SuiteSparse:GraphBLAS: graph algorithms
via sparse matrix operations on semirings

Tim Davis
Texas A&M University

Sept 2017

Sparse Days 2017 at CERFACS

Outline

@ Graph algorithms in the language of linear algebra

o Consider C=A%*B on a semiring
o Semiring: an add operator, multiply operator, and additive

identity

o Example: with OR-AND: A and B are adjacency matrices of
two graphs

e C: contains edge (i,j) if nodes i and j share any neighbor in
common

e written as C = A or.and Bor C = Al.&B

@ The GraphBLAS Spec: graphblas.org
@ SuiteSparse:GraphBLAS implementation and performance

http://graphblas.org

Breadth-first search in pseudo-MATLAB notation

v =

Q

for

end

zeros (1,n) ;
false (1,n) ;
q (source)

level
v (q) =

% new q

t = A*q ;

= true ;

1:n
level ;

3

q = false
q Cv) =1t ;

% v(k) is the BFS level (1 for source node)
% boolean vector of size n
% q: boolean vector of current level

% set v(i)=level where q(i) is true

all unvisited neighbors of current q:

(1,n)

>

% where ’*’ is the OR-AND semiring
% clear q of all entries
% q (i) =t (i) but only where v(i) is zero

if (Tany (q)) break ;

Breadth-first search example

A(i,j) =1 for edge (j, /)

A is binary; shown with integers
to illustrate row indices; each
column is an adjacency list, and
dot (.) is zero:

Breadth-first search: initialization

source

zeros (1,n) ;
q = false (1,n) ;
q (source) = true ;

<
]

v: q:

Breadth-first search: step la

v (q) = level ;

O O O+ OO O <

Breadth-first search: step 1b

Tevel: source

1 t = Axq ;
A * q =t
... 1. 1
2
.. 3.33 3
4 4 *x 4 =
5 .. 5

6 . 6

source

Breadth-first search: step 1c

q = false (1,n) ;

q Cv) =t ;

v: t=Axq: q("v)=t
1 1
3 3

O O O+ OO O

Breadth-first search: step 2a

v (q) = level ;

O OO~ NON

Breadth-first search: step 2b

t = Axq ;
A * q =t
1. 1 .
2 2
3.33 3
4 4 x* = 4
5 . . .5
6 . 6 . 6

Breadth-first search: step 2c

q = false (1,n) ;
q Cv) =t ;

v: t=A%q: q("v)=t

O O O~ N O N
W

Breadth-first search: step 3a

v (q) = level ;

v q:
2 .
3 2
2 .
1 .
0 .
3 6
0 .

Breadth-first search: step 3b

t = Axq ;
A * q =t
S
2 2
3 .33 3
4 4 * =
5 . .5 5
6 .6 .. 6

Breadth-first search: step 3c

q = false (1,n) ;

q Cv) =t ;

v: t=A%q: q("v)=t
2

3 .

2 3

1

0 5 5

3

0 7 7

Breadth-first search: step 4a

v (q) = level ;

WP EPE NN WN

Breadth-first search: step 4b

t = Axq ;
A * q =t
T .
2
. 3 .33 3
4 4 x = 4
5 .. 5 5 5
6 .6 . 6

Breadth-first search: step 4c

q = false (1,n) ;
q Cv) =t ;

v: t=Axq: qCCv)=t

WP EPE NN WN
o O > W

Luby’s method for maximal independent set

iset = false (1,n) ; % iset (i) = 1 if node i in output set
c = true (1,n) ; % c (i) = 1 if node i is a candidate
while (...)

% give each candidate a random score
prob = zeros (1,n) ;
prob(c) = some random score ;

% new member if candidate score > max of its nieghbors
neighbormax(c) = A * prob ; % max-second semiring
newmembers = prob(c) > neighbormax(c) ;

% add new members to the independent set
iset = iset | newmembers ;

% remove new members from the candidate set
¢ ("newmembers)= c & !newmembers ;

% also remove neighbors of new members from candidate set
newneighbors = false (1,n) ;

newneighbors (c) = A * new_members ; % or-and semiring
¢ ("newneighbors) = c ;

GraphBLAS operations: overview

operation MATLAB GraphBLAS

analog extras
matrix multiplication C=A*B 960 built-in semirings
element-wise, set union C=A+B any operator

element-wise, set intersection C=A.*B
reduction to vector or scalar s=sum(A)

apply unary operator C=-A
transpose C=A’
submatrix extraction C=A(I,J)
submatrix assignment C(I,J)=A

any operator
any operator
C=f(A)

zombies and
pending tuples

C=AxB with 960 built-in semirings, and each matrix one of 11
types: GraphBLAS has 960 x 113 = 1,277,760 built-in versions of

matrix multiply. MATLAB has 4.

GraphBLAS objects

GrB_Type 11 built-in types, “any” user-defined type
GrB_UnaryOp unary operator such as z = —x

GrB_BinaryOp binary operator such as z=x+y

GrB_Monoid associative operator like z = x 4+ y with identity 0
GrB_Semiring a multiply operator and additive monoid
GrB_Vector like an n-by-1 matrix

GrB_Matrix a sparse m-by-n matrix

GrB_Descriptor parameter settings

@ All objects opaque

@ matrix implemented as compressed-sparse column form, with
sorted indices

@ non-blocking mode; matrix can have pending operations

Accumulator and the Mask

@ accumulator operator Z = C © T, like sparse matrix add (set
union)

for all entries (7,j) in CN T (that is, entries in both C and T)
Zjj = Cjj O tj
for all entries (/,j) in C\ T (that is, entries in C but not T)

Zjj = C,'j
for all entries (/,/) in T\ C (that is, entries in T but not C)
Zjj = tj

@ Boolean mask matrix M controls what values are modified,
just like MATLAB logical indexing. M(i,) =1 means C(i,)
can be modified; M(i,j) = 0 leaves C(i,j) untouched.

Accumulator and the Mask

e CM)=COT:

if accum is NULL, Z = T; otherwise Z=Co® T
if requested via descriptor (replace option), all entries cleared from C
if Mask is NULL

C = Z if Mask is not complemented; otherwise C is not modified
else

C(M) = Z if Mask is not complemented; otherwise C(—M) = Z

GraphBLAS notation

GrB_mxm matrix-matrix multiply C(M)=Co® AB
GrB_vxm vector-matrix multiply w’(m’) =w’ © u’A
GrB_mxv matrix-vector multiply w(m) =w ® Au
GrB_eWiseMult element-wise, C(M)=Co (A®B)
set union wim)=wo (u®v)
GrB_eWiseAdd element-wise, CM)=Co(A®B)
set intersection wim)=wo (udv)
GrB_extract extract submatrix C(M) = CoA(,j)
w(m) =w O u(i)
GrB_assign assign submatrix C(i,j)(M) =C(i,j) © A
w(i)(m) =w(i)Gu
GrB_apply apply unary operator C(M) = Cof(A)

GrB_reduce

reduce to vector
reduce to scalar

GrB_transpose

transpose

7C®N

GraphBLAS performance: pending operations

@ creating a matrix from list of tuples, same as MATLAB:

I = zeros (nz,1) ;
J = zeros (nz,1) ;
X = zeros (nz,1) ;
for k = 1:nz

compute a value x, row index i, and column index j

I (k) =1i;
J (k) =3 ;
X (k) = x ;

end
A = sparse (I,J,X,m,n) ;

@ just as fast in GraphBLAS (operations left pending), but
painful in MATLAB:

A = sparse (m,n) ; 7% an empty sparse matrix

for k = 1:nz
compute a value x, row index i, and column index j
A (1,)) =x;

end

GraphBLAS performance: C(l,J)=A

Submatrix assignment

Example: C is the Freescale2 matrix, 3 million by 3 million
with 14.3 million nonzeros

I = randperm (n,5500)

J = randperm (n,7000)

A = random sparse matrix with 38,500 nonzeros

C(I,J) = A

e 87 seconds in MATLAB
o 0.74 seconds in GraphBLAS, without exploiting blocking mode

Zombies make C(l,J)=A fast

@ Zombie: an entry marked for deletion but still in the data
structure

e suppose C(i,j) is present (“nonzero”)
e C(i,j) = sparse(0)
@ costly in MATLAB
@ GraphBLAS: turns turns C(i,j) into a zombie
e remainder of matrix unchanged
e C(i,j) = sparse(x) brings the zombie back to life
e if Cis used in another operation:
killing a million zombies just as fast as killing one

Pending tuples make C(l,J)=A fast

@ Pending tuple: an entry waiting to be added to the matrix
e C(i,j) = sparse(x)
@ costly in MATLAB

@ GraphBLAS: goes into a list of pending tuples to be added
later

e remainder of matrix unchanged
o if Cis used in another operation:
assembling a million tuples just as fast as adding one

Example: create a random

GrB_Matrix_new (&A, GrB_FP64, nrows, ncols) ;
for (int64_t k = 0 ; k < ntuples ; k++)

{

GrB_Index i = simple_rand_i () % nrows ;
GrB_Index j = simple_rand_i () % ncols ;
if (no_self_edges && (i == j)) continue ;
double x = simple_rand_x () ;
// A (i,j) = x
GrB_Matrix_setElement (A, i, j, x) ;
if (make_symmetric)
{

// A (§,1) = x

GrB_Matrix_setElement (A, j, i, x) ;

matrix

for

end

Example: create a finite-element matrix

sparse (m,n) ; % create an empty n-by-n
% sparse GraphBLAS matrix

i=1:k

construct a 8-by-8 sparse or dense finite-element F
I and J define where the matrix F is to be added:

I = a list of 8 row indices

J = a list of 8 column indices

% using GrB_assign, with the ’plus’ accum operator:
A(I,) =A(T,0)+F

Example: equivalent of MATLAB wathen.m

GrB_Matrix_new (&F, GrB_FP64, 8, 8) ;
for (dnt j =1 ; j <=ny ; j++) {
for (int i =1 ; i <= nx ; i++) {
[0] = 3xj*nx + 2%i + 2%j + 1 ;
[1] = nn [0] - 1 ;
[2] = non [1] - 1 ;
[3] = (3*j-L)*nx + 2%j + i - 1 ;
[4] = 3*x(j-1)*nx + 2*%i + 2*j - 3 ;
[6] = nn [4] + 1 ;
[6] =nn [5] + 1 ;
[7] =nn [3] + 1 ;
for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;
for (int krow = 0 ; krow < 8 ; krow++) {
for (int kcol = 0 ; kcol < 8 ; kcol++) {
// F (krow,kcol) = em (krow, kcol)
GrB_Matrix_setElement (F, krow, kcol, em (krow,kcol

EEEEEEBEEE

}
// A (nn,nn) += F
GrB_assign (A, NULL, GrB_PLUS_FP64, F, nn, 8, nn, 8, NULL)

User-defined types, operators, monoids, semirings

@ double complex: not native to GraphBLAS
@ GraphBLAS is ~ 26,500 lines of code

@ adding complete suite of complex operators: 523 lines in
“user” code

@ any typedef with constant size can be added as a type

@ example: WildType

typedef struct

{
float stuff [4][4] ;
char whatstuff [64] ;
}
wildtype ; // C version of wildtype
GrB_Type WildType ; // GraphBLAS version of wildtype

GrB_Type_new (&WildType, wildtype) ;

User-defined operator: add

void wildtype_add (wildtype *z, const wildtype *x, const wildtype *y)
{

for (int i = 0 ; i < 4 ; i++)

{
for (int j =0 ; j < 4 ; j++)
{
z=->stuff [i][j] = x->stuff [i][j] + y->stuff [i][j] ;
}
}

sprintf (z->whatstuff, "this was added")
printf ("[%s] = [%s] + [%s]l\n", z->whatstuff, x->whatstuff, y->whatstuff) ;

// create the WildAdd operator
GrB_BinaryOp WildAdd ;
GrB_BinaryOp_new (&WildAdd, wildtype_add, WildType, WildType, WildType) ;

User-defined operator: multiply

void wildtype_mult (wildtype *z, const wildtype *x, const wildtype *y)
{

for (int i = 0 ; i < 4 ; i++)

{
for (int j =0 ; j < 4 ; j++)
{
z->stuff [i]1[j] = 0 ;
for (int k = 0 ; k < 4 ; k++)
{
z->stuff [i][j] += (x->stuff [i][k] * y->stuff [k][j]) ;
}
}
}

sprintf (z->whatstuff, "this was multiplied") ;
printf ("[%s] = [%s] * [%s]\n", z->whatstuff, x->whatstuff, y->whatstuff) ;

// create the WildMult operator
GrB_BinaryOp WildMult ;
GrB_BinaryOp_new (&WildMult, wildtype_mult, WildType, WildType, WildType) ;

User-defined monoid and semiring

// create the WildAdder monoid
GrB_Monoid WildAdder ;
wildtype scalar_identity ;

for (int i = 0 ; i < 4 ; i++)

{
for (int j = 0 ; j < 4 ; j++)
{
scalar_identity.stuff [i][j] = 0 ;
}
}

sprintf (scalar_identity.whatstuff, "identity")
GrB_Monoid_UDT_new (&WildAdder, WildAdd, &scalar_identity) ;

// create the InTheWild semiring
GrB_Semiring InTheWild ;
GrB_Semiring _new (&InTheWild, WildAdder, WildMult) ;

// C = AxB
GrB_mxm (C, NULL, NULL, InTheWild, A, B, NULL) ;

Summary

GraphBLAS: graph algorithms in the language of linear algebra
“Sparse-anything” matrices, including user-defined types
matrix multiplication with any semiring

operations: C=A%*B, C=A+B, reduction, transpose,
accumulator/mask, submatrix extraction and assigment

performance: most operations just as fast as MATLAB,
submatrix assignment 100x or faster.

Beta version available at suitesparse.com

