
Parallel Algorithm Design via Approximation

Alex Pothen and Arif Khan

Computer Science, Purdue University

Thanks: NSF, DOE, Intel

CERFACS, Sep 7, 2017

Alex Pothen and Arif Khan Parallelism by Approximation



Thanks, Iain!

Alex Pothen and Arif Khan Parallelism by Approximation



Structure of Talk

Paradigms for designing parallel algorithms
Approximation Algorithms

Edge covers and Matchings

The trouble with exact algorithms
3/2-approximate b-Edge cover
Greedy; Locally Subdominant edge algorithms
2-approximate b-Edge cover
Locally Subdominant edge with no weight update algorithm
Complement of a b-Matching

Parallel depth for matching algorithms

Alex Pothen and Arif Khan Parallelism by Approximation



Paradigms for Designing Parallel Graph Algorithms

Task and data partitioning
Coloring a task graph to identify independent tasks
Pipelining
Balanced trees

Approximation Algorithms

Alex Pothen and Arif Khan Parallelism by Approximation



Paradigms for Designing Parallel Graph Algorithms

Task and data partitioning
Coloring a task graph to identify independent tasks
Pipelining
Balanced trees

Approximation Algorithms

Alex Pothen and Arif Khan Parallelism by Approximation



Example: Maximum Vertex-Weighted Matching

Exact 1/2-Approx.
Graph Vertices Edges time weight time % opt. wt./
IG5-16 37K 588K 10 s 1.4 e4 1.6e-2 s 98.7 %
Image-interp 360K 712K 1.2 s 1.5 e8 3.5e-2 s 96.5 %
LargeRegFile 2.9M 4.9M 6.9 s 9.7 e8 0.2 s 98.9 %
Rucci1 2.1M 7.8M 4 h 36 m 1.6 e8 1.3 s 99.7 %
GL7d16 1.5M 14.5M 9 h 50 m 5.8 e8 1.3 s 94.5 %

GL7d20 3.3M 29.9M > 100 h NA 4.8 s NA
GL7d18 3.5M 35.6M > 100 h NA 5.5 s NA
GL7d19 3.9M 37.3M > 100 h NA 6.3 s NA

*Ahmed Al-Herz (CS, Purdue)

Alex Pothen and Arif Khan Parallelism by Approximation



Approximation Algorithms for Parallelism

Exact algorithms are often too slow for large graphs. Little
concurrency.

Approximation algorithms have near-linear time complexity;
orders of magnitude faster than exact algorithms on serial
computers. Solutions nearly optimal in practice (> 90% of the
optimal weights)

However, many approximation algorithms have little
concurrency. They need to be modified or new algorithms
needed for concurrency.

Alex Pothen and Arif Khan Parallelism by Approximation



Approximation Algorithms for Parallelism

Exact algorithms are often too slow for large graphs. Little
concurrency.

Approximation algorithms have near-linear time complexity;
orders of magnitude faster than exact algorithms on serial
computers. Solutions nearly optimal in practice (> 90% of the
optimal weights)

However, many approximation algorithms have little
concurrency. They need to be modified or new algorithms
needed for concurrency.

Alex Pothen and Arif Khan Parallelism by Approximation



Approximation Algorithms for Parallelism

Exact algorithms are often too slow for large graphs. Little
concurrency.

Approximation algorithms have near-linear time complexity;
orders of magnitude faster than exact algorithms on serial
computers. Solutions nearly optimal in practice (> 90% of the
optimal weights)

However, many approximation algorithms have little
concurrency. They need to be modified or new algorithms
needed for concurrency.

Alex Pothen and Arif Khan Parallelism by Approximation



b-Edge Cover

Given a function b(v), a set of edges with at least b(v) edges
incident on each vertex v .

Here b(v) = 1.
Minimum cardinality, edge-weight, etc.
Exact algorithm in polynomial time, but slow, and little
concurrency.

Alex Pothen and Arif Khan Parallelism by Approximation



Approximation Algorithms

Greedy algorithm
Effective weight of an edge: its weight divided by the
number of its endpoints for which b(v) edges have not been
added to the edge cover yet.
add edge (u, v) of least effective weight to cover
update b(u), b(v) values
update the effective weights of neighboring edges if needed
Repeat until all b(w) values are satisfied.

Alex Pothen and Arif Khan Parallelism by Approximation



Approximation Algorithm

Greedy algorithm is 3/2-approximate.
Effective weights change during the algorithm (unlike
matching).
Other approximation algorithms (e.g., Hall and Hochbaum,
O(∆) approximation ratio, max degree).
Not much concurrency.

Alex Pothen and Arif Khan Parallelism by Approximation



Locally Subdominant Edge Algorithm (LSE)

Locally Subdominant edge: an edge with minimum
effective weight among neighboring edges.
Add LS edges to the edge cover, update effective weights,
and repeat.
Also 3/2-approximation, but with more concurrency than
the Greedy algorithm. It computes the same edge cover as
Greedy.

Alex Pothen and Arif Khan Parallelism by Approximation



LSE

Alex Pothen and Arif Khan Parallelism by Approximation



LSE

Alex Pothen and Arif Khan Parallelism by Approximation



LSE

Alex Pothen and Arif Khan Parallelism by Approximation



Edge cover from a Matching

Given a b-Edge cover problem, define b′(v) = deg(v)− b(v) for
each vertex v . Compute a maximum weight b′(v)-Matching; its
complement is a minimum weight b(v)-Edge cover.

Alex Pothen and Arif Khan Parallelism by Approximation



Weighted b-Matching

Given a graph G = (V ,E ,W ), and a function b(v) for each
vertex v , a maximum edge-weighted b-Matching is a subset of
edges M such that at most b(v) edges in M are incident on a
vertex v , and the weight of the edges in M is maximized.

Alex Pothen and Arif Khan Parallelism by Approximation



Weighted b-Matching

Given a graph G = (V ,E ,W ), and a function b(v) for each
vertex v , a maximum edge-weighted b-Matching is a subset of
edges M such that at most b(v) edges in M are incident on a
vertex v , and the weight of the edges in M is maximized.

Alex Pothen and Arif Khan Parallelism by Approximation



Edge Cover from Matching: Approximations

How about approximation algorithms? Compute a
1/2-approximate b′(v)-Matching by Greedy or Locally
Dominant edge (or b-Suitor) algorithm; its complement is a
2-approximate b(v)-Edge cover.
This MCE (Matching Complement Edge Cover) algorithm
has more concurrency than other approximation algorithms
for b-Edge cover.

Alex Pothen and Arif Khan Parallelism by Approximation



Difference in Weights: 3/2 to 2-Approximation

Problems b=1 b=5
Fault 639 3.56% 1.13%
mouse gene 12.12% 6.55%
Serena 4.65% 1.51%
bone010 2.00% 0.96%
dielFilterV3real 1.88% 0.11%
Flan 1565 9.33% 4.41%
kron g500-logn21 16.42% 13.53%
hollywood-2011 5.52% 1.74%
G500 21 8.88% 3.26%
SSA21 12.30% 4.89%
eu-2015 6.78% 2.33%
Geo. Mean 6.15% 2.14%

Alex Pothen and Arif Khan Parallelism by Approximation



Serial Performance of MCE algorithm

Alex Pothen and Arif Khan Parallelism by Approximation



Parallel Performance of MCE algorithm

Alex Pothen and Arif Khan Parallelism by Approximation



Distributed-Memory Parallel b-Matching

Alex Pothen and Arif Khan Parallelism by Approximation



Adaptive Anonymity

Users Features
F1 F2 F3 F4 F5 F6

U1 1 0 1 0 1 0
U2 1 1 1 1 1 0
U3 0 1 0 1 0 1
U4 0 0 0 0 0 1
U5 1 1 0 0 0 0
U6 1 1 0 0 0 1

Alex Pothen and Arif Khan Parallelism by Approximation



Adaptive Anonymity

Users Features
F1 F2 F3 F4 F5 F6

U1 1 0 1 0 1 0
U2 1 1 1 1 1 0
U3 0 1 0 1 0 1
U4 0 0 0 0 0 1
U5 1 1 0 0 0 0
U6 1 1 0 0 0 1

U1 1 ∗ 1 ∗ 1 0
U2 1 ∗ 1 ∗ 1 0
U3 0 ∗ 0 ∗ 0 1
U4 0 ∗ 0 ∗ 0 1
U5 1 1 0 0 0 ∗
U6 1 1 0 0 0 ∗

Alex Pothen and Arif Khan Parallelism by Approximation



Adaptive Anonymity Algorithm

X ∈ Rn×f is the instance-feature matrix;
Initialize weight matrix W ∈ Rn×f with all one’s;

for i = 1 to niter
Calculate a weighted graph G from W and X
Compute a min weight b-edge cover C in G
Recalculate weight matrix W using C
if convergence criterion is met break; endif

endfor

The edge cover groups each instance v with ≥ b(v) others

Alex Pothen and Arif Khan Parallelism by Approximation



Adaptive Anonymity with Approximation Algorithms

Prob. Inst . Feat . b−Matching b−EdgeCover
Time Util . Time Util .

Caltech 768 101 0.9 94.5 6.6 93.7
Reed 7962 139 1.5 95.6 229 95.0

Haverford 1,446 145 3.0 97.2 34 96.6
Simmons81 1,518 140 3.2 96.7 62 96.0

UCIAdult 32.6K 101 26 97
Census1990 158K 68 9m 90
PokerHands 500K 95 2h 17m 84

CMS 1M 512 10h 33m 81

Two orders faster than exact b-Matching.

Alex Pothen and Arif Khan Parallelism by Approximation



Depth of Parallel Algorithms

Depth of a parallel algorithm
maximum number of time steps in the algorithm.

We conjecture that when the edge weights are chosen
uniformly at random, the depth of the Locally Dominant edge
algorithm for 1/2-approximate weighted 1-matching is
O(log2 m) with high probability, where m is the number of
edges.

Alex Pothen and Arif Khan Parallelism by Approximation



Work in Parallel Algorithms

Work in a parallel algorithm
the total number of operations in the algorithm, which is the
product of the number of processors and the depth.

We conjecture that when the edge weights are chosen
uniformly at random, the work in Locally Dominant edge
algorithm for 1/2-approximate weighted 1-matching is O(m)
with high probability, where m is the number of edges.
This requires choosing subsets of edges to work with at each
step.

Alex Pothen and Arif Khan Parallelism by Approximation



Open Problems
Can we post-process a 2-approximate algorithm to obtain
3/2-approximation, while maintaining good concurrency?

What can be extended to set multicover problems?

One application of edge covers is to anonymity problems.
Others to graph construction, sparsification, visualization, etc.

Alex Pothen and Arif Khan Parallelism by Approximation



Recent Work: Matching

Arif Khan, Scalable Approximation Algorithms for
b-Matching and b-Edge cover, PhD thesis, Purdue, July
2017.
Khan, P: A new 3/2-approximation algorithm for b-Edge
cover, Proc. SIAM CSC 2016.
Khan, P, Patwary, Manne, Halappanavar, et al:
Approximation algorithms for weighted b-Matching, SIAM
J. Scientific Computing, 2016.
Khan, Pothen, Patwary et al, Scalable b-Matching
Algorithms on Distributed Memory Processors,
Supercomputing, 2016.

Alex Pothen and Arif Khan Parallelism by Approximation



Recent Work: Matching

Halappanavar, P, Azad, Langguth, Manne, Khan: Codesign
of matching algorithms and multicore machines, IEEE
Computer, August 2015.
Dobrian, Halappanavar, P, Al-Herz: 2/3-Approximation
Algorithms for Vertex-weighted Matchings in Bipartite
Graphs, Submitted to SISC, 2017.
Azad, Buluc, P: Parallel Tree-Grafting Algorithm for
Maximum Cardinality Matching, IPDPS 2015; IEEE TPDS,
2016.

Alex Pothen and Arif Khan Parallelism by Approximation



Collaborators

b-Matching, b-Edge cover Arif Khan
b-Suitor Algorithm Fredrik Manne

Mahantesh Halappanavar
Adaptive Anonymity Krzysztof Choromanski (Google)
b-matching Intel PCL

(Mostofa Patwary, Nadathur Satish,
Narayanan Sunderam, Pradeep Dubey)

Multicore, XMT, GPU MH, John Feo, Antonino Tumeo,
Oreste Villa

max cardinality Ariful Azad, Aydin Buluc
Push Relabel Johannes Langguth
Network Alignment David Gleich
Comp. Immunology Ariful Azad, Bartek Rajwa
Vertex Wted Matching Ahmed Al-Herz, Florin Dobrian, MH

Alex Pothen and Arif Khan Parallelism by Approximation



Eighth SIAM Workshop on Combinatorial Scientific Computing
June 6-8, 2018
University of Bergen, Norway

www.csc-research.org/CSC18/
Organizer: Fredrik Manne (Bergen)
PC Chairs: Sivan Toledo (Tel Aviv) and Peter Sanders
(Karlsruhe)
Please submit papers Dec 1, 2018.
Proceedings published by SIAM.

Alex Pothen and Arif Khan Parallelism by Approximation


