
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

A	Parallel	Hierarchical	Low-Rank	Solver	
for	General	Sparse	Matrices

Erik	Boman,	Chao	Chen,	Eric	Darve,	Siva	
Rajamanickam,	Ray	Tuminaro,	

Sparse	Days,	Sept.	2017 1

2

Hierarchical	Low-Rank	(HLR)	Matrices	
and	Solvers

§ Low-rank	structure	is	common	in	applications
§ Hierarchical	(low-rank)	matrices	and	solvers	are	”hot”

§ Early	work	by	Hackbusch,	1999-2000	(H-matrix)
§ HSS	and	BLR	formats	most	popular	now

§ Key	insight:	Many	matrices	have	useful	(rank)	structure
§ Blocks	far	from	diagonal	can	be	approximated	using	low-rank

§ Holds	for	elliptic	PDEs,	some	other	(e.g.,	advection-diffusion	problems)
§ Similar	intuition	as	for	Fast	Multipole	Methods	(FMM)
§ May	also	apply	to	data	science	(e.g.	covariance	matrix)

§ Our	goals
§ Develop	new	solver/preconditioner	with	less	memory	(and	flops)
§ Speed	up	sparse	direct	solvers	(high	accuracy)
§ Use	as	preconditioner	(low	accuracy)

3

Low-Rank	Structure

§ Low-rank	structure	often	occurs	in	off-diagonal	blocks	in
§ The	matrix	A
§ The	inverse	of	A
§ The	LU	factors	of	A

§ Ex:	Hierarchical	low-rank	structure	(Figure	from	Wang	et	al.)

§ Problem:	rank	growth	in	off-diagonal	blocks
§ We	use	H2	format	(allows	further	splitting,	standard	admissibility)

A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure 21:7

Fig. 3. Pictorial illustrations of an HSS matrix, HODLR matrix, and BLR matrix.

partitioned and their off-diagonal blocks are compressed, that is,

D2k−1 = F, and Di = F|ti×ti =
(

Dc1 Uc1 Bc1 V H
c2

Uc2 Bc2 V H
c1

Dc2

)
.

However, contrary to the HSS format, the HODLR format does not rely on a nested
basis property; that is, it computes Ui and Vi from scratch at each node i, without using
the following relation:

Ui =
(

Uc1 Rc1

Uc2 Rc2

)
, Vi =

(
Vc1 Wc1

Vc2 Wc2

)
.

The HODLR approach has been embedded in a multifrontal solver for solving el-
liptic PDES [Aminfar and Darve 2014]. However, at the time of writing, no parallel
implementation is publicly available.

Another low-rank representation that has been implemented in a multifrontal solver
is the Block Low-Rank (BLR) format [Weisbecker 2013; Amestoy et al. 2015]. In this
approach, a dense matrix is partitioned using a simple 2D blocking, and every block
is compressed independently, as shown in Figure 3. The BLR format has been im-
plemented in the MUMPS multifrontal solve [Amestoy et al. 2015]. We have been
communicating with the group working on Block Low-Rank (BLR) techniques to com-
pare their approach with ours. Experiments carried out for the 3D Helmholtz problem
described in this article show that the HSS-based approach exhibits a better asymp-
totic complexity but also has a larger prefactor and a slightly lower flop-rate than
BLR [Weisbecker 2013]. Therefore, it is advantageous to use the HSS technique pre-
sented here for very large problems and larger machines, while using BLR might pay off
for small or medium-size grids. Extending this comparison to a larger set of problems
and applications is work in progress.

3. RANK PROPERTIES AND OPERATION AND MEMORY COMPLEXITIES
The complexity of HSS-structured multifrontal algorithms relies on the off-diagonal
numerical ranks of the frontal matrices. The theoretical analysis of the off-diagonal
rank bounds is still limited. Two recent studies on the intermediate Schur complements
in the factorizations of certain discretized PDEs are closely related to our method. In
the first study [Chandrasekaran et al. 2010], it is shown that, for the finite-difference
matrices discretized from constant coefficient elliptic PDEs, the off-diagonal numerical
ranks of the intermediate Schur complements are bounded by a constant for 2D prob-
lems, but grows with the number of mesh points along one side of the domain for 3D. In
another study, Engquist and Ying [2011] study the Helmholtz equation with constant
velocity field c(x) = 1. They prove that the rank grows with log k for 2D, where k is
the size of one side of the mesh. They indicate that for 3D Helmholtz, the rank grows

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 21, Publication date: May 2016.

4

The	LoRaSp/H2	Method
§ Pouransari,	Coulier,	Darve,	SISC	2017	
§ Partition	graph	via	recursive	bisection,	construct	tree
§ Eliminate	“clusters”	(blocks)	starting	at	leaf	level

§ Approximate	block	LU	factorization
§ New	“coarse”	dof	via	extended	sparsification

§ Merge	neighbors,	repeat	for	each	level	in	the	hierarchy	(bottom	up)

4

FAST HIERARCHICAL SPARSE SOLVERS 9

Fig. 3. An example of a hierarchical tree. Dashed lines show the parent-child relationships,
while solid lines are edges corresponding to sub-blocks of the matrix. The graph induced from the leaf
level is the adjacency graph of the original sparse matrix (not the extended system) with the finest
partitioning. Non-leaf nodes (shown transparent) have no interaction initially, and are reserved to
represent the well-separated interactions at level below them.

of q. Leaf nodes are adjacent i↵ they are connected in the adjacency graph of the
matrix with the finest partitioning P

l

, i.e., if the corresponding block in the matrix is
non-zero.

Definition 8. (well-separated nodes in the H-tree) Nodes p and q in an H-tree
are well-separated if M

b

(p) and M
b

(q) are not adjacent in the bisection tree. An edge
that connects two well-separated nodes is called a well-separated edge.

If the variables of the linear system correspond to points in the physical space,
for example when solving a discretized PDE, two clusters of points are well-separated
if the distance between the clusters is large relative to the diameters of the clusters.
This is similar to the concept of well-separated clusters in the fast multipole method
[49]. For a general sparse matrix, however, there is no physical information available.
Thus, the concept of distance between clusters is replaced with “distance” in the
adjacency graph.

4. Algorithm. The algorithm presented in this paper takes advantage of similar
technique as in the inverse fast multipole method (IFMM) [19]. The IFMM can
be used to compute the inverse of a dense linear system which is in the form of a
FMM matrix. All levels of the hierarchical tree in the case of the IFMM are initially
populated, since the H-tree represents a dense matrix. However, in the case of a
sparse matrix, initially there are only edges at the leaf level of the hierarchical tree
representing the local interactions (corresponding to the adjacency graph of the given
sparse system of equations with the partitioning P

l

). The tree is filled as we proceed
with the elimination process.

In Algorithm 1 the overall factorization scheme is introduced. Then, the algorithm
is repeated for all levels. Various sub-algorithms are explained afterwards. In addition,
a step by step example of the factorization process on the H-tree and the corresponding
extended matrix is presented in Appendix A. The factorization is followed by the solve
process, which involves a forward and a backward traverse through the nodes.

4.1. Initializing the H-tree. The Initialize(l) function in Algorithm 1 con-
sists of creating the H-tree with depth l, and forming edges at the leaf level using

Figures courtesy Chen et al., and Pouransari et al.

5

Algorithm:	Fine	to	Coarse	Level

5

6

Multilevel	Block	Incomplete	Factorization
§ Strong	ILU	connection:

§ LoRaSp/H2	solver	is	really	a	Block	ILU(0)	factorization	where	the	
“dropped”	blocks	are	approximated	using	low-rank	method
§ A=	LU+E,	where	E	has	low-rank	blocks	

§ We	compensate	for	the	dropped	blocks	by	adding	new	rows/columns	
to	the	matrix	(extended	sparsification)

§ Typically,	“fill”	blocks	have	low-rank	structure

§ We	eliminate	the	fine vertices	(clusters)
§ The	Schur	complement	for	remaining	coarse	vertices	is	a	much	smaller	

matrix	
§ Solve	for	this	recursively

§ Similarities	to
§ ARMS	(Saad,	2002)
§ AMG

6

7

Extended	Sparsification

§

7

8

ILU	and	Extended	Sparsification	

8

§ Note:	Fill	blocks	in	the	block	LU	factors	often	have	low	rank
§ Schur	complements	in	the	Gaussian	elimination

§ Approach:	Compute	blocks	in	ILU(0)	exactly,	and
§ Approximate	blocks	in	ILU(1)	(not	in	ILU(0))	using	low-rank
§ Extend	matrix	with	new	rows/cols

9

Our	Parallel	Algorithm

9

Example: 4 processors. Each
vertex (node) corresponds to
a cluster of variables.

• Data parallel: Each processor works
on a subgraph (subdomain).

• Consider the cluster graph:
• Only boundary vertices need

communication.
• Interior vertices can be eliminated

independently in parallel.
• Use graph coloring on the boundary

to find concurrent work.
• #synchronization points = #colors
• Can overlap communication and

computation.
• Repeat for each level.
• Future: Task-based; dynamic sched.

10

Experiments

§ Parallel	H2	solver	(and	results)	by	Chao	Chen
§ Parallel	extension	of	LoRaSp	serial	code
§ MPI	everywhere
§ Eigen	library	for	dense	linear	algebra	(on	node)

§ SVD	for	low-rank	compression
§ a)	Fixed	eps	in	matrix	approx.	(ranks	vary)
§ b)	Fixed	rank	in	matrix	approx.	(quality	varies)

§ used	in	most	of	the	experiments

§ Platform:	Cray	XC30	(Edison/NERSC)
§ Used	16	(out	of	24)	cores	per	node
§ Used	up	to	16	nodes	(256	cores)

10

11

Results:	Structured	Mesh	Case

(a) Total time

(b) Memory footprint

Figure 12: Comparison with SuperLU-Dist of the total time and memory footprint for
solving a single right-hand-side on 16 processors. Every group of time is normalized by
the total time of SuperLU-Dist (which was the same for all three test problems: Poisson,
variable-coe�cient Poisson (VC-Poisson) and Helmholtz). The memory cost of SuperLU-
Dist was also the same for all three test problems.

28

11

Compare hierarchical solver as preconditioner vs. SuperLU-Dist direct solver
on three 3D PDE model problems. 16 processors (MPI ranks).

12

Results:	Unstructured	Case

12

Compare hierarchical solver as preconditioner vs. SuperLU-Dist on
unstructured matrices, including nonsymmetric cases.

13

Results:	3D	Poisson	Eqn.	

13

which is not the case here. In our weak scaling benchmarks, we keep a fixed
leaf size, which is implies that the e�ciency is in O(1/ lnN) as N ! 1.
This type of result is similar to the behavior observed when computing a
reduction in parallel using a tree structure.

(a) Factorization time (b) Factorization speedup

(c) Fixed total problem size (d) Fixed problem size per processor

Figure 6: Factorization time for Poisson’s equation with respect to the low-rank truncation
criteria K = 8. Figure 6(a) shows the factorization time for di↵erent problem sizes on
di↵erent number of processors. We used 16 processors per node. Figure 6(b) shows
speedups on multiple processors. Figure 6(c) and Figure 6(d) show two kinds of e�ciency
corresponding to fixed total problem size and fixed problem size per processor as defined
in Eqns. (10) and (11).

The factorization time for variable-coe�cient Poisson’s equation with re-
spect to the low-rank truncation criteria K = 16 is shown in Figure 7. Figure
7(a) shows the sequential and parallel factorization time. Figure 7(b) shows

22

14

Results:	Helmholtz	eqn.

14

to fixed total problem size and fixed problem size per processor, as defined
in Eqns. (10) and (11), are shown. Note that, in all three cases, we stop the
scaling experiments for fixed total problem size when number of unkowns are
fewer than 8K. The communication costs dominate at that scale.

(a) Time (b) Speedup

(c) Fixed total problem size (d) Fixed problem size per processor

Figure 8: Factorization time for Helmholtz equation equation with respect to the low-rank
truncation criteria K = 32. Figure 8(a) shows the factorization time for di↵erent problem
sizes on di↵erent number of processors. We used 16 processors per node. Figure 8(b)
shows speedups on multiple processors. Figure 8(c) and Figure 8(d) show two kinds of
e�ciency corresponding to fixed total problem size and fixed problem size per processor
as defined in Eqns. (10) and (11).

24

15

In	Progress:	Preserve	Near-Null-Space

standard	method	with	
vertical	clusters

modified	so	1st level
compression	accounts

for	constant

Laplace with Neumann bc’s
except Robin on bottom with
b = 100 on ¼ of surface &
b = 0 on the rest

mesh its nnz/n
16 x 16 x 8 9 133.4
32 x 32 x 8 11 156.0
64 x 64 x 8 17 167.7

128 x 128 x 8 26 173.6

mesh its nnz/n
16 x 16 x 8 6 146.5
32 x 32 x 8 9 187.4
64 x 64 x 8 11 208.9

128 x 128 x 8 17 219.9
256 x 256 x 8 28 225.5• Credit: Tuminaro (Matlab)

• Based on idea by Yang
• Only 1st level implemented so far

16

Conclusions	(1)

§ Hierarchical	low-rank	methods	(HLR)	augment	the	current	
solver/preconditioner	ecosystem.	

§ Faster	than	sparse	direct
§ Most	useful	as	preconditioner
§ User	must	choose	accuracy	(input	arg.)
§ Setup	phase	can	be	expensive.

§ Can	often	amortize	this	cost	over	multiple	rhs

§ Theory	promises	near-linear	complexity	for	many	PDE	
problems
§ Potentially	more	robust	than	multigrid/AMG	(at	a	cost)

16

17

Conclusions	(2)

§ Well	suited	for	modern	architectures
§ Most	work	is	in	dense	linear	algebra	(even	for	sparse	problems)

§ High	arithmetic	intensity
§ Many	small	dense	matrices	at	same	time

§ Could	use	batched	BLAS/LAPACK

§ Our	hierarchical	solver
§ Is	motivated	by	H2	but	can	also	be	interpreted	as	multilevel	ILU
§ Many	options/variations	still	to	explore	

§ Low	rank:	SVD,	RRQR,	RRLU,	ACA,	ID,	…

§ Early	days:	
§ Several	algorithm	options,	best	choice	unclear
§ Codes	are	still	immature	but	rapidly	improving

17

18

References

§ Pouransari,	Coulier,	Darve,	“Fast	Hierarchical	Solvers	for	
Sparse	Matrices	using	Extended	Sparsification and	Low-Rank	
Approximation”,	SIAM	J.	Sci.	Comp.	39(3),	2017.

§ Chen,	Pouransari,	Rajamanickam,	Boman,	Darve,	“A	
Distributed-Memory	Hierarchical	Solver	for	Sparse	Linear	
Systems”,	Parallel	Computing,	in	revision.

18

