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Many Krylov methods have been proposed over the years for
solving linear systems Ax = b

Many of them can be classified as quasi-orthogonal (Q-OR) or
quasi-minimum residual (Q-MR)

Q-OR: FOM, BiCG, Hessenberg, . . .

Q-MR: GMRES, QMR, CMRH, . . .



Whatever their definition, these methods share many fundamental
properties

See M. Eiermann and O.G. Ernst, Geometric aspects in the theory
of Krylov subspace methods, Acta Numerica, v 10 n 10 (2001),
pp. 251–312

They differ by the basis of the Krylov space that is constructed:

- orthogonal for FOM/GMRES,
- bi-orthogonal for BiCG/QMR,
- based on an LU factorization for Hessenberg/CMRH

We use x0 = 0 and assume that ‖b‖ = 1, the Krylov space is

K = {b,Ab, . . . ,An−1b}



Q-OR methods

We assume that the vectors spanning K are linearly independent
and that we have a basis V of the Krylov space (with columns of
unit norm) such that K = VU with

K =
(
b Ab A2b · · · An−1b

)
V nonsingular with v1 = b and U upper triangular

We define H = UCU−1, upper Hessenberg, where C is the
companion matrix for the eigenvalues of A. We have AK = KC .
As a consequence AV = VH. It yields an Arnoldi-like relation

AVk = VkHk + hk+1,kvk+1e
T
k

where Vk is the matrix of the k first columns of V and Hk is the
k × k principal matrix of H



The iterates are defined as

xk = Vky
(k)

The residual rk = b − Axk is

rk = Vke1 − AVky
(k)

= Vk(e1 − Hky
(k))− hk+1,ky

(k)
k vk+1

The Q-OR method is defined (provided that Hk is nonsingular) by

Hky
(k) = e1

This annihilates the first term in the residual and the residual
norm is hk+1,k |y

(k)
k |



Properties of Q-OR methods

Let rOk be the residual vectors of the Q-OR method

Whatever the basis is we can show by induction that

|(U−1)1,k | = |ν1,k | =
1

‖rOk−1‖

The inverses of the Q-OR residual norms can be read from the
first row of the inverse of U (remember that K = VU)

For this property and more see:

G. Meurant and J. Duintjer Tebbens, On the convergence of Q-OR
and Q-MR Krylov methods for solving nonsymmetric linear
systems, BIT Numerical Mathematics, v 56 n 1 (2016), pp. 77-97



Construction of “good” bases

We would like to find bases which lead to a “good” (or even
optimal) convergence of the Q-OR method

- The matrix V of the basis is related to the Krylov matrix K by
K = VU with U upper triangular

- The entries of the first row of U−1 are the inverses of the Q-OR
residual norms (up to the sign)

Constructing a “good” basis may seem easy since one can think
that we can just construct any upper triangular matrix U−1 with
entries of large modulus on the first row

But, it is not so since the columns of V have to be of unit norm

Moreover, it is not recommended to use the matrix U numerically



A non-orthogonal optimal basis

Can we construct a basis such that Q-OR minimizes the residual
norms?

We would like to construct H column by column without using U.
We have

Hj = UjEjU
−1
j +

(
0 · · · 0 1

uj,j
U1:j ,j+1

)
Ej down-shift matrix

It yields

k+1∑
j=1

ν1,jhj ,k = 0 ⇒ ν1,k+1 = − 1

hk+1,k

k∑
j=1

ν1,jhj ,k



At step k we have already computed ν1,j , j = 1, . . . , k and we
would like to choose hj ,k , j = 1, . . . , k + 1 to maximize the
absolute value of ν1,k+1

But hk+1,k has to be chosen to obtain a vector vk+1 of unit norm
Let

ṽ = Avk −
k∑

j=1

hj ,kvj

the next basis vector is vk+1 = ṽ/hk+1,k with hk+1,k = ‖ṽ‖

|ν1,k+1| =
|νT y |
‖d − By‖

with

d = Avk , B = Vk =
(
v1 · · · vk

)
, y =

(
h1,k · · · hk,k

)T
ν =

(
ν1,1 · · · ν1,k

)
We need to minimize 1/|ν1,k+1|2



We would like to solve

γopt = min
y∈�k ,νT y 6=0

‖d − By‖2

(νT y)2

The minimum is given by

γopt =
α

ανT (BTB)−1ν + ω2

with α = dTd − dTB(BTB)−1BTd and ω = dTB(BTB)−1ν

Moreover, if ω 6= 0, a solution yopt of the minimization problem is
given by

yopt = (BTB)−1BTd +
α

ω
(BTB)−1ν

= s +
α

ω
t

In our case for computing the solution we have to solve

(V T
k Vk)s = V T

k Avk , (V T
k Vk)t = ν



Properties of the optimal basis

V T
k+1vk+1 =

1

ν1,k+1


ν1,1

...
ν1,k
ν1,k+1



V T
k Vk =



1 1
ν1,2

1
ν1,3

· · · 1
ν1,k

1
ν1,2

1
ν1,2
ν1,3

· · · ν1,2
ν1,k

1
ν1,3

ν1,2
ν1,3

1 · · · ν1,3
ν1,k

...
...

. . .
...

1
ν1,k

ν1,2
ν1,k

· · · 1


When the method converges, the basis is more and more

orthogonal



The inverse of V T
k Vk is tridiagonal and the matrix V T

k AVk is
upper triangular

It means that we have constructed a right-conjugate direction
method

Moreover

t = (V T
k Vk)−1ν =


0
...
0
ν1,k


This relation is used to simplify the construction of the basis
vectors



We can simplify the formulas for the new vector

ω = tTV T
k Avk = ν1,kv

T
k Avk

Let yopt = s + α
ω t

ṽ = Avk − Vkyopt

= Avk − Vks −
α

ω
Vkt

= Avk − Vks −
α

ω
ν1,kvk

= Avk − Vks −
α

vTk Avk
vk

and
h1:k,k = s + βek , β =

α

vTk Avk



The Q-OR optimal algorithm

We compute incrementally the inverses of the Cholesky factors of
V T
k Vk

Let vAk = Avk

1- vVk = V T
k−1vk , v tAk = V T

k vAk

2- `k = L̃k−1v
V
k , y

T
k = `Tk L̃k−1

3- if `Tk `k < 1, `k,k =
√

1− `Tk `k , else (pvk )T = yTk V T
k−1,

`k,k = ‖vk − pvk‖ end



4-

L̃k =

(
L̃k−1 0
− 1
`k,k

yTk
1
`k,k

)

5- `A = L̃kv
tA
k , s = L̃Tk `A

6- α = (vAk )T vAk − `TA `A, β = α
(v tA

k )k

7-

h1:k,k =

h1,k
...

hk,k

 = s + βek



8-

ṽ = vAk − Vk h1:k,k , hk+1,k = ‖ṽ‖, ν1,k+1 = − 1

hk+1,k
νTh1:k,k

ν =
(
ν1,1 · · · ν1,k+1

)T
9- vk+1 = 1

hk+1,k
ṽ and vAk+1 = Avk+1

10- if needed, solve Hky
(k) = ‖b‖e1 using Givens rotations,

xk = Vky
(k)

In this algorithm almost everything is expressed in terms of
matrix-vector products



Numerical experiments
SUPG scheme (Streamwise upwind Galerkin)
Convection-diffusion equation in a square with a mesh size of 1/41
The diffusion coefficient is ν = 0.01
This matrix is of order 1600 and has 13924 non zero entries. Its
norm is 4.8716 10−2 and the condition number is 40.518
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supg 1600, n = 1600



True residual norms for k = 200

I GMRES-CGS 1.54043 10−13

I GMRES-CGS with reorthogonalization 7.05585 10−15

I GMRES-CGS with double reorthogonalization 7.23790 10−15

I GMRES-MGS 1.33776 10−14

I GMRES-MGS with reorthogonalization 6.70649 10−15

I GMRES-MGS with double reorthogonalization 6.70339 10−15

I GMRES-Householder 2.03961 10−14

I QOR opt 5.50626 10−15



Could we use the fact that (V T
k Vk)

−1 is tridiagonal?

We can compute the non-zero entries of (V T
k Vk)−1

Previously we used the Cholesky factors of the matrix (V T
k Vk)−1

to solve V T
k Vks = v tAk

In theory these factors are bidiagonal matrices. However, we
computed all their entries for the sake of numerical stability

Now we would like to investigate to what extent we can use the
fact that (V T

k Vk)−1 is tridiagonal to compute the vector s

This would save many dot products
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The problem is that the values of ν1,j which are used to compute
the inverse of the matrix V T

k Vk are not directly linked to the
computed vectors vj

After a while there is a discrepancy between (V T
k Vk)−1 and what

is computed with the ν1,j ’s

We can compute the relative residual norms in two ways:
The first one is 1/|ν1,k+1|
Let r̃0 be the residual at the beginning of the cycle, the second way
of computing the relative residual norm is obtained from solving

Hky
(k) = ‖b‖e1 which gives hk+1,k |y

(k)
k |/‖r̃0‖

A simple remedy to our problems is to restart the algorithm when
there is a too large difference between the two ways of estimating
the relative residual norms
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However, things are not always so nice. . .
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Conclusion

Using the properties of the Q-OR methods we were able to
construct a non-orthogonal basis for which Q-OR gives the same
residual norms as GMRES

The algorithm is slightly more expensive than GMRES but it can
be simplified using automatic restarts

It is more parallel than GMRES-MGS and most of the operations
are matrix-vector products

In many cases the maximum attainable accuracy is better than
with GMRES-MGS

It remains to study its stability in finite precision arithmetic and to
see how to use it on parallel computers
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