, Qm = f (A[1]) · · · f (A[m]) is
effectively rank 1.

I Qm ≈ uvT .

I Qm+1e ≈ uvT Qm+1e = βm+1u.

I Ranking only takes into account first few time steps.



Example 4: Kiel
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Example 4: Kiel
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Katz EV EVα

343 343 31
31 340 228

2552 31 119
1481 2552 38
1027 1481 343


