
LS-GPart: a global, distributed ordering library

Cleve Ashcraft, François-Henry Rouet
Livermore Software Technology Corporation

Sparse Days 2017, September 7th, 2017



LS-DYNA

Originated at the Lawrence Livermore Lab (DYNA3D, 1976).
Applications: automotive crash and occupant safety, metal
forming, CFD, FSI, electromagnetism, acoustics, thermal. . .
Finite elements, boundary elements, meshless, SPH. . .
About 50% of the explicit crash market, a share of the growing
implicit market.
Linear algebra team: Bob Lucas, Cleve Ashcraft, Roger Grimes,
Clément Weisbecker, F.-H. Rouet, Eugene Vecharynski.

F.-H. Rouet, Sparse Days 2017, 09/07/17 2/18



Fill-reducing ordering

Implicit solver in LS-Dyna:
The vast majority of our matrices are symmetric.
We tried early versions of ParMETIS and PT-Scotch but
observed quality degradation (parallel vs serial).
By default: serial METIS (1 trial per compute node), sometimes
MMD. For very large problems, METIS runs out of memory, and
MMD doesn’t compete with Nested Dissection.

Goals:
Memory scalability.
Good quality regardless of number of processors.
Reorder separators/fronts for Block Low-Rank factorization.

F.-H. Rouet, Sparse Days 2017, 09/07/17 3/18



LS-GPart

Nested dissection / recursive bisection.
Not multilevel. A “global” partitioner.
Distributed implementation, no global data, no O(N) vector.
Typical input: weighted compressed graph. Vertex of the
compressed graph ≡ 3, 6,. . . rows/cols of the matrix (degrees of
freedom).

F.-H. Rouet, Sparse Days 2017, 09/07/17 4/18



Algorithm

Until no subgraph is shared by multiple processors, or too large:

Any (nearly) dense rows?

Remove them and put in parent graph.
Is the graph disconnected?

Create graph objects for every component,
redistribute to different processes.

Find candidate separators
Based on half-level sets.
Improve candidate separators
With maxflow or block-trimming.
Pick best partition.
Split, redistribute to disjoint sets of
processors.
Recurse on subgraphs owned by multiple
processors.

F.-H. Rouet, Sparse Days 2017, 09/07/17 5/18



Algorithm

Until no subgraph is shared by multiple processors, or too large:

Any (nearly) dense rows?
Remove them and put in parent graph.

Is the graph disconnected?

Create graph objects for every component,
redistribute to different processes.

Find candidate separators
Based on half-level sets.
Improve candidate separators
With maxflow or block-trimming.
Pick best partition.
Split, redistribute to disjoint sets of
processors.
Recurse on subgraphs owned by multiple
processors.

F.-H. Rouet, Sparse Days 2017, 09/07/17 5/18



Algorithm

Until no subgraph is shared by multiple processors, or too large:

Any (nearly) dense rows?
Remove them and put in parent graph.
Is the graph disconnected?

Create graph objects for every component,
redistribute to different processes.
Find candidate separators
Based on half-level sets.
Improve candidate separators
With maxflow or block-trimming.
Pick best partition.
Split, redistribute to disjoint sets of
processors.
Recurse on subgraphs owned by multiple
processors.

F.-H. Rouet, Sparse Days 2017, 09/07/17 5/18



Algorithm

Until no subgraph is shared by multiple processors, or too large:

Any (nearly) dense rows?
Remove them and put in parent graph.
Is the graph disconnected?
Create graph objects for every component,
redistribute to different processes.

Find candidate separators
Based on half-level sets.
Improve candidate separators
With maxflow or block-trimming.
Pick best partition.
Split, redistribute to disjoint sets of
processors.
Recurse on subgraphs owned by multiple
processors.

F.-H. Rouet, Sparse Days 2017, 09/07/17 5/18



Algorithm

Until no subgraph is shared by multiple processors, or too large:

Any (nearly) dense rows?
Remove them and put in parent graph.
Is the graph disconnected?
Create graph objects for every component,
redistribute to different processes.
Find candidate separators
Based on half-level sets.

Improve candidate separators
With maxflow or block-trimming.
Pick best partition.
Split, redistribute to disjoint sets of
processors.
Recurse on subgraphs owned by multiple
processors.

F.-H. Rouet, Sparse Days 2017, 09/07/17 5/18



Algorithm

Until no subgraph is shared by multiple processors, or too large:

Any (nearly) dense rows?
Remove them and put in parent graph.
Is the graph disconnected?
Create graph objects for every component,
redistribute to different processes.
Find candidate separators
Based on half-level sets.
Improve candidate separators
With maxflow or block-trimming.

Pick best partition.
Split, redistribute to disjoint sets of
processors.
Recurse on subgraphs owned by multiple
processors.

F.-H. Rouet, Sparse Days 2017, 09/07/17 5/18



Algorithm

Until no subgraph is shared by multiple processors, or too large:

Any (nearly) dense rows?
Remove them and put in parent graph.
Is the graph disconnected?
Create graph objects for every component,
redistribute to different processes.
Find candidate separators
Based on half-level sets.
Improve candidate separators
With maxflow or block-trimming.
Pick best partition.

Split, redistribute to disjoint sets of
processors.
Recurse on subgraphs owned by multiple
processors.

F.-H. Rouet, Sparse Days 2017, 09/07/17 5/18



Algorithm

Until no subgraph is shared by multiple processors, or too large:

Any (nearly) dense rows?
Remove them and put in parent graph.
Is the graph disconnected?
Create graph objects for every component,
redistribute to different processes.
Find candidate separators
Based on half-level sets.
Improve candidate separators
With maxflow or block-trimming.
Pick best partition.
Split, redistribute to disjoint sets of
processors.

Recurse on subgraphs owned by multiple
processors.

F.-H. Rouet, Sparse Days 2017, 09/07/17 5/18



Algorithm

Until no subgraph is shared by multiple processors, or too large:

Any (nearly) dense rows?
Remove them and put in parent graph.
Is the graph disconnected?
Create graph objects for every component,
redistribute to different processes.
Find candidate separators
Based on half-level sets.
Improve candidate separators
With maxflow or block-trimming.
Pick best partition.
Split, redistribute to disjoint sets of
processors.
Recurse on subgraphs owned by multiple
processors.

F.-H. Rouet, Sparse Days 2017, 09/07/17 5/18



Finding an initial separator – 1

GENeralized Automatic Nested Dissection [George & Liu ’81]:
Find a pseudo-peripheral node s
(“source”).

Run BFS from s. level(u)=dist(u,s).
Level set Li : nodes with the same level i .
Cuthill-McKee: reordering along
{L0, L1, . . . , Ldiam} makes the matrix
block-tridiagonal.
Every level set defines a separator S
(often minimal); B = {L0, . . . , Li−1} and
W = {Li+1, . . . , Ldiam} are candidate
subdomains.
Pick the level set that minimizes a cost
function, e.g., cost(B,S,W ) ={

+∞ if max(|B|,|W |)
min(|B|,|W |) > α

|S|
(
1 + β ||B|−|W ||

|B|+|S|+|W |

)
otherwise

F.-H. Rouet, Sparse Days 2017, 09/07/17 6/18



Finding an initial separator – 1

GENeralized Automatic Nested Dissection [George & Liu ’81]:
Find a pseudo-peripheral node s
(“source”).
Run BFS from s. level(u)=dist(u,s).
Level set Li : nodes with the same level i .
Cuthill-McKee: reordering along
{L0, L1, . . . , Ldiam} makes the matrix
block-tridiagonal.
Every level set defines a separator S
(often minimal); B = {L0, . . . , Li−1} and
W = {Li+1, . . . , Ldiam} are candidate
subdomains.

Pick the level set that minimizes a cost
function, e.g., cost(B,S,W ) ={

+∞ if max(|B|,|W |)
min(|B|,|W |) > α

|S|
(
1 + β ||B|−|W ||

|B|+|S|+|W |

)
otherwise

F.-H. Rouet, Sparse Days 2017, 09/07/17 6/18



Finding an initial separator – 1

GENeralized Automatic Nested Dissection [George & Liu ’81]:
Find a pseudo-peripheral node s
(“source”).
Run BFS from s. level(u)=dist(u,s).
Level set Li : nodes with the same level i .
Cuthill-McKee: reordering along
{L0, L1, . . . , Ldiam} makes the matrix
block-tridiagonal.
Every level set defines a separator S
(often minimal); B = {L0, . . . , Li−1} and
W = {Li+1, . . . , Ldiam} are candidate
subdomains.
Pick the level set that minimizes a cost
function, e.g., cost(B,S,W ) ={

+∞ if max(|B|,|W |)
min(|B|,|W |) > α

|S|
(
1 + β ||B|−|W ||

|B|+|S|+|W |

)
otherwise

F.-H. Rouet, Sparse Days 2017, 09/07/17 6/18



Finding an initial separator – 2

Our approach:
We use two sources s and t and define
half-level(u)=dist(u,s)-dist(u,t).
Implicitly, reordering following half-level
sets makes the matrix pentadiagonal.
Two consecutive half-level sets define a
separator. Not always minimal!

Empirically, half-level sets yield better
separators than single-level sets.
For a given pair of sources, we find a
separator using the same cost function.
We start with multiple sources, typically
O(10). We perform the multiple BFS in
one shot to hide latency (number of
communication steps = graph diameter).
The number of pairs of sources and
candidate partitions is quadratic in the
number of sources.

F.-H. Rouet, Sparse Days 2017, 09/07/17 7/18



Finding an initial separator – 2

Our approach:
We use two sources s and t and define
half-level(u)=dist(u,s)-dist(u,t).
Implicitly, reordering following half-level
sets makes the matrix pentadiagonal.
Two consecutive half-level sets define a
separator. Not always minimal!
Empirically, half-level sets yield better
separators than single-level sets.

For a given pair of sources, we find a
separator using the same cost function.
We start with multiple sources, typically
O(10). We perform the multiple BFS in
one shot to hide latency (number of
communication steps = graph diameter).
The number of pairs of sources and
candidate partitions is quadratic in the
number of sources.

F.-H. Rouet, Sparse Days 2017, 09/07/17 7/18



Finding an initial separator – 2

Our approach:
We use two sources s and t and define
half-level(u)=dist(u,s)-dist(u,t).
Implicitly, reordering following half-level
sets makes the matrix pentadiagonal.
Two consecutive half-level sets define a
separator. Not always minimal!
Empirically, half-level sets yield better
separators than single-level sets.
For a given pair of sources, we find a
separator using the same cost function.

We start with multiple sources, typically
O(10). We perform the multiple BFS in
one shot to hide latency (number of
communication steps = graph diameter).
The number of pairs of sources and
candidate partitions is quadratic in the
number of sources.

F.-H. Rouet, Sparse Days 2017, 09/07/17 7/18



Finding an initial separator – 2

Our approach:
We use two sources s and t and define
half-level(u)=dist(u,s)-dist(u,t).
Implicitly, reordering following half-level
sets makes the matrix pentadiagonal.
Two consecutive half-level sets define a
separator. Not always minimal!
Empirically, half-level sets yield better
separators than single-level sets.
For a given pair of sources, we find a
separator using the same cost function.
We start with multiple sources, typically
O(10). We perform the multiple BFS in
one shot to hide latency (number of
communication steps = graph diameter).
The number of pairs of sources and
candidate partitions is quadratic in the
number of sources.

F.-H. Rouet, Sparse Days 2017, 09/07/17 7/18



Improving a candidate separator – 1

A separator can be “straightened out” using
selective expansion.

Add vertices to the separator based on their ratio
|∂u ∩ S|/|∂u|: number of neighbors in the
separator vs total number of neighbors (“cutting
corners”).

Multiple passes can be used. We set a limit on
the size of the new wide separator relative to the
original one.

F.-H. Rouet, Sparse Days 2017, 09/07/17 8/18



Improving a candidate separator – 2

A non-minimal separator can improved/contracted using:
Block-trimming: try putting ∂B \ ∂W in B
instead of S. Same with W .
Cheap: 1 communication step per pass.

Maxflow [Ashcraft & Liu ’98]
Graph: Network:

B,W source s, sink t

Vertex u in S u− u+
|u|

Edge from B to S s u−
+∞

Edge from S to W u+ t
+∞

Edge (u, v) in S
u− u+

v− v+

|u|

|v |

+∞+∞

Much more expensive than block-trimming.

F.-H. Rouet, Sparse Days 2017, 09/07/17 9/18



Improving a candidate separator – 2

A non-minimal separator can improved/contracted using:
Block-trimming: try putting ∂B \ ∂W in B
instead of S. Same with W .
Cheap: 1 communication step per pass.
Maxflow [Ashcraft & Liu ’98]

Graph: Network:
B,W source s, sink t

Vertex u in S u− u+
|u|

Edge from B to S s u−
+∞

Edge from S to W u+ t
+∞

Edge (u, v) in S
u− u+

v− v+

|u|

|v |

+∞+∞

Much more expensive than block-trimming.

Initial separator.

Network & mincut.

Improved separator.
F.-H. Rouet, Sparse Days 2017, 09/07/17 9/18



Improving a candidate separator – 3
We perform cycles of expansions-contractions:

1/ Initial partition:

4/ Maxflow:

2/ Block-trimming:

5/ Expansion:

3/ Expansion:

6/ Maxflow:

F.-H. Rouet, Sparse Days 2017, 09/07/17 10/18



Improving a candidate separator – 3
We perform cycles of expansions-contractions:

1/ Initial partition:

4/ Maxflow:

2/ Block-trimming:

5/ Expansion:

3/ Expansion:

6/ Maxflow:

F.-H. Rouet, Sparse Days 2017, 09/07/17 10/18



Improving a candidate separator – 3
We perform cycles of expansions-contractions:

1/ Initial partition:

4/ Maxflow:

2/ Block-trimming:

5/ Expansion:

3/ Expansion:

6/ Maxflow:

F.-H. Rouet, Sparse Days 2017, 09/07/17 10/18



Improving a candidate separator – 3
We perform cycles of expansions-contractions:

1/ Initial partition:

4/ Maxflow:

2/ Block-trimming:

5/ Expansion:

3/ Expansion:

6/ Maxflow:

F.-H. Rouet, Sparse Days 2017, 09/07/17 10/18



Improving a candidate separator – 3
We perform cycles of expansions-contractions:

1/ Initial partition:

4/ Maxflow:

2/ Block-trimming:

5/ Expansion:

3/ Expansion:

6/ Maxflow:

F.-H. Rouet, Sparse Days 2017, 09/07/17 10/18



Improving a candidate separator – 3
We perform cycles of expansions-contractions:

1/ Initial partition:

4/ Maxflow:

2/ Block-trimming:

5/ Expansion:

3/ Expansion:

6/ Maxflow:

F.-H. Rouet, Sparse Days 2017, 09/07/17 10/18



Implementation

Data structures:
Graph is fully distributed. A process knows only about its
vertices Iq, ∂Iq (neighbors), and the edges in Iq × Iq and ∂Iq × Iq.
Ownership map is also distributed; no O(N) vectors.
Distance matrix, candidate partitions, etc. also distributed.

Implementation: BSP style, MPI_Alltoallv is our workhorse.
Initial separators construction:

We use both single and dual sources.
Pseudo-peripheral nodes: random sources, BFS to build distance
information, discard sources too close from each other, replace
them with new sources based on distance information.

Improving separators: maxflow and block-trimming (latter preferred).
Recursive bisection:

We hand over the leaves of the tree to METIS.
Top-level separators are the same regardless of #procs.

F.-H. Rouet, Sparse Days 2017, 09/07/17 11/18



Implementation

Data structures:
Graph is fully distributed. A process knows only about its
vertices Iq, ∂Iq (neighbors), and the edges in Iq × Iq and ∂Iq × Iq.
Ownership map is also distributed; no O(N) vectors.
Distance matrix, candidate partitions, etc. also distributed.

Implementation: BSP style, MPI_Alltoallv is our workhorse.

Initial separators construction:
We use both single and dual sources.
Pseudo-peripheral nodes: random sources, BFS to build distance
information, discard sources too close from each other, replace
them with new sources based on distance information.

Improving separators: maxflow and block-trimming (latter preferred).
Recursive bisection:

We hand over the leaves of the tree to METIS.
Top-level separators are the same regardless of #procs.

F.-H. Rouet, Sparse Days 2017, 09/07/17 11/18



Implementation

Data structures:
Graph is fully distributed. A process knows only about its
vertices Iq, ∂Iq (neighbors), and the edges in Iq × Iq and ∂Iq × Iq.
Ownership map is also distributed; no O(N) vectors.
Distance matrix, candidate partitions, etc. also distributed.

Implementation: BSP style, MPI_Alltoallv is our workhorse.
Initial separators construction:

We use both single and dual sources.
Pseudo-peripheral nodes: random sources, BFS to build distance
information, discard sources too close from each other, replace
them with new sources based on distance information.

Improving separators: maxflow and block-trimming (latter preferred).
Recursive bisection:

We hand over the leaves of the tree to METIS.
Top-level separators are the same regardless of #procs.

F.-H. Rouet, Sparse Days 2017, 09/07/17 11/18



Implementation

Data structures:
Graph is fully distributed. A process knows only about its
vertices Iq, ∂Iq (neighbors), and the edges in Iq × Iq and ∂Iq × Iq.
Ownership map is also distributed; no O(N) vectors.
Distance matrix, candidate partitions, etc. also distributed.

Implementation: BSP style, MPI_Alltoallv is our workhorse.
Initial separators construction:

We use both single and dual sources.
Pseudo-peripheral nodes: random sources, BFS to build distance
information, discard sources too close from each other, replace
them with new sources based on distance information.

Improving separators: maxflow and block-trimming (latter preferred).

Recursive bisection:
We hand over the leaves of the tree to METIS.
Top-level separators are the same regardless of #procs.

F.-H. Rouet, Sparse Days 2017, 09/07/17 11/18



Implementation

Data structures:
Graph is fully distributed. A process knows only about its
vertices Iq, ∂Iq (neighbors), and the edges in Iq × Iq and ∂Iq × Iq.
Ownership map is also distributed; no O(N) vectors.
Distance matrix, candidate partitions, etc. also distributed.

Implementation: BSP style, MPI_Alltoallv is our workhorse.
Initial separators construction:

We use both single and dual sources.
Pseudo-peripheral nodes: random sources, BFS to build distance
information, discard sources too close from each other, replace
them with new sources based on distance information.

Improving separators: maxflow and block-trimming (latter preferred).
Recursive bisection:

We hand over the leaves of the tree to METIS.
Top-level separators are the same regardless of #procs.

F.-H. Rouet, Sparse Days 2017, 09/07/17 11/18



Test problems

Problem Order Entries Application
Hex 12.6k 81.1k Spot weld failure analysis
Dubcova1(∗) 16.1k 134.6k High-order discretization
bmw7st_1(∗) 141.3k 3.7M Car body static analysis
ptwk(∗) 217.9k 5.9M Pressurized wind tunnel
Cylinders 506.8k 6.9M Nested cylinders (solids)
audikw_1(∗) 943.7k 39.3M Crankshaft model
Pickup 1.0M 6.7M Pickup truck (shells, solids. . . )
Transport(∗) 1.6M 23.5M Coupled flow and transport
3D grid 1.7M 17.1M 1203 grid, 19-pt stencil
Machine 3.4M 48.6M Cardboard bending machine (solids)
Impeller 7.0M 94.8M 24 fan blade impeller (solids)
Engine 11.1M 141.2M Whole jet engine (solids)

(∗): U.Fl. Collection. Others: LSTC applications; compressed graphs.

F.-H. Rouet, Sparse Days 2017, 09/07/17 12/18



Ordering quality

PT-Scotch 6.0.4, ParMETIS 4.0.3, METIS 5.1.0. 8 MPI ranks:

Factor size w.r.t. METIS Op. count w.r.t. METIS

Problem Pa
rM
ET
IS

PT
-Sc
otc
h

LS
-GP

art

Pa
rM
ET
IS

PT
-Sc
otc
h

LS
-GP

art

Hex 0.99 1.90 1.05 0.96 7.00 1.15
Dubcova1 1.02 1.27 1.01 1.07 1.61 1.01
bmw7st_1 1.07 1.15 1.08 1.43 1.91 1.33
ptwk 1.03 1.05 1.03 1.13 1.20 1.13
Cylinders 1.07 1.28 0.99 1.39 1.79 0.99
audikw_1 1.07 1.06 1.04 1.22 1.22 1.09
Pickup 1.01 1.25 1.13 1.26 2.05 1.95
Transport 1.03 1.08 1.03 1.14 1.19 1.06
3D grid 1.05 1.21 0.99 1.17 1.53 0.98
Machine 1.00 1.07 1.06 1.05 1.33 1.20
Impeller 1.01 1.24 1.04 1.04 1.87 1.06
Engine 1.02 1.26 1.08 1.15 2.33 1.42

F.-H. Rouet, Sparse Days 2017, 09/07/17 13/18



Quality vs number of processes

Factor operation count for two problems:

1 2 4 8 16 32 64 128
0.8

0.9

1

1.1

1.2

MPI ranks

Re
la

tiv
e

fa
ct

or
op

.
co

un
t

3D Grid:
ParMETIS
PT-Scotch
LS-GPart

1 2 4 8 16 32 64 128
1

2

3

4

MPI ranks
Re

la
tiv

e
fa

ct
or

op
.

co
un

t

Machine:
ParMETIS
PT-Scotch
LS-GPart

Our separators don’t depend on number of MPI ranks nor input
distribution (only vertex labeling, used to pick random sources).

F.-H. Rouet, Sparse Days 2017, 09/07/17 14/18



Influence of the random seed

LS-GPart (3 levels/8 domains) vs METIS, Dubcova problem:

Factor size (relative to best).
1.07

1.06

1.05

1.04

1.03

1.02

1.01

1.000 20 40 60 80 100

METIS
LS-GPart

Trials

Factor ops (relative to best).
1.30

1.25

1.20

1.15

1.10

1.05

1.000 20 40 60 80 100

METIS
LS-GPart

Trials

METIS: wide variability. We often advise users to use 4 trials.
LS-GPart more consistent.

F.-H. Rouet, Sparse Days 2017, 09/07/17 15/18



Strong scaling

Parallel performance for two problems:

1 2 4 8 16 32 64 128
10−2

10−1

100

MPI ranks

Re
lat

ive
ru
n
tim

e
Ideal scaling
Machine
3D grid

Remarks:
Bottlenecks: BFS (1D parallelization), separator expansion.
Slower than serial METIS for small numbers of processors;
typically we catch up for 16 MPI ranks.

F.-H. Rouet, Sparse Days 2017, 09/07/17 16/18



Conclusion

LS-GPart:
Non-multilevel parallel nested dissection based on half-level sets.
Preliminary experiments show reasonable ordering quality and
parallel scalability.
Separators are built with smoothness in mind. Useful for
low-rank factorizations?

Work in progress:
Approximate BFS to reduce cost.
Raceahead separator expansion algorithm.
Parallel symbolic factorization in the same code.
Edge-based multisection using the same framework for
separators/frontal matrices (for low-rank factorizations).

F.-H. Rouet, Sparse Days 2017, 09/07/17 17/18



End

Thank you for your attention!

Any questions?

F.-H. Rouet, Sparse Days 2017, 09/07/17 18/18


