Direct solution of sparse systems of linear equations with sparse multiple right-hand sides

P. $\mathsf{Amestoy}^1$, $\mathsf{J.-Y}$. $\mathsf{L'Excellent}^2$, G . Moreau^2 , 1. Université de Toulouse INPT and IRIT, 2. Université de Lyon, Inria and LIP-ENS Lyon, gilles.moreau@ens-lyon.fr

Sparse Days, Cerfacs, September 6-8, 2017

Introduction

Linear systems of equations :

Ax = b, A is sparse Solve phase (Ly = b, Ux = y) may be critical.

Application coming from Helmholtz or Maxwell equations:

name	n (million)	nrhs	nnz/nrhs	T _{facto}	T _{solve}
sei70m	2.9	2302	587	1258	1267
sei50m	7.1	2302	486	6289	2985
E1	0.33	8000	9.8	55.2	291
E3	2.8	8000	7.5	1951	5610

Table: Characteristics of matrices and right-hand-sides.

Introduction

Objectives:

- focus on the forward solution phase Ly = b;
- exploit sparsity of right-hand-sides;
- limit the number of operations (Δ) ;

Overview

Exploitation of sparse right-hand-sides
Context of study
Tree pruning

Exploitation of subintervals of columns at each node

Minimizing the number of operations Permutation of columns Adapted blocking technique

Conclusion

Ordering: reorder variables of the matrix *A* to reduce fill-in and build elimination tree:

• Nested Dissection ⇒ build tree of separators.

3D physical domain (cube)

Ordering: reorder variables of the matrix *A* to reduce fill-in and build elimination tree:

• Nested Dissection ⇒ build tree of separators.

3D physical domain (cube)

separator tree

Ordering: reorder variables of the matrix *A* to reduce fill-in and build elimination tree:

• Nested Dissection ⇒ build tree of separators.

3D physical domain (cube)

separator tree

Ordering: reorder variables of the matrix *A* to reduce fill-in and build elimination tree:

• Nested Dissection ⇒ build tree of separators.

3D physical domain (cube)

separator tree

Ordering: reorder variables of the matrix A to reduce fill-in and build elimination tree:

• Nested Dissection ⇒ build tree of separators.

Ordering: reorder variables of the matrix A to reduce fill-in and build elimination tree:

• Nested Dissection ⇒ build tree of separators.

Block operations:

- $y_1 \leftarrow L_{11}^{-1}b_1$
- $b_2 \leftarrow b_2 L_{21}y_1$

$$\mathcal{F}_u = 2*(\#\text{entries in } L_{11} + L_{21})$$

Block operations:

- $y_1 \leftarrow L_{11}^{-1}b_1$
- $b_2 \leftarrow b_2 L_{21}y_1$

$$\mathcal{F}_u = 2*(\#\text{entries in } L_{11} + L_{21})$$

Block operations:

- $y_1 \leftarrow L_{11}^{-1}b_1$
- $b_2 \leftarrow b_2 L_{21}y_1$

$$\mathcal{F}_u = 2*(\# \text{entries in } L_{11} + L_{21})$$

Block operations:

- $y_1 \leftarrow L_{11}^{-1}b_1$
- $b_2 \leftarrow b_2 L_{21}y_1$

$$\mathcal{F}_u = 2*(\#\text{entries in } L_{11} + L_{21})$$

Block operations:

- $y_1 \leftarrow L_{11}^{-1}b_1$
- $b_2 \leftarrow b_2 L_{21}y_1$

$$\mathcal{F}_u = 2*(\#\text{entries in } L_{11} + L_{21})$$

Block operations:

•
$$y_1 \leftarrow L_{11}^{-1}b_1$$

•
$$b_2 \leftarrow b_2 - L_{21}y_1$$

$$\mathcal{F}_u = 2*(\# entries in \ \mathit{L}_{11} + \mathit{L}_{21})$$

Total
$$\#flops$$
:

$$\Delta = \sum_{u \in \mathcal{T}} \mathcal{F}_u$$

Forward solve phase processes the tree from bottom to top:

Computation follows paths in the tree T [Gilbert, 1994].

 \hookrightarrow **Tree pruning** $(T \to T_p(b))$ to reduce computation:

$$\Delta = \sum_{u \in \mathcal{T}_p(b)} \mathcal{F}_u$$

Exposition of padded zeros

When B is a matrix with multiple columns:

- use of BLAS 3 operations for efficiency;
- $T_p(B) = \bigcup T_p(B_i)$, where B_i is column i of B;

But still, extra computations are done ...

$$\Delta = nrhs \times \sum_{u \in T_p(B)} \mathcal{F}_u$$

Exposition of padded zeros

When B is a matrix with multiple columns:

- use of BLAS 3 operations for efficiency;
- $T_p(B) = \bigcup T_p(B_i)$, where B_i is column i of B;

But still, extra computations are done ...

$$\Delta = nrhs imes \sum_{u \in T_p(B)} \mathcal{F}_u$$

Solutions

What are the possible alternatives?

- Indirections: rebuilding data structures;
- Sequential: solution phase on each column \Rightarrow optimal ($\Delta = \Delta_{min}$) but not efficient;
- Regular blocking: how to build blocks?
 - o minimal access to factors (out of core) [Amestoy et al., SISC, 2012];
 - o minimal number of operations (in core) [Yamazaki et al.,2013];
- Exploitation of subintervals of columns at each node [Amestoy et al.,SISC,2015].

Solutions

What are the possible alternatives?

- Indirections: rebuilding data structures;
- Sequential: solution phase on each column \Rightarrow optimal ($\Delta = \Delta_{min}$) but not efficient;
- Regular blocking: how to build blocks?
 - minimal access to factors (out of core) [Amestoy et al., SISC, 2012];
 - o minimal number of operations (in core) [Yamazaki et al.,2013];
- Exploitation of subintervals of columns at each node [Amestoy et al.,SISC,2015].

Let $u \in T$:

Active columns at node u

$$Z_u = \{i \in \{1, \dots, m\} \mid u \in T_p(B_i)\}$$

Subinterval is given by:

$$heta_u = \mathsf{max}(Z_u) - \mathsf{min}(Z_u) + 1$$

Let $u \in T$:

Active columns at node u

$$Z_u = \{i \in \{1, \dots, m\} \mid u \in T_p(B_i)\}$$

Subinterval is given by:

$$\theta_u = \max(Z_u) - \min(Z_u) + 1$$

Example:
$$\theta_{u_1} = 1$$
, $\theta_{u_{10}} = 6$

Let $u \in T$:

Active columns at node u

$$Z_u = \{i \in \{1,\ldots,m\} \mid u \in T_p(B_i)\}$$

Subinterval is given by:

$$\theta_u = \max(Z_u) - \min(Z_u) + 1$$

Example:
$$\theta_{u_1}=1$$
, $\theta_{u_{10}}=6$

$$\Delta = \sum_{u \in T_p(B)} \mathcal{F}_u \times \theta_u$$

Let $u \in T$:

Active columns at node u

$$Z_u = \{i \in \{1,\ldots,m\} \mid u \in T_p(B_i)\}$$

Subinterval is given by:

$$\theta_u = \max(Z_u) - \min(Z_u) + 1$$

Example:
$$\theta_{u_1}=1$$
, $\theta_{u_{10}}=6$

$$\Delta = \sum_{u \in T_p(B)} \mathcal{F}_u \times \theta_u$$

 $\hookrightarrow \Delta$ is extremely dependant on column permutation.

Problem statement & algorithms

Goal is to minimize or decrease $\Delta = \sum_{u \in T_p(B)} \mathcal{F}_u \times \theta_u$:

- find permutation σ of columns to decrease $\theta_u, \forall u \in T_p(B)$;
- in case of blocking, minimize the number of blocks.

Problem statement & algorithms

Goal is to minimize or decrease $\Delta = \sum_{u \in T_p(B)} \mathcal{F}_u \times \theta_u$:

- find permutation σ of columns to decrease $\theta_u, \forall u \in T_p(B)$;
- in case of blocking, minimize the number of blocks.

Proposed heuristics:

- based on geometrical properties (Nested Dissection);
- generalization possible thanks to pruned tree $T_p(B)$.

Flat Tree Algorithm

Intuition based on a simple 2D example:

- Nested Dissection \Rightarrow partition right-hand-sides into 3 sets (a, b, c);
- $\theta_{u_1} = a + c + b$

Flat Tree Algorithm

Intuition based on a simple 2D example:

- Nested Dissection \Rightarrow partition right-hand-sides into 3 sets (a, b, c);
- $\theta_{u_1} = a + c + b \Rightarrow \theta_{u_1} = a + b$;

Flat Tree Algorithm

Intuition based on a simple 2D example:

- Nested Dissection \Rightarrow partition right-hand-sides into 3 sets (a, b, c);
- $\theta_{u_1} = a + c + b \Rightarrow \theta_{u_1} = a + b$;
- \hookrightarrow **Top-down** approach + **local optimisation** for the nodes at the current layer in the tree.

Results on the Flat Tree

flops: normalized with the dense case; Ordering: Nested Dissection;

Strategies:

- TP = tree pruning only;
- INT = tree pruning + node interval+natural order;
- PO = tree pruning+node interval+Postorder;
- FT = tree pruning+node interval+Flat Tree;
- LB = Lower Bound (Δ_{min}) .

 \hookrightarrow Still 28% above the lower bound on one case.

Objective: decrease Δ with the creation of a minimum number of groups.

Computations on explicit zeros still exist.

Objective: decrease Δ with the creation of a minimum number of groups.

 Δ_{min} may be obtain by creating *nrhs* groups:

• however, not performant (loss of BLAS 3 operations);

Objective: decrease Δ with the creation of a minimum number of groups.

 Δ_{min} may be obtain by creating *nrhs* groups:

- however, not performant (loss of BLAS 3 operations);
- need to find some property to group right hand sides together without introducing extra operations.

Principle (1): group sets of right hand sides that belong to different subdomains (starting with root separator).

non-zero structure of a and c are disjoint;

Principle (2): extract set of right hand sides that belong to both subdomains (starting with root separator).

- non-zero structure of a and c are disjoint;
- whereas b may have the non-zero structure of both a and c;

Principle (2): extract set of right hand sides that belong to both subdomains (starting with root separator).

- non-zero structure of a and c are disjoint;
- whereas b may have the non-zero structure of both a and c;
- thus, we extract them.

Comparison with a regular blocking strategy

Our Blocking algorithm (BLK):

- greedy algorithm to choose next group;
- stop condition: $\Delta < \Delta_{tol}$, where $\Delta_{tol} = 1.01 \Delta_{min}$.

Regular blocking algorithm (REG):

- split in chunk of regular size;
- stop condition: $\Delta < \Delta_{tol}$, where $\Delta_{tol} = 1.01 \Delta_{min}$.

nb groups	5Hz	7Hz	E1	E3
REG	328	255	363	258
BLK	3	3	4	4

Table : Number of groups created for each strategy with a tolerance such that $\Delta < 1.01 \times \Delta_{tol}$.

Conclusion

Achievements:

- implementation of two heuristics (permutation, blocking);
- 90% decrease in flops by exploiting sparsity;
- Up to 40% decrease in time for forward solve w.r.t. INT strategy and Nested Dissection ordering (sequential).

Perspectives:

- adapt the Flat Tree algorithm to unbalanced trees;
- parallelism and sparsity aspects of Flat Tree permutation;
- extend to more general test cases.

Acknowledgements

- LIP laboratory for access to the machines;
- EMGS et SEISCOPE for providing test cases;
- This work was performed within the frameworks of both the MUMPS consortium and the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Thanks! Questions?