
A Tale of Two Codes

Patrick	Amestoy,	Cleve	Ashcra4,	Roger	Grimes,		
Jean-Yves	L’Excellent,	Bob	Lucas,	Theo	Mary,	
Francois-Henry	Rouet,	Clement	Weisbecker	

Sept.	7,	2017	

Charles	Dickens	Quote

 " It was the best of times, it was the worst of times,
 it was the age of wisdom, it was the age of foolishness,
 it was the epoch of belief, it was the epoch of incredulity,
 it was the season of Light, it was the season of Darkness,
 it was the spring of hope, it was the winter of despair,
 we had everything before us, we had nothing before us,
 we were all going direct to Heaven, we were all going direct
 the other way—in short, the period was so far like the present
 period, that some of its noisiest authorities insisted on
 its being received, for good or for evil, in the superlative
 degree of comparison only.”
Charles Dickens, A Tale of Two Cities, 1859

We	were	all	once	young	and	impressionable

•  Roger	and	Cleve	met	Iain	(and	
John)	in	the	early	1980s	
Boeing	started	its	BCSLIB-EXT	
mulYfrontal	code	mid-1980s	

•  Patrick	and	Chiara	joined	Iain	at	
CERFACS	in	1987	and	1988	
LU	and	QR	mulYfrontal	codes	

•  Gene	Golub	introduced	me	to	Iain	(~Christmas,	1985)	
MulYfrontal	LU	on	an	Intel	hypercube	

•  Jean-Yves	was	a	“trainee”	at	CERFACS	in	1992	
Started	on	MUMPS	in	1996	

Outline

•  IntroducYon

•  Triangles	vs.	squares

•  L	vs.	U

•  StaYc	vs.	dynamic	scheduling

•  Summary

Two	mulYfrontal	codes

•  MUMPS
Free	so4ware	(CeCILL-C	license)	from	CERFACS,	CNRS,	ENS	
Lyon,	INP	Toulouse,	Inria,	and	Université	de	Bordeaux	

•  mf2
LSTC’s	second	distributed	memory	mulYfrontal	solver	
We	also	have	BCSLIB-EXT	(SMP)	and	MUMPS	(research)	

•  Many	similariYes:
Three	decades	of	history 	Real	and	complex	arithmeYc	
O(100K)	SLOCs	 	 	 	Symmetric	indefinite	
MPI	and	OpenMP	 	 	LU	with	symmetric	structure	
Out-of-core	opYon 	 	Block	Low	Rank	approximaYons	

Similar	behavior	(OpenMP)

0

50

100

150

200

250

300

350

400

1 2 4 8 16

MUMPS
mf2

2.8M	equaYons	
106M	non-zeros	in	A	
2.89G	non-zeroes	in	L	

11.2	Tops	

Seconds	

Threads	

Similar	behavior	(MPI)

0

5

10

15

20

25

30

35

16 32 48 64 80 96

MUMPS
mf2

2.8M	equaYons	
106M	non-zeros	in	A	
2.89G	non-zeroes	in	L	

11.2	Tops	

Seconds	

Processors	(MPI)	

There	are	also	many	differences

•  HeurisYcs	are	required
Reordering	is	NP-complete	(Yannakakis,	1981)	
Scheduling	is	NP-hard	(Garey,	1976)	

•  ExecuYon	model	evolves
Vector	mainframes	->	Cache-based	microprocessors	
Shared	memory	->	Distributed	memory	->	Hybrid	
->	Accelerators	

•  The	problems	keep	changing
They	keep	gemng	bigger	

 Rolls	Royce	small	dummy	engine	model	
200M	degrees	of	freedom	

Choices	have	to	be	made

•  Are	frontal	matrices	triangles	or	squares?

•  If	its	symmetric,	is	it	LDLT	or	UTDU?

•  Is	parallel	scheduling	staYc	or	dynamic?	

•  Do	you	scale	the	input	matrix?	

•  What	pivot	choices	should	you	make?	

•  How	do	you	amalgamate	supernodes?	

•  MulY-threaded	BLAS,	yes	or	no?

Outline

•  IntroducYon

•  Triangles	vs.	squares

•  L	vs.	U

•  StaYc	vs.	dynamic	scheduling

•  Summary

Squares	->	Triangles

•  20	years	ago,	“mf1”	solver	had	square	frontal	matrices
It’s	easier	to	think	about

	A(i,j)	=	x
than

	jm1	=	j	–	1
	A(ld	*	jm1	–	(jm1	*	jm1	–	jm1)/2	+	(i	–	jm1))	=	x

•  Seemed	wasteful	of	memory
Converted	to	using	triangles	of	L	for	symmetric	matrices

Unrolled	loops	->	DGEMM

•  Unrolling	k	and	j	loops	by	2	and	vectorizing	i	yielded	
asymptoYc,	right-looking	performance	on	Cray	Y-M/P	
Right-looking	is	atracYve	when	pivoYng

•  Limited	memory	bandwidth	of	earlier	cache-based	
systems	required	more	unrolling
6x4	in	mf2,	intended	for	Itanium	and	Power

•  SIMD	extensions	(e.g.,	AVX)	require	BLAS
Compiled	Fortran	performance	has	effecYvely	plateaued

Triangles	->	Squares	(even	though	symmetric)

•  But	DGEMM	operates	on	rectangles!
mf2	converts	a	panel	of	a	triangle	to	a	rectangle
Performs	updates	with	DGEMM
Accumulates	rectangular	output	back	into	the	triangle

•  MUMPS	keeps	acYve	fronts	in	rectangular	panels
DGEMMs	applied	in-place
No	overhead	for	copying	to	and	from	triangles

•  mf2	has	adopted	this	strategy
If	storage	allows,	otherwise,	revert	to	a	triangle	

Performance	impact	(gprof)

Factor
time

Gflop/s

6x4
unrolled

DGEMM
kernel

DGEMM
copy

Convert
panels

unrolled 1138 9.9 1099
triangles 381 29.5 0 207 53 63
squares 308 36.5 0 210 32 0
MUMPS 341 32.8 217 28

•  Unrolled	Fortran	doesn’t	effecYvely	use	AVX	

•  Data	movement	overhead	is	significant	
Even	within	MKL

Intel	Xeon	E5-2690	v4,	ifort	&	MKL	2016.3.210,			

Outline

•  IntroducYon

•  Triangles	vs.	squares

•  L	vs.	U

•  StaYc	vs.	dynamic	scheduling

•  Summary

Row	major	vs.	column	major?

•  mf2	thinks	its	LDLT
Stores	panels	of	L,	column	major	
Stores	permuted	columns	of	A	
Sends	columns	to	parents	(usually)

•  MUMPS	thinks	its	UTDU
Stores	recYlinear	panels	of	U,	row	major	
Stores	permuted	rows	of	A	
Sends	rows	to	parents	

DTRSM

•  DTRSM	with	128-bit	SSE	wasn’t	worthwhile
Slightly	faster	than	unrolled	Fortran	
Unrolled	Fortran	tested	for	threshold	violaYons	as	it	went	
Litle	unnecessary	work	performed	if	pivoYng	

•  DTRSM	with	wider	AVX	is	worthwhile	
MUMPS	could	call	it	in	place	if	it	was	column	major	

•  mf2	has	to	extract	and	transpose	columns	of	L
Impeller	profile: 	DTRSM	 	10.1	sec.	

	 	 	 	 	Transpose			6.7	sec.

Outline

•  IntroducYon

•  Triangles	vs.	squares

•  L	vs.	U

•  StaYc	vs.	dynamic	scheduling

•  Summary

Message	passing	distribuYon	of	work

•  mf2	uses	a	staYc,	subtree-subcube	like	mapping
Processor	allocaYon	based	on	a	performance	model
Each	parallel	frontal	matrix	is	assigned	an	MPI	communicator
MPI	collecYves	used	for	communicaYon

•  MUMPS	dynamically	reassigns	update	tasks	as	needed
StaYc	allocaYon	of	master	processes	to	fully	summed	rows	
StaYc	iniYal	assignment	for	processing	contribuYon	blocks	
Dynamic	reassignment	by	master,	at	run	Yme,	based	on	load
All	communicaYon	is	point-to-point	with	MPI_I{SEND,IRECV}

Well	behaved:	Long_Coup_dt2	(E-6	threshold)
16
25.1

Time

5
30.4

5
36.4

6
22.6

2
12.3

3
22.3

2
29.9 3

22.8

2
29.8

4
	22.9

21.8
8.4

8.6 9.2

10.8

.9

31.3 30.4

3
41.2 2

41.1 3
38.9

63.4
51.7

11.7

2
59.5 2

51.8

7.7

Processor	count
Run	Yme	(sec.)
Wait	Yme	(sec.) cri6cal	path	

141	sec	
365	GFlop/s.

Badly	behaved:	Long_Coup_dt2	(E-2	threshold)
16
2549

Time

5
2531

5
1538

6
1689

2
646

3
757

2
2119 3

449

2
6554

4
	6530

7098
7210

555 1687

656

370

223 592

3
1035 2

555 3
543

2524 1211

1313

2
2277 2

3203

926

Processor	count
Run	Yme	(sec.)
Wait	Yme	(sec.) cri6cal	path	

13973	sec.	
22.4	GFlop/s

MUMPS	successfully	adapts

Code
Pivot

threshold
Factor

seconds
row/col

exchange
2x2

pivots
Deferred

equations

mf2 E-2 13973 973136 0 1272687
mf2 E-3 2063 443426 0 416336
mf2 E-6 141 0 0 0
MUMPS E-2 248 ? 2 46

•  MUMPS	scales	the	input	matrix,	while	mf2	doesn’t	
LS-DYNA	uses	null-space	method	to	eliminate	constraints	

•  MUMPS	load	balance	adapts	to	deferred	equaYons	
mf2	does	not	

Factoring	Long_Coup_dt2	on	16	MPI	ranks	
1.47M	equaYons,	51.45	Tops	w/o	deferred	eqns.	

Outline

•  IntroducYon

•  Triangles	vs.	squares

•  L	vs.	U

•  StaYc	vs.	dynamic	scheduling

•  Summary

Summary

•  There	is	no	one	opYmal	mulYfrontal	method	
Depends	on	the	goals	and	constraints	of	the	user	
Depends	on	properYes	of	the	input	matrices	
Depends	on	the	machine	its	running	on	

•  Codes	are	opYmized	for	the	problems	that	moYvate	us	
LS-DYNA	is	primarily	a	mulY-physics,	finite	element	code
MUMPS	has	a	much	wider	range	of	users

•  Learning	from	each	other	
Ongoing	effort	
Good	for	everybody	

