Direct solution of sparse systems of
linear equations with sparse multiple
right-hand sides

1. Université de

Toulouse INPT and IRIT , 2. Université de Lyon, Inria and LIP-ENS Lyon ,
gilles.moreau®@ens-lyon.fr

Sparse Days, Cerfacs, September 6-8, 2017

Introduction

E., BLR STRATEGY 2, R =0, t50 = 107

Linear systems of equations :

Ax = b, A is sparse

Solve phase (Ly = b, Ux = y) may
be critical.

Application coming from Helmholtz or Maxwell equations:

name | n (million) nrhs nnz/nrhs | Taeo Tsolve
sei70m 2.9 | 2302 587 1258 1267
sei50m 7.1 | 2302 486 6289 2985
E1 0.33 | 8000 9.8 55.2 291

E3 2.8 | 8000 7.5 1951 5610

Table : Characteristics of matrices and right-hand-sides.

2/19

Introduction

Objectives:
e focus on the forward solution phase Ly = b;
e exploit sparsity of right-hand-sides;

e limit the number of operations (A);

3/19

Overview

Exploitation of sparse right-hand-sides
Context of study
Tree pruning
Exploitation of subintervals of columns at each node

Minimizing the number of operations
Permutation of columns
Adapted blocking technique

Conclusion

4/19

Context: analysis phase

Ordering: reorder variables of the matrix A to reduce fill-in and build
elimination tree:

e Nested Dissection = build tree of separators.

2 —20——11
s / /
8 25 17

/ /

3 23 12
7/ / /
9 27 18

5
1 19 10
/ 7
7 24 16
/ /
21——13

3D physical domain (cube)

5/19

Context: analysis phase

Ordering: reorder variables of the matrix A to reduce fill-in and build
elimination tree:

e Nested Dissection = build tree of separators.

2 —20——11
8/ 5/2 17/
ATAT | @

5 2 14
3 23 12
s / /
9 27 18
s / s
6 26 15

1 /9 10
s s
16
/

3D physical domain (cube) separator tree

5/19

Context: analysis phase

Ordering: reorder variables of the matrix A to reduce fill-in and build
elimination tree:

e Nested Dissection = build tree of separators.

3D physical domain (cube) separator tree

5/19

Context: analysis phase

Ordering: reorder variables of the matrix A to reduce fill-in and build
elimination tree:
e Nested Dissection = build tree of separators.

2 —20—11
7/ /
i
7/ /
5 ——+2 14
12
U Z]
1] 10
¥ N OIOICHICD),
"
3D physical domain (cube) separator tree

5/19

Context: analysis phase

Ordering: reorder variables of the matrix A to reduce fill-in and build
elimination tree:

e Nested Dissection = build tree of separators.

2—20——11 ; !
/ 7/ s |
, 7 ‘ SR
5 p. Wl R
1 ‘ ‘!D !
s 10
b b OIOICDICD),
7/ /
4 21— 13
3D physical domain (cube) separator tree L factor

5/19

Context: analysis phase

Ordering: reorder variables of the matrix A to reduce fill-in and build
elimination tree:

e Nested Dissection = build tree of separators.

22— —7/11 ol ‘ |
57412 14 ‘ 5 :
12 * - T -
1 ‘ ‘!D !
s 10 :
L. X B @@ | L]
s / K
4 21— 13 —
3D physical domain (cube) separator tree L factor

5/19

Forward solution process

s ®

Block operations:
® y Ll_llb]_
* by« by — Loayr

#flops for node u is given by:

Fu =2 x (#entries in L1 + Lp1)

6/19

Forward solution process

s ®

Block operations:
® y Ll_llb]_
* by« by — Loayr

#flops for node u is given by:

Fu =2 x (#entries in L1 + Lp1)

6/19

Forward solution process

s ®

Block operations:
® y Ll_llb]_
® by < by — Loy

#flops for node u is given by:

Fu =2 x (#entries in L1 + Lp1)

6/19

Forward solution process

s ®

Block operations:
® y Ll_llb]_
* by« by — Loayr

#flops for node u is given by:

Fu =2 x (#entries in L1 + Lp1)

6/19

Forward solution process

s ®

Block operations:
® y Ll_llb]_
® by < by — Loy

#flops for node u is given by:

Fu =2 x (#entries in L1 + Lp1)

6/19

Forward solution process

s ®

Block operations:
® y Ll_llb]_
* by« by — Loayr

Total #flops:

#flops for node u is given by:

Fu =2 x (#entries in L1 + Lp1)

A=>"F,

ueT

6/19

Forward solution process

Forward solve phase processes the tree from bottom to top:

uy X : initial non-zeros

7/19

Forward solution process

Forward solve phase processes the tree from bottom to top:

uy X : initial non-zeros
f : filled non-zeros

7/19

Forward solution process

Forward solve phase processes the tree from bottom to top:

uy X : initial non-zeros
f : filled non-zeros

7/19

Forward solution process

Forward solve phase processes the tree from bottom to top:

ur [f X : initial non-zeros
f : filled non-zeros

7/19

Forward solution process

Forward solve phase processes the tree from bottom to top:

ur (f X : initial non-zeros
f : filled non-zeros

7/19

Forward solution process

Forward solve phase processes the tree from bottom to top:

ur (f X : initial non-zeros
f : filled non-zeros

Computation follows paths in the tree T [Gilbert, 1994].

— Tree pruning (T — T,(b)) to reduce computation:

A= > F,

ue Ty(b)

7/19

Exposition of padded zeros

When B is a matrix with multiple columns:
e use of BLAS 3 operations for efficiency;
e To(B) = Tp(Bi), where B is column i of B;

123456

BT

T @)

ug X

us X

piRRR" @ o)
ZSX X

s G GO @y o
11]

u12| X "
i
uis[X[f|f[FIX]f

But still, extra computations are done ...
A =nrhs X 3 cr) Fu

8/19

Exposition of padded zeros

When B is a matrix with multiple columns:
e use of BLAS 3 operations for efficiency;
e To(B) = Tp(Bi), where B is column i of B;

123456

o1

T @)

ug X

us X

piRRR" @ o)
ZSX X

s G GO @y o
11]

u12| X "
i
uis[X[f|f[FIX]f

But still, extra computations are done ...
A =nrhs X 3 cr) Fu

8/19

What are the possible alternatives ?

Indirections: rebuilding data structures;

Sequential: solution phase on each column
= optimal (A = Apn) but not efficient;
Regular blocking: how to build blocks ?

o minimal access to factors (out of core) [Amestoy et al.,SISC,2012];
o minimal number of operations (in core) [Yamazaki et al.,2013];

Exploitation of subintervals of columns at each node [Amestoy et
al.,SISC,2015].

9/19

What are the possible alternatives ?

Indirections: rebuilding data structures;

Sequential: solution phase on each column
= optimal (A = Apn) but not efficient;
Regular blocking: how to build blocks ?

o minimal access to factors (out of core) [Amestoy et al.,SISC,2012];
o minimal number of operations (in core) [Yamazaki et al.,2013];

Exploitation of subintervals of columns at each node [Amestoy et
al.,SISC,2015].

9/19

Work on node subintervals

Let ue T:

Active columns at node u

Zy={i€e{l,....m}|ue TyBi)}

Subinterval is given by:

123456
. Ul X
6, = max(Z,) —min(Z,) + 1 w2 PR
uz |f f
ug [X
us X
U | |f f
uz [fIfF] |FIF
ug [X X
g
uio[f
u1y X
u12 X
u13 X[[f
walf] [f] |[F]F
uis[X[FIFIFIXIF

10/19

Work on node subintervals

Let ue T:

Active columns at node u

Zy={i€e{l,....m}|ue TyBi)}

Subinterval is given by:

123456
0, = max(Z,) — min(Z,) +1 s LTI

uz |f f

Example: 0,, =1, 0, =6 us [TFIIF

&
X[
X

<
=
o
]

S
=
&
XX
X[X
-

10/19

Work on node subintervals

Let ue T:

Active columns at node u

Zy={i€e{l,....m}|ue TyBi)}

Subinterval is given by:

123456
. u1 [X =1
6, = max(Z,) —min(Z,) + 1 v TR 03 = 1
u3 [F f 03 =4
ug [X 24:%
us B 5 =
N g frg O = 4
Example: 0,, =1, 0,4, =6 e LIEEEAE] 00 = 2
ug [X x| 0g = 6
ug 099:06
u1o[f f =
A= E Fu X 0u uig X gi? ,%
u12 X =
uETH(B) uis [TIRITE 61 — 3
P ur4[FI[F[[F[F]014 = 6
uis[X[FIFIF[X[£]015 = 6

10/19

Work on node subintervals

Let ue T:

Active columns at node u

Zy={i€e{l,....m}|ue TyBi)}

Subinterval is given by:

123456 142563)
. up [X 1= | 1=
6, = max(Z,) —min(Z,) + 1 w TR -1 [0 =1
u3 [F f 03 =4 [flf 03 =2

us X 5 = X 5 =

; = = U 0 = O =
Example: 9“1 1, 9”10 6 > [ETETIEE 05 = FIFIIE 05 =
ug [X X|0g =6 [X X[10 =5

ug 09 = 999:

_ u1o[f fl010 = 6 f 10=05

A_ § Fuxeu u11 X 611 =1 X011 =1

uyp = 312—% X 212—:1”

T,.(B u13 x| [f] 1013 = fl X013 =

ueTy(B) ua[FIFLIFIFI00 = 6 [FI T TFIFLF014 = 6
u1s[XIFIFIFIXIF615 = 6 [XIFLFIXLELFO15 =

— A is extremely dependant on column permutation.

10/19

Problem statement & algorithms

Goal is to minimize or decrease A =3, .1 gy Fu X O
e find permutation o of columns to decrease 6,,Vu € T,(B);

e in case of blocking, minimize the number of blocks.

11/19

Problem statement & algorithms

Goal is to minimize or decrease A =3, .1 gy Fu X O
e find permutation o of columns to decrease 6,,Vu € T,(B);

e in case of blocking, minimize the number of blocks.

Proposed heuristics:
e based on geometrical properties (Nested Dissection);
e generalization possible thanks to pruned tree T,(B).

11/19

Flat Tree Algorithm

Intuition based on a simple 2D example:

Uo

-]

X

f

f

X

2D physical domain

structure of B

T[]

u (w)

uz

uny U2 U1 22
to

elimination tree

* Nested Dissection = partition right-hand-sides into 3 sets (a, b, ¢);

e f0,=a+c+b

12/19

Flat Tree Algorithm

Intuition based on a simple 2D example:

a b c
uo
X X
[l
X X
X
f X f

2D physical domain

structure of B

T[]

u (w)

uz

uny U2 U1 22
to

elimination tree

* Nested Dissection = partition right-hand-sides into 3 sets (a, b, ¢);
*f,=a+c+b=606, =a+b;

12/19

Flat Tree Algorithm

Intuition based on a simple 2D example:

def &h i J kI

x| x X [% Tlu11]
X[% X Tlu12]

f FIF f uy
X | X X | % Tlu1]
X [% X[X | T[ug2]

f FIF £l u2

FIf|FfIX|X|X|Ff|Ff]|f]| U0

2D physical domain structure of B

elimination tree

* Nested Dissection = partition right-hand-sides into 3 sets (a, b, ¢);
*f,=a+c+b=606, =a+b;

— Top-down approach + local optimisation for the nodes at the
current layer in the tree.

12/19

Results on the Flat Tree

flops: normalized with the dense case; Ordering: Nested Dissection;

Normalized flops

0.6

|_TP mm NT == PO o FT 'LBI

0.5

0.4

0.3

0.2

0.1

0.0

1 Strategies:
® TP = tree pruning only;

® |NT = tree pruning + node
interval+natural order;

® PO = tree pruning+node
interval+Postorder;

1 ® FT = tree pruning+node interval+Flat
Tree;

] ® LB = Lower Bound (A pmjpn).

153
sei70m sei50m
Matrices

E1l

— Still 28% above the lower bound on

one case.

13/19

Adapted blocking technique

Objective: decrease A with the creation of a minimum number of
groups.

2

x|~

S
X [

=

5
T

ST T

U1y

ur2 X
ui3 f

u1g flflf
s [FIFIXIX[FIF

Computations on explicit zeros still exist.

14/19

Adapted blocking technique

Objective: decrease A with the creation of a minimum number of
groups.

ELITTTTTI TT X)~
EITTTTT XTI TT e

BEXCXITTITTTTTTT Jw

B TTHE X TTTTTT]e

LT TR XS T T B IX-
XX T T TS T 1T Jo

A min may be obtain by creating nrhs groups:

e however, not performant (loss of BLAS 3 operations);

14/19

Adapted blocking technique

Objective: decrease A with the creation of a minimum number of
groups.

=)
X[X

Apin may be obtain by creating nrhs groups:
e however, not performant (loss of BLAS 3 operations);

e need to find some property to group right hand sides together
without introducing extra operations.

14/19

Adapted blocking technique

Principle (1): group sets of right hand sides that belong to different
subdomains (starting with root separator).

T

2D Domain structure of B

e non-zero structure of a and ¢ are disjoint;

15/19

Adapted blocking technique

Principle (2): extract set of right hand sides that belong to both
subdomains (starting with root separator).

2D Domain structure of B

e non-zero structure of a and ¢ are disjoint;

e whereas b may have the non-zero structure of both a and c;

15/19

Adapted blocking technique

Principle (2): extract set of right hand sides that belong to both
subdomains (starting with root separator).

T]

2D Domain structure of B

e non-zero structure of a and ¢ are disjoint;
e whereas b may have the non-zero structure of both a and c;

e thus, we extract them.

15/19

Comparison with a regular blocking strategy

Our Blocking algorithm (BLK): Regular blocking algorithm
(REG):
e greedy algorithm to choose next
group; e split in chunk of regular size;
e stop condition: A < Ay, e stop condition: A < Ay,
where Aoy = 1.01A . where Aoy = 1.01A p.

nb groups | 5Hz | 7THz | E1l E3
REG 328 | 265 | 363 | 258
BLK 3 3 4 4

Table : Number of groups created for each strategy with a tolerance such that
A < 1.01 X Ayy-

16/19

Conclusion

Achievements:
e implementation of two heuristics (permutation, blocking);
* 90% decrease in flops by exploiting sparsity;

e Up to 40% decrease in time for forward solve w.r.t. INT strategy
and Nested Dissection ordering (sequential).

Perspectives:

e adapt the Flat Tree algorithm to unbalanced trees;
e parallelism and sparsity aspects of Flat Tree permutation;
e extend to more general test cases.

17/19

Acknowledgements

e LIP laboratory for access to the machines;

e EMGS et SEISCOPE for providing test cases;

e This work was performed within the frameworks of both the
MUMPS consortium and the LABEX MILYON
(ANR-10-LABX-0070) of Université de Lyon, within the program
" Investissements d'Avenir” (ANR-11-IDEX-0007) operated by the
French National Research Agency (ANR).

18/19

Thanks!

Questions?

	Exploitation of sparse right-hand-sides
	Context of study
	Tree pruning
	Exploitation of subintervals of columns at each node

	Minimizing the number of operations
	Permutation of columns
	Adapted blocking technique

	Conclusion

