
Factorization Based Sparse Solvers and
Preconditioners for Exascale

X. Sherry Li
xsli@lbl.gov

Lawrence Berkeley National Laboratory

Sparse Days, CERFACS, September 6-8, 2017

Acknowledgments

This research was supported by the Exascale Computing
Project (http://www.exascaleproject.org), a joint project of the
U.S. Department of Energy’s Office of Science and National
Nuclear Security Administration, responsible for delivering a

capable exascale ecosystem, including software,
applications, and hardware technology, to support the

nation’s exascale computing imperative.

Project Number: 17-SC-20-SC

www.ExascaleProject.org

ECP system and funded projects

Capable exascale ecosystem in 2021
Delivers 50× the performance of today’s 20 PF systems, supporting
applications that deliver high- fidelity solutions in less time and
address problems of greater complexity
Operates in a power envelope of 20–30 MW
Is sufficiently resilient (perceived fault rate: ≤ 1/week)
Includes a software stack that supports a broad spectrum of
applications and workloads

Funded projects
Applications: 25
Co-design centers: 5
Software technology: 66
Hardware technology: working with vendors

9/7/17 3

“Factorization based sparse solvers and preconditioners”

“Software Technology” à “Mathematical and Scientific Libraries
and Framework”

STRUMPACK : http://portal.nersc.gov/project/sparse/strumpack/
SuperLU : http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

Collaborating with other ECP ST projects:
xSDK4ECP (Mike Heroux, Lois McInnes, et al.)

• Interoperability among numerical libraries, easy plug-in in
applications.

Pagoda Project (Scott Baden, et al.)
• UPC++ programming to speed up fine grained, asynchronous

communication and computation.
Autotuning Compiler Technology (Mary Hall, et al.)

• Search for best parameters setting to achieve optimal
performance, dependent on applications and machines.

9/11/17 4

Goals of math libraries

Explore new algorithms that require lower arithmetic complexity,
communication and synchronization, faster convergence rate

STRUMPACK: “inexact” direct solver, preconditioner, based on
hierarchical low rank structures: HSS, HODLR, etc.
SuperLU: new 3D algorithm to reduce communication

Refactor existing codes and implement new codes for current and
next-generation machines (exascale in 2021)

Fully exploit manycore node architectures
• Vectorization, multithreading, …
• GPU accelerator

Reduce communication and synchronization

5

Sparse factorization for linear
systems

Two algorithm variants

9/7/17 6

1
2

3
4

6
7

5L

U

L

U

L
U

L
U

Tree based
Multifrontal: STRUMPACK

S(j) ß S(j) - ((D (k1) +D (k2)) + …)

1

6

9

3

7 8

4 52

DAG based
Supernodal: SuperLU

S(j) ß ((S(j) - D (k1)) - D (k2)) - …

STRUMPACK “inexact” direct solver

• Baseline is a sparse multifrontal direct solver.

• In addition to structural sparsity, further apply data-sparsity with
low-rank compression:

• O(N logN) flops, O(N) memory for 3D elliptic PDEs.

• Hierarchical matrix algebra generalizes Fast Multipole

• Diagonal block (“near field”) exact; off-diagonal block (“far
field”) approximated via low-rank compression.

• Hierarchically semi-separable (HSS), HODLR, etc.

• Nested bases + randomized sampling to achieve linear
scaling.

• Applications: PDEs, BEM methods, integral equations, machine
learning, and structured matrices such as Toeplitz, Cauchy
matrices.

9/11/17 7

U1

U2 U3 = U1
U2

U3
 0

0
V1

U6 V3B36
T

D1

D2

D4

D5

V2

U5
V4

U4
V5

Big

A≈

D1 U1B1V2
T

U2B2V1
T D2

"

#

$
$
$

%

&

'
'
'

U3B3V6
T

U6B6V3
T D4 U4B4V5

T

U5B5V4
T D5

"

#

$
$
$

%

&

'
'
'

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

P. Ghysels, G. Chavez, C. Gorman, F.-H. Rouet, XL
Cluster tree

Randomized sampling to reveal rank

Approximate range of A:
1. Pick random matrix Ωnx(k+p), k target rank, p small, e.g. 10
2. Sample matrix S = A Ω, with slight oversampling p
3. Compute Q =ON-basis(S) via rank-revealing QR

Accuracy: [Halko, Martinsson, Tropp, ‘11]

• On average: 𝔼 𝐴	 − 𝑄𝑄∗𝐴 = 1 + * +,-�

-/0
min 𝑚, 𝑛� 𝜎+,0

• Probabilistic bound: with probability ≥ 1 − 3 : 10/-	,
𝐴	 − 𝑄𝑄∗𝐴 ≤ (1 + 9 𝑘 + 𝑝	� min 𝑚, 𝑛�)	𝜎+,0

(in	2-norm)

Benefits:
• Matrix-free, only need AΩ, can be faster: FMM, FFT, HSS, …
• When embedded in frontal solver, simplies ’extend-add’

9/11/17 8

RS Simplifies extend-add in MF+HSS

9/11/17 9

“extend-merge” of random/sample matrices: extend is done only for rows

Traditional extend-add

New: need to sample frontal matrix, no need to form dense 𝐹
	𝐹	Ω = (A[.] + HSS + low-rank)	Ω

= A[.]: Ω	+ HSS: Ω + low-rank: Ω

HSS compression via RS

[Martinsson ‘11, Xia ‘13]
Ω random matrix, with d = r + p columns

r is estimated maximum rank, p is oversampling parameter
Sampling of matrix A

𝑆J = 𝐴Ω, columns of 𝑆J span the column space of A
𝑆K = 𝐴∗Ω, columns of 𝑆Jspan the row space of A

Only sample off-diagonal blocks (Hankel blocks):
Block diagonal matrix at level ℓ: 𝐷(ℓ) = 𝑑𝑖𝑎𝑔(𝐷RS, 𝐷RT, … 𝐷RU)

𝑆(ℓ) = (𝐴 − 𝐷(ℓ))Ω = 𝑆 − 𝐷(ℓ)Ω

Practical issues:
Need 𝜀-rank: 𝐴 − 𝑄𝑄∗𝐴 ≤ 𝜀
Flat singular spectrum

9/7/17 10

Adaptive sampling is essential for robustness

9/7/17 11

Increase sample size d, build Q incrementally
[S1 S2 S3 …]

Q ß []; S1 ß A Ω1; i ß 1;
WHILE (error large) {

Qi ß QR(Si) // Orthogonalize within current block
Q ß [Q Qi]
Si+1 ß A Ωi+1 // New samples
Si+1 ß (I −	QQ*) Si+1 // Orthogonalize against previous Q
Compute error;
i ß i+1

}

Recall …
• Only have S = 𝐴Ω
• At level ℓ:

𝑆(ℓ) = (𝐴 − 𝐷(ℓ))Ω = 𝑆 − 𝐷(ℓ)Ω

Adaptive sampling in HSS tree

9/11/17 12

level L

level L-1

Q1 Q2

Q1 S2

U

U U

PC

CC

Node state:
U – untouched
C – compressed
PC – partially compressed

Stochastic error estimation: for random 𝑥, 𝑆 = 𝐴𝑥

𝔼 𝑆 Y
Y =

1
𝑛 𝐴 Z

Y

𝔼 𝐼 − 𝑄𝑄∗ 𝑆 Y
Y�

𝔼 𝑆 Y
Y� =

(𝐼 − 𝑄𝑄∗)𝐴 Z
𝐴 Z

Stopping criteria: [Q1 S2]

𝑚𝑒𝑎𝑛+ 𝐼 − 𝑄1𝑄1∗ 𝑆2(: , 𝑘) Y
Y�

𝑚𝑒𝑎𝑛+ 𝑆2(: , 𝑘) Y
Y� =

𝐼 − 𝑄1𝑄1∗ 𝑆2 Z
𝑆2 Z

≤ 𝜀

Cost: one reduction to compute norms of the sample vectors.

Adaptive sampling – cont.

9/7/17 13

Adaptivity example – decay singular value

9/11/17 14

𝐴 = 𝛼𝐼 + 𝑈𝐷𝑉∗, 𝑈, 𝑉	𝑟𝑎𝑛𝑘 = 120, 𝐷𝑘, 𝑘	=2
/Y*(+/0)/J

Adaptivity example – constant singular value

9/11/17 15

𝐴 = 𝛼𝐼 + 𝑈𝐷𝑉∗, 𝑈, 𝑉	𝑟𝑎𝑛𝑘 = 120, 𝐷𝑘, 𝑘	=1

Performance scaling

Matrix from SuiteSparse Matrix Collection:
Flan_1565 (N= 1,564,794, NNZ = 114,165,372)

Flat MPI on nodes with 2 12-core Intel Ivy Bridge, 64GB (NERSC Edison)
Fill-reducing reordering (ParMetis) has poor scalability, quality decreases

9/7/17 16

SuperLU direct solver – communication pattern

9/7/17 17

0

3 4

0 1 2

3 4 5 3

0 2 0 1

3 4 5 3 4 5

0 1 2 0 1 2 0

1

1

2

2

5

0 1

4

0 1 2 0

3 4 5

2

5

0

0

3

3

3

look−ahead window

• Graph at step k+1 differs from step k
• Panel factorization on critical path

XL, J. Demmel, J. Gilbert, L. Grigori, Y. Liu, P. Sao, Meiyue Shao, I. Yamazaki

Panel Factorization Schur-complement Update

9/7/17 18

Final reduction: Schur complement of common ancestor
C = C1 + C2 + …

[Piyush Sao’s thesis, Georgia Tech., 2017]

3D Sparse LU: cost of communication

9/7/17 19

3D performance
32 matrices
Cori at NERSC:

• 16 Haswell nodes = 512 cores
• 128 MPI ranks x 4 OMP threads

Replication factor c = 1, 2, 4, 8

9/11/17 20

ldoor: nearly 4x faster, c = 8
(4x4, 8)

Local computation

9/11/17 21

Loop through N steps: (Gaussian Elimination)
FOR (k = 1, N) {

1) Gather sparse blocks A(:, k) and A(k,:) into dense work[]
2) Call dense GEMM on work[]
3) Scatter work[] into remaining sparse blocks

}

}

Schur complement update on each MPI rank

Intel Xeon Phi: Knights Landing

Cray XC40 supercomputer at NERSC:
• 9688 KNL nodes: single socket
• 2388 Haswell nodes: 2 sockets X 16 cores

22

KNL node

• 72 cores @ 1.3 GHz, self hosted
• 2 cores form a tile
• 4 hardware threads per core (272 threads)
• 2 512-bit (8 doubles) vector units (SIMD)

Memory hierarchy
• L1 cache per core, 64 KB
• L2 cache per tile (2 cores share), 1MB
• 16 GB MCDRAM, >400 GB/s peak bandwidth
• 96 GB DDR4, 102 GB/s peak bandwidth

SuperLU optimization on Cori KNL node (1/2)
Work with Sam Williams, Jack Deslippe, Steve Leak, Thanh Phung

Replace small independent single-threaded MKL GEMMs by large
multithreaded MKL GEMMs: 15-20% faster.
Use new OpenMP features: 10-15% faster.
• “task parallel” to reduce load imbalance
• “nested parallel for” to increase parallelism
Vectorizing Gather/Scatter: 10-20% faster.
• Hardware support: Load Vector Indexed / Store Vector Indexed

#pragma omp simd // vectorized Scatter
for (i = 0; i < b; ++i) {

nzval[indirect2[i]] = nzval[indirect[i]] - tempv[i];
}

23

SuperLU optimization on Cori KNL node (2/2)

Reduce cache misses

TLB (Translation Look-aside Buffer): a small cache for mapping virtual
address to physical address
• Large page requires smaller number of TLB entries

Alignment during malloc
• Page-aligned for large arrays à reduce TLB read frequency
• CacheLine-aligned malloc for threads-shared data structures à reduce

L1 read frequency, avoid false sharing

24

Roofline model (S. Williams)
basic concept

Is the code computation-bound or memory-bound?
Synthesize communication, computation, and locality into a single
visually-intuitive performance figure using bound analysis

Assume perfect overlap computation and communication w/ DRAM
Arithmetic Intensity (AI) is computed based on DRAM traffic
E.g.: DGEMM AI = 2*M*N*K / (M*K + K*N + 2*M*N) / 8

Time is the maximum of the time required to transfer the data and
the time required to perform the floating point operations.

25

Attainable
GFLOP/s = min

Peak GFLOP/s

AI * Peak GB/s

GEMM: non-uniform block size, non-square, many small

9/11/17 26

GEMM {m, n} dimensions GEMM {k, n} dimensions

Arithmetic Intensity DGEMMs performance profile

Single node improvement

up to 68% faster

9/11/17 27

nlpttk80, n = 1.1M, nnz = 28M
Ga19As19H42, n = 1.3M, nnz = 8.8M
RM07R, n = 0.3M, nnz = 37.5M

Summary

Explore new algorithms that require lower arithmetic complexity,
communication, synchronization

STRUMPACK: “inexact” direct solver, preconditioner, based on
hierarchical low rank structures: HSS, HODLR, etc.
SuperLU: new 3D algorithm to reduce communication.

Refactor existing codes and implement new codes for current and
next-generation machines (exascale in a few years)

Fully exploit manycore node architectures
• Vectorization, multithreading, …
• GPU accelerator

Reduce communication and synchronization

Quaterly release of software

28

THANK YOU

SuperLU tunable parameters

9/11/17 30

0

3 4

0 1 2

3 4 5 3

0 2 0 1

3 4 5 3 4 5

0 1 2 0 1 2 0

1

1

2

2

5

0 1

4

0 1 2 0

3 4 5

2

5

0

0

3

3

3

look−ahead window

See the inquiry function SRC/sp_ienv.c

• Maximum supernode size: (env NSUP, range: 50 - 300)

• Larger à bigger k-dimension in GEMM, but less inter-
task parallelism, longer critical path.

• Relaxed supernode size: (env NREL, range: 10-40)

• Larger à better GEMM flop rate, but more zeros stored,
more flops.

• Pipeline depth. (options->num_lookaheads, range: 5-20)

• Reordering options: ParMetis, Min-degree, (options-
>ColPerm, {0, 1, 2, 3, 4, 5}, see colperm_t in
superlu_enum_consts.h)

• Affects fill-ins, block size, flop count.

• # threads/process count. (env OMP_NUM_THREADS)

Cori/KNL timing: Matrix nlpttk80, n = 1.1M, nnz = 28M

9/11/17 31

1 node = 64 cores 8 nodes = 512 cores

MPI, Threads 32 p,
2 t

16 p,
4 t

256 p,
2 t

128 p,
4 t

64 p,
8 t

Panel factorization 4.87
1.61, 3.26

6.48
3.44, 3.04

1.60
1.21, .39

1.31
.82, .49

2.59
2.01, .58

Schur
Gather
GEMM
Scatter

43.61
2.64

22.15
(1.3 TF)

18.01

45.24
2.78
22.41

18.79

7.80
1.17
3.49

2.60

8.43
1.31
3.60

2.77

9.75
1.63
3.95

3.34

Total factorization
time
(% un-timed comm.)

64.44

(25%)

71.34

(27%)

31.94

(71%)

38.03

(74%)

28.47

(57%)

STRUMPACK as preconditioner: Setup & Solve

For memchip, solver acts as direct method (small frontal matrices)
AMG very efficient for many PDE based systems

9/11/17 32

 0

 50

 100

 150

 200

 250

 300

 350

 400
SP Ja
c

BJ
ac

PI
LU

T

BA
M
G

SP
AI

ru
nt

im
e

(s
)

351

102726

24535

47646

616

74159

Hook1498

 0

 1

 2

 3

 4

 5

 6

 7

SP Ja
c

PI
LU

T

BA
M
G

setup
solve

1
618 48

45

memchip

 0

 20

 40

 60

 80

 100

 120

SP

BJ
ac

PI
LU

T

BA
M
G

SP
AI

4
1925

17175

546

11104

MLGeer

Strong scaling

Communication bottleneck
Lacking parallelism in 2D process grid

9/11/17 33

