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*Hijerarchical Low-Rank (HLR) Matrices @
and Solvers

= Low-rank structure is common in applications

= Hierarchical (low-rank) matrices and solvers are “hot”
= Early work by Hackbusch, 1999-2000 (H-matrix)
= HSS and BLR formats most popular now

= Key insight: Many matrices have useful (rank) structure
= Blocks far from diagonal can be approximated using low-rank
= Holds for elliptic PDEs, some other (e.g., advection-diffusion problems)
= Similar intuition as for Fast Multipole Methods (FMM)
= May also apply to data science (e.g. covariance matrix)
= Qur goals
= Develop new solver/preconditioner with less memory (and flops)
= Speed up sparse direct solvers (high accuracy)
= Use as preconditioner (low accuracy)




Low-Rank Structure

= Low-rank structure often occurs in off-diagonal blocks in
= The matrix A

= Theinverse of A
= The LU factors of A

= Ex: Hierarchical low-rank structure (rigure from wang et al.)

(a) HSS matrix. (b) HODLR matrix.
= Problem: rank growth in off-diagonal blocks
= We use H2 format (allows further splitting, standard admissibility)




The LoRaSp/H2 Method

=  Pouransari, Coulier, Darve, SISC 2017
= Partition graph via recursive bisection, construct tree
= Eliminate “clusters” (blocks) starting at leaf level
= Approximate block LU factorization
= New “coarse” dof via extended sparsification
= Merge neighbors, repeat for each level in the hierarchy (bottom up)
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nﬁﬁlgorithm: Fine to Coarse Level

(5) coarse level (5) many coarse nodes (4) three coarse nodes




Multilevel Block Incomplete Factorization

= Strong ILU connection:

= |oRaSp/H2 solver is really a Block ILU(O) factorization where the
“dropped” blocks are approximated using low-rank method

= A= LU+E, where E has low-rank blocks

= We compensate for the dropped blocks by adding new rows/columns
to the matrix (extended sparsification)

= Typically, “fill” blocks have low-rank structure

= We eliminate the fine vertices (clusters)

= The Schur complement for remaining coarse vertices is a much smaller
matrix

= Solve for this recursively
= Similarities to

= ARMS (Saad, 2002)

= AMG




Extended Sparsification

" For simplicity, assume symmetric A (can be extended)

= Suppose the off-diagonal blocks are (approx) low-rank:
( Aq UVT)
vur A,
= We solve the equivalent extended system
Ay, 0 U O
0 A, 0 V
ur o 0 -I
o vl -1 0
= We sparsify the original matrix, but add extra rows/cols that
also need to be factored.

= The lower the ranks of U,V, the smaller extended system
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ILU and Extended Sparsification

= Note: Fill blocks in the block LU factors often have low rank

= Schur complements in the Gaussian elimination

= Approach: Compute blocks in ILU(O) exactly, and
= Approximate blocks in ILU(1) (not in ILU(O)) using low-rank
= Extend matrix with new rows/cols

Original A, blocksize=4 Block ILU within extended matrix
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"Our Parallel Algorithm

|
|
o Data parallel: Each processor works ¥ b | —r
on a subgraph (subdomain). w e —o
* Consider the cluster graph: | | |
. 9 ¢ ' I Q {V\ \)
* Only boundary vertices need S P S D S A
communication. o A — ——
 Interior vertices can be eliminated !
independently in parallel. ¢ T | —r
* Use graph coloring on the boundary ¢ bl e e
to find concurrent work.
* #synchronization points = #colors Example: 4 processors. Each
* Can overlap communication and vertex (node) corresponds to

computatjon. a cluster of variables.

* Repeat for each level.
* Future: Task-based; dynamic sched.




Experiments

= Parallel H2 solver (and results) by Chao Chen
= Parallel extension of LoRaSp serial code
= MPI everywhere
= Eigen library for dense linear algebra (on node)

= SVD for low-rank compression
= a) Fixed eps in matrix approx. (ranks vary)

= b) Fixed rank in matrix approx. (quality varies)
= used in most of the experiments

= Platform: Cray XC30 (Edison/NERSC)

= Used 16 (out of 24) cores per node
= Used up to 16 nodes (256 cores)
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Results: Structured Mesh Case

Compare hierarchical solver as preconditioner vs. SuperL.U-Dist direct solver
on three 3D PDE model problems. 16 processors (MPI ranks).
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"Results: Unstructured Case

Compare hierarchical solver as preconditioner vs. SuperL.U-Dist on
unstructured matrices. including nonsymmetric cases.

Table 1: General matrices from the University of Florida Sparse Matrix Collection
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Matrices aire 4 nonzero svmbolic pattern | numeric value | positive
. S ' symmetry symmetry definite
torso3 0.26M 4.4M no no no
atmosmodd | 1.3M 8.8M yes no no
Geo_1438 1.4M 60.2M yes yes yes
Serena 1.4M 64.1M ves ves ves
1.6 I factorization
) 3 solve
14 @ T @ a 2
e . Q Q Q
3 3 2 2
12t § 5 5 5
[ Q Q a
= @ @A @ @
T 1.0
=]
v
2
<08
-
&
-
0.6}
0.4f
0.2}
0.0

torso3

atmosmodd

Geo 1438



LABORATCRY CIRECTED RESEARCH & DEVELCEMENT

103

262k
524k
Im

2m

0 I I I
1077 16 32 64 128 256
number of processes
(a) Factorization time
1.0 -, n -
#’..# ‘,’; ,‘(:
0.8 Jes B S
NG o, S
W .
%06 MR
e —e 262k ‘e s, 1
S 524k PN T,
E MR .
W04l @-0 1m e vl
~
=% 2m Sk
®-® 4m L JREN
0.2 fee Y
*ook 8m
e ® 16m
0.0 16 32 64 128 256

number of processes

(c) Fixed total problem size

Results: 3D Poisson Egn.
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Results: Helmholtz eqgn.
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| ess: Preserve Near-Null-Space

Laplace with Neumann bc’s
except Robin on bottom with
[ =100 on ' of surface &

[ =0 on the rest

standard method with
vertical clusters

modified so 1t level

compression accounts
for constant

e Credit: Tuminaro (Matlab)
* Based on idea by Yang
* Only 1% level implemented so far

mesh its nnz/n

16 x 16 x 8 9 133.4
32x32x8 11 156.0
64 x 64 x 8 17 167.7
128 x 128 x 8 26 173.6
mesh its nnz/n

16 x 16 x 8 6 146.5
32x32x8 9 187.4
64 x 64 x 8 11 208.9
128 x 128 x 8 17 219.9
256 x 256 x 8 28 225.5
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= Hierarchical low-rank methods (HLR) augment the current
solver/preconditioner ecosystem.

= Faster than sparse direct
= Most useful as preconditioner
= User must choose accuracy (input arg.)

= Setup phase can be expensive.
= Can often amortize this cost over multiple rhs

= Theory promises near-linear complexity for many PDE
problems
= Potentially more robust than multigrid/AMG (at a cost)
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= Well suited for modern architectures

= Most work is in dense linear algebra (even for sparse problems)
= High arithmetic intensity

= Many small dense matrices at same time
= Could use batched BLAS/LAPACK

= Qur hierarchical solver
= |s motivated by H2 but can also be interpreted as multilevel ILU

= Many options/variations still to explore
= Low rank: SVD, RRQR, RRLU, ACA, ID, ...

= Early days:
= Several algorithm options, best choice unclear
= Codes are still immature but rapidly improving
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