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Introduction

E., BLR STRATEGY 2, R =0, t50 = 107

Linear systems of equations :

Ax = b, A is sparse

Solve phase (Ly = b, Ux = y) may
be critical.

Application coming from Helmholtz or Maxwell equations:

name | n (million) nrhs nnz/nrhs | Taeo Tsolve
sei70m 2.9 | 2302 587 1258 1267
sei50m 7.1 | 2302 486 6289 2985
E1 0.33 | 8000 9.8 55.2 291

E3 2.8 | 8000 7.5 1951 5610

Table : Characteristics of matrices and right-hand-sides.
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Introduction

Objectives:
e focus on the forward solution phase Ly = b;
e exploit sparsity of right-hand-sides;

e limit the number of operations (A);
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Overview

Exploitation of sparse right-hand-sides
Context of study
Tree pruning
Exploitation of subintervals of columns at each node

Minimizing the number of operations
Permutation of columns
Adapted blocking technique

Conclusion

4/19



Context: analysis phase

Ordering: reorder variables of the matrix A to reduce fill-in and build
elimination tree:

e Nested Dissection = build tree of separators.
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Forward solution process

s ®

Block operations:
® y Ll_llb]_
* by« by — Loayr

#flops for node u is given by:

Fu =2 x (#entries in L1 + Lp1)
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Forward solution process

s ®

Block operations:
® y Ll_llb]_
* by« by — Loayr

Total #flops:

#flops for node u is given by:

Fu =2 x (#entries in L1 + Lp1)

A=>"F,

ueT
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Forward solution process

Forward solve phase processes the tree from bottom to top:

uy X : initial non-zeros
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Forward solution process

Forward solve phase processes the tree from bottom to top:

ur (f X : initial non-zeros
f : filled non-zeros

Computation follows paths in the tree T [Gilbert, 1994].

— Tree pruning (T — T,(b)) to reduce computation:

A= > F,

ue Ty(b)
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Exposition of padded zeros

When B is a matrix with multiple columns:
e use of BLAS 3 operations for efficiency;
e To(B) = Tp(Bi), where B is column i of B;
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What are the possible alternatives ?

Indirections: rebuilding data structures;

Sequential: solution phase on each column
= optimal (A = Apn) but not efficient;
Regular blocking: how to build blocks ?

o minimal access to factors (out of core) [Amestoy et al.,SISC,2012];
o minimal number of operations (in core) [Yamazaki et al.,2013];

Exploitation of subintervals of columns at each node [Amestoy et
al.,SISC,2015].
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Work on node subintervals

Let ue T:

Active columns at node u

Zy={i€e{l,....m}|ue TyBi)}

Subinterval is given by:
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Work on node subintervals

Let ue T:

Active columns at node u

Zy={i€e{l,....m}|ue TyBi)}

Subinterval is given by:

123456 142563 )
. up [X 1= | 1=
6, = max(Z,) —min(Z,) + 1 w TR -1 [ 0 =1
u3 [F f 03 =4 [flf 03 =2

us X 5 = X 5 =

; = = U 0 = O =
Example: 9“1 1, 9”10 6 > [ETETIEE 05 = FIFIIE 05 =
ug [X X|0g =6 [X X[ 10 =5

ug 09 = 999:

_ u1o[f fl010 = 6 f 10=05

A_ § Fuxeu u11 X 611 =1 X011 =1

uyp = 312—% X 212—:1”

T,.(B u13 x| [f] 1013 = fl X013 =

ueTy(B) ua[FIFLIFIFI00 = 6 [FI T TFIFLF014 = 6
u1s[XIFIFIFIXIF615 = 6 [XIFLFIXLELFO15 =

— A is extremely dependant on column permutation.
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Problem statement & algorithms

Goal is to minimize or decrease A =3, .1 gy Fu X O
e find permutation o of columns to decrease 6,,Vu € T,(B);

e in case of blocking, minimize the number of blocks.
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Problem statement & algorithms

Goal is to minimize or decrease A =3, .1 gy Fu X O
e find permutation o of columns to decrease 6,,Vu € T,(B);

e in case of blocking, minimize the number of blocks.

Proposed heuristics:
e based on geometrical properties (Nested Dissection);
e generalization possible thanks to pruned tree T,(B).

11/19



Flat Tree Algorithm

Intuition based on a simple 2D example:
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* Nested Dissection = partition right-hand-sides into 3 sets (a, b, ¢);

e f0,=a+c+b
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Flat Tree Algorithm

Intuition based on a simple 2D example:
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elimination tree

* Nested Dissection = partition right-hand-sides into 3 sets (a, b, ¢);
*f,=a+c+b=606, =a+b;

— Top-down approach + local optimisation for the nodes at the
current layer in the tree.
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Results on the Flat Tree

flops: normalized with the dense case; Ordering: Nested Dissection;

Normalized flops
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® TP = tree pruning only;
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interval+natural order;

® PO = tree pruning+node
interval+Postorder;

1 ® FT = tree pruning+node interval+Flat
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— Still 28% above the lower bound on

one case.
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Adapted blocking technique

Objective: decrease A with the creation of a minimum number of
groups.
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Computations on explicit zeros still exist.
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Adapted blocking technique

Objective: decrease A with the creation of a minimum number of
groups.
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A min may be obtain by creating nrhs groups:

e however, not performant (loss of BLAS 3 operations);
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Adapted blocking technique

Objective: decrease A with the creation of a minimum number of
groups.

=)
X[ X

Apin may be obtain by creating nrhs groups:
e however, not performant (loss of BLAS 3 operations);

e need to find some property to group right hand sides together
without introducing extra operations.
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Adapted blocking technique

Principle (1): group sets of right hand sides that belong to different
subdomains (starting with root separator).

T

2D Domain structure of B

e non-zero structure of a and ¢ are disjoint;
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Adapted blocking technique

Principle (2): extract set of right hand sides that belong to both
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Adapted blocking technique

Principle (2): extract set of right hand sides that belong to both
subdomains (starting with root separator).

T ]

2D Domain structure of B

e non-zero structure of a and ¢ are disjoint;
e whereas b may have the non-zero structure of both a and c;

e thus, we extract them.
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Comparison with a regular blocking strategy

Our Blocking algorithm (BLK): Regular blocking algorithm
(REG):
e greedy algorithm to choose next
group; e split in chunk of regular size;
e stop condition: A < Ay, e stop condition: A < Ay,
where Aoy = 1.01A . where Aoy = 1.01A p.

nb groups | 5Hz | 7THz | E1l E3
REG 328 | 265 | 363 | 258
BLK 3 3 4 4

Table : Number of groups created for each strategy with a tolerance such that
A < 1.01 X Ayy-
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Conclusion

Achievements:
e implementation of two heuristics (permutation, blocking);
* 90% decrease in flops by exploiting sparsity;

e Up to 40% decrease in time for forward solve w.r.t. INT strategy
and Nested Dissection ordering (sequential).

Perspectives:

e adapt the Flat Tree algorithm to unbalanced trees;
e parallelism and sparsity aspects of Flat Tree permutation;
e extend to more general test cases.
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Thanks!

Questions?
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