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Abstract Data assimilation is widely used to improve flood forecasting capabil-
ity, especially through parameter inference requiring statistical information on the
uncertain input parameters (upstream discharge, friction coefficient) as well as on
the variability of the water level and its sensitivity with respect to the inputs.
For particle filter or ensemble Kalman filter, stochastically estimating probability
density function and covariance matrices from a Monte Carlo random sampling
requires a large ensemble of model evaluations, limiting their use in real-time ap-
plication. To tackle this issue, fast surrogate models based on Polynomial Chaos
and Gaussian Process can be used to represent the spatially distributed water
level in place of solving the shallow water equations. This study investigates the
use of these surrogates to estimate probability density functions and covariance
matrices at a reduced computational cost and without the loss of accuracy, in
the perspective of ensemble-based data assimilation. This study focuses on 1-D
steady state flow simulated with MASCARET over the Garonne River (South-
West France). Results show that both surrogates feature similar performance to
the Monte-Carlo random sampling, but for a much smaller computational budget;
a few MASCARET simulations (on the order of 10-100) are sufficient to accurately
retrieve covariance matrices and probability density functions all along the river,
even where the flow dynamic is more complex due to heterogeneous bathymetry.
This paves the way for the design of surrogate strategies suitable for representing
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unsteady open-channel flows in data assimilation.
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Nomenclature

ζ Standardized random variable
δ Kronecker delta function
` Correlation length scale
γ Basis coefficient
λ Singular value
E Expectation operator
V Variance
Λ Rectangular singular value matrix
Π Correlation matrix evaluated for the database DN
C Snapshot covariance matrix
h Output random vector of size M
U Orthogonal square left singular matrix
V Orthogonal square right singular matrix
x Input random vector of size d
x∗ Input random vector not included in the training set X
Y Centred snapshot matrix
DN MASCARET simulation database of size N
M MASCARET forward model operator
N Normal distribution characterized by mean and STD
U Uniform distribution characterized by minimum and maximum
X Input training set of size N × d
Y Output training set of size N ×M
µ Mean value
ω Gaussian quadrature weight
π Correlation function
Ψ Basis function
ρ Joint probability density function
σ STD
τ Nugget effect
ĥ Estimated water level
a ∈ [ain; aout] Curvilinear abscissa km
A Hydraulic section m2

c(α) α-level tabulated value associated with D
D Kolmogorov-Smirnov statistic
d Uncertain space size
h Water level part of the hydraulic state (h,Q) m
i Surrogate decomposition index
k Snapshot index
Ks Strickler friction coefficient m1/3 s−1

M = 14 Number of observation stations
N Training set size
Nref = 100,000 Validation set size
P Wet perimeter m
Q Discharge part of the hydraulic state (h,Q) m3 s−1

Q2 Predictive squared correlation coefficient
R Hydraulic radius m
r Number of terms in surrogate model
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RC Upstream water level-discharge local rating curve
S0 Channel slope m km−1

Sf Friction slope
Si First order Sobol’ index
ST Total order Sobol’ index
W River width m
CDF Cumulative Distribution Function
DA Data Assimilation
EnKF Ensemble Kalman Filter
GP Gaussian Process
MC Monte Carlo
PC Polynomial Chaos
PDF Probability Density Function
PF Particle Filter
PGP POD-based Gaussian Process
POD Proper Orthogonal Decomposition
RMSE Root Mean Square Error
SA Sensitivity Analysis
STD STandard Deviation
SVD Singular Value Decomposition
SWE Shallow Water Equation
UQ Uncertainty Quantification
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1 Introduction

The predictive skills of hydraulic models have greatly increased with advances
in free surface flow numerical modelling and computational resources. Real-time
flood forecasting relies on the use of sparse in situ observations as well as imperfect
hydrology or hydraulic models usually solving the 1-D Shallow Water Equations
(SWE). Assessing the predictive capabilities of these hyperbolic partial differential
equations remains an important challenge as public safety and water resource man-
agement are at stake (Weerts et al. 2011). SWE solve for spatially varying water
level and river discharge (referred to as the river state) using physical parameters
(e.g. friction coefficients), initial conditions and boundary conditions described as
a hydrograph or limnigraph. These input data are subject to epistemic uncertain-
ties due to an imperfect knowledge of the river properties as well as to aleatory
uncertainties related to environmental and meteorological intrinsic hazards. Both
types of errors translate into uncertainties in the simulated river state, thus pre-
venting the hydraulic model from being effective in forecast mode. In practice,
these uncertainties can be reduced when complementary data become available.

Data assimilation (DA) offers a convenient framework to reduce model uncer-
tainties by combining observations with the model simulation taking into account
errors in both sources of information. Prior to DA, the main sources of uncertain-
ties should be identified and included in the control vector; this is achieved with
a sensitivity analysis (SA) study that allows to classify uncertainties in the inputs
with respect to their impact on the model outputs, for instance in terms of variance
using Sobol’ indices (Iooss and Saltelli 2016). Several studies in the framework of
hydraulics demonstrated the merits of DA (Barthélémy 2015; Cloke and Pappen-
berger 2009; Dechant and Moradkhani 2011; Habert et al. 2016; Moradkhani et al.
2005) to provide a more accurate river state. This is achieved by inferring an opti-
mal set of parameters (e.g. river and floodplain friction coefficients, upstream and
lateral river discharge, bathymetry) and/or by simulating a more accurate river
state, thus constituting a paradigm shift for real-time flood forecasting. Ensemble-
based methods such as the Ensemble Kalman Filter (EnKF) (Durand et al. 2008;
Moradkhani et al. 2005) and the Particle Filter (PF) (Matgen et al. 2010; Parrish
et al. 2012) are popular algorithms; they articulate as a two-step procedure derived
from Bayesian inference: (1) a forecast step to sample the uncertain inputs and
propagate the uncertainty through the model, thus providing an ensemble of river
states; and (2) an analysis step to weight each member or particle of the ensemble
based on its discrepancies to the available observations and to derive in the case
of parameter estimation, a correction on the inputs that is then propagated to the
river states by model integration. In the EnKF algorithm, the weights are pro-
vided by the stochastic estimation of covariance matrices between errors in model
inputs and outputs. In contrast, in the PF algorithm, the weights correspond to
likelihoods associated with the probability density function (PDF) of the control
vector conditioned upon the observations; PF provides an alternative to EnKF
when the model is subject to strong non-linearity and non-Gaussian errors.

Monte Carlo (MC) techniques are generic, robust and easily portable on mas-
sively parallel supercomputers; yet they remain computationally expensive due to
their slow convergence rate scaling as the inverse of the square root of the number
of particles (Li and Xiu 2008). As shown in Barthélémy (2015) and Bozzi et al.
(2014), a large number of forward model evaluations should be carried out to
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converge the stochastic evaluation of error statistics such as PDFs, Sobol’ indices
and covariance matrices. There is therefore a need to develop efficient and robust
uncertainty quantification (UQ) methods in the context of DA for hydraulics to
limit (1) the number of significant sources of uncertainties and (2) the computa-
tional cost of quantifying uncertainties on the river state, e.g. moments (mean,
covariance) and PDF, while preserving the accuracy of the mapping M between
the uncertain inputs x and the vector of M river water heights h:

x ∈ Rd → h =M(x) ∈ RM . (1)

The key idea of non-intrusive UQ methods is to build a cost-effective surrogate,
also called reduced model, metamodel or response surface, mimicking the map-
ping M to perform UQ and SA steps (Iooss and Saltelli 2016; Iooss et al. 2010;
Lamboni et al. 2011; Le Maitre and Knio 2010; Saltelli et al. 2007; Storlie et al.
2009). Formulating the surrogate model relies on a limited number of forward

model integrations referred to as the training sample (X ,Y) =
(
x(k),h(k)

)
1≤k≤N

where N is the training sample size and h(k) := M(x(k)) corresponds to the de-
terministic integration of the forward model M as a black box for the kth set
of input parameters x(k). Several surrogate models are found in the literature,
among whom generalized linear models, polynomial models, splines, polynomial
chaos expansions, artificial neural networks, Gaussian process models, ...

Polynomial chaos (PC) approach has received much attention lately (Dubreuil
et al. 2014; Sudret 2008; Xiu 2010; Xiu and Karniadakis 2002). The PC surro-
gate model is formulated as a polynomial expansion, in which the basis is defined
according to the distribution of the uncertain inputs x and the coefficients re-
late to the statistics of the output h. The coefficients are computed so as to fit
the training set (X ,Y), either using regression or spectral projection methods.
The merits of PC surrogates were demonstrated in various fields, e.g. structural
mechanics (Berveiller 2005; Dubreuil et al. 2014), computational fluid dynam-
ics (Hosder and Walters 2006; Lucor et al. 2007; Saad 2007), hydrology (Deman
et al. 2015), hydraulics (Liang et al. 2008), wildfires (Rochoux et al. 2014). A com-
plementary approach between PC and EnKF was presented in Li and Xiu (2009)
and tested in the framework of wildfire behaviour forecasting in Rochoux et al.
(2014). A PC surrogate was used in place of the forward model to estimate the
Kalman gain and thereby design a cost-effective EnKF inferring new estimates
of the input parameters (e.g. biomass moisture and fuel aspect ratio) reducing
bias in the fire front location prediction. The resulting algorithm achieved con-
vergence in spite of the non-linear surface response, showing promising results for
environmental risk monitoring.

Gaussian processes (GP) that are strongly related to Kriging in geostatistics
also are of increasing interest (Le Gratiet et al. 2017; Lockwood and Anitescu 2012;
Rasmussen and Williams 2006). The GP formalism treats the forward model re-
sponse as a realization of a Gaussian stochastic process indexed by x and fully
characterized with mean and covariance functions conditioned by the training set
(X ,Y). The GP surrogate is built first, by defining a covariance kernel function
between output values and a trend function and then, by estimating the hyperpa-
rameters (e.g. variance, characteristic length scale) that provide a good fit to the
training set. GP surrogates were introduced in the context of SA for estimating
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Sobol’ indices (Le Gratiet et al. 2014; Marrel et al. 2009; Oakley and O’Hagan
2004).

PC and GP surrogate models have recently been compared for UQ and SA
studies (Le Gratiet et al. 2017; Owen et al. 2015; Schoebi et al. 2015). Owen
et al. (2015) evaluated the performance of each type of surrogate in terms of
output mean, variance and PDF estimation. Le Gratiet et al. (2017) compared
Sobol’ indices with applications in structural mechanics; PC and GP surrogate
models were found to feature a similar accuracy with respect to the Q2 validation
coefficient for a given size of the training set. They also emphasized that the
ranking between PC and GP approaches remains problem-dependent. Since the
application of PC surrogate models to hyperbolic conservation laws such as SWE
remains a challenging task (Birolleau et al. 2014; Després et al. 2013), it is of great
interest to evaluate the performance of PC and GP approaches when applied to
open-channel flow simulation in fluvial or critical configurations.

In this paper, our objective is to evaluate the performance of PC and GP surro-
gates mimicking the behaviour of 1-D open-channel flows for UQ and SA steps that
are important in the design of EnKF and PF algorithms. The quantity of interest
is the 1-D water level discretized along 50 km of the Garonne River (South-West
France). As a preliminary step, the focus is made on steady flows and the flow
remains fluvial. The treatment of strong non-linearity induces by fluvial/critical
transitions is beyond the scope of this study. The main sources of uncertainties
are the upstream discharge that is constant in steady state conditions and the
friction coefficient that is a piecewise constant function. Under these hypotheses,
the present work features scalar inputs and spatially varying outputs due to the
heterogeneous bathymetry of the Garonne River. A convergence study is first car-
ried out to determine the size of the training set N that is required to build a
valid surrogate using either PC expansion or GP model. GP and PC surrogates
are then compared when a computational budget is set, i.e. for the same number
of snapshots (also called simulations in the paper) N used to construct each sur-
rogate. The comparison is carried out with respect to the following metrics on h:
PDF that is of interest for Bayesian inference and PF algorithms; spatially vary-
ing Sobol’ indices (associated with the correlation between each uncertain input
and the spatially distributed output) and correlation matrix (associated with the
spatial correlation of the output) that are of interest for variational and EnKF
algorithms.

The structure of the paper is as follows. Section 2 introduces the 1-D SWE
solved using MASCARET and the Garonne River case study. The PC and GP
techniques are detailed in Sect. 3 along with error metrics. Section 4 presents
the results of the comparative study between PC and GP with respect to a MC
reference. Conclusions and perspectives are given in Sect. 5.

2 Hydraulic Modelling

The SWE represent the dynamics of open-channel flows, typically in rivers with
small bathymetry variations (Horritt and Bates 2002). They form a hyperbolic
system of partial differential equations that characterize subcritical and supercrit-
ical flows subject to hydraulic jumps. Here, we only deal with subcritical flows, in
the plain in the downstream part of the Garonne River.
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2.1 1-D shallow water equations (SWE)

We consider a 1-D hydraulic model commonly used in hydraulic engineering and
flood forecasting. The stream channel is described by a hydraulic axis correspond-
ing to the main flow direction, implying that the river channel is represented by
a series of cross-sections (or profiles) identified by a curvilinear abscissa a ranging
from ain upstream of the river to aout downstream. 1-D SWE are derived from mass
conservation and momentum conservation. The equations are written in terms of
discharge (or flow rate) Q (m3 s−1) and hydraulic section A (m2) that relates to
water level (or water height) h (m) such that A ≡ A(h). The non-conservative
form of the 1-D SWE for non-stationary flow reads (Thual 2010)




∂tA(h) + ∂aQ = 0

∂tQ+ ∂a

(
Q(h)2

A(h)

)
+ g A(h) ∂ah− g A(h) (S0 − Sf ) = 0

(2)

with g the gravity, S0 the channel slope and Sf the friction slope. In the present
study, the SWE are combined with the Manning-Strickler formula to parameterize
the friction slope Sf such as:

Sf =
Q2

K2
s A(h)2R(h)4/3

, (3)

where R(h) = A(h)/P (h) (m) is the hydraulic radius written as a function of the
wet perimeter P (h), and where Ks (m1/3 s−1) is the Strickler friction coefficient.
The pair (h,Q) forms the hydraulic state varying in time and space. For steady
flows, Eq. 2 simplifies to:





∂aQ = 0

∂ah =
(S0 − Sf )

1− Fr2
(4)

where Fr is the dimensionless Froude number

Fr2 =
Q2

gA3

∂A

∂h
. (5)

The smooth solutions for Eq. 4 are called backwater curves when the down-
stream boundary condition is prescribed in a deterministic way. To solve Eq. (4),
the following input data are required: bathymetry, upstream and downstream
boundary conditions, lateral inflows, roughness coefficients and initial condition
for the hydraulic state. The imperfect description of this data translates into er-
rors in the simulated hydraulic state (h,Q). To understand the structure of these
errors, it is of prime importance to determine which input variables contribute,
and to what extent, to the variability in the hydraulic state at different curvilinear
abscissas a along the river channel, for instance via a SA study (Sect. 3.3).

We use the MASCARET software to simulate the 1-D SWE in Eq. (2) and
predict (h,Q) along the discretized curvilinear abscissa of the hydraulic network
a ∈ [ain, aout]. The SWE are solved here with the steady kernel of MASCARET
based on a finite difference scheme (Goutal and Maurel 2002; Goutal et al. 2012),
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meaning that (h,Q) only varies in space. MASCARET is part of the TELEMAC-
MASCARET open-source modelling package developed at EDF (Électricité de
France R&D) in collaboration with CEREMA (Centre d’Étude et d’expertise sur
les Risques, l’Environnement, la Mobilité et l’Aménagement); it is commonly used
for dam-break wave simulation, reservoirs flushing and flooding.

2.2 Garonne River Case Study

The present study is carried out on a real hydraulic network over the Garonne
River in South-West France. The Garonne river flows along 647 km from the
Pyrenees to the Atlantic Ocean draining an area of 55, 000 km2 (corresponding to
the fourth-largest river in France). The present study focuses on a 50 km reach
from Tonneins (ain = 13 km) to La Réole (aout = 62 km) with one observing
station at Marmande (a = 36 km) as presented in Fig. 1a. The mean slope over
the reach is S0 = 3.3 m km−1; the mean width of the river is W = 250 m; the
bank-full discharge is approximately Q = 2550 m3 s−1. Despite the existence of
active floodplains, this reach can be accurately modelled by a 1-D hydraulic model
using Eq. (2) (Besnard and Goutal 2011).

Figure 1b presents the non-uniform bathymetry profile along the 50 km reach,
interpolated from 83 on-site bathymetry cross-sections. Friction for the river chan-
nel and its floodplain is prescribed over three zones separated by dashed lines. The
Strickler coefficients Ks1 , Ks2 and Ks3 are used to characterize friction through
Eq. (3) and are uniform per zone. The observing station at Marmande is located
at the beginning of the third zone associated with Ks3 .

The upstream steady boundary condition is prescribed by Q(ain) = Qin; the
discharge Q is constant along the reach (Q = Qin). The downstream boundary
condition is prescribed with a local rating curve RC established at La Réole that
sets h(aout) = RC(Qout) = hout. The hydraulic model has been calibrated using
channel and floodplain roughness coefficients as free parameters (Besnard and
Goutal 2011).

2.3 Sources of uncertainties and Quantity of Interest

UQ and DA for flood forecasting are essential to ensure the predictive capability
of the surrogate model at the observing stations such as Marmande. Previous
work (El Moçayd et al.) has shown that in steady state conditions and given
some assumptions on the statistics of the input uncertain variables, the sensitivity
of the hydraulic state at Marmande to Ks3 is predominant; the sensitivity at
Marmande to Ks1 and Ks2 is negligible. Hence, the main sources of uncertainties
taken into account here are the upstream mass flow rate Q and the Strickler
coefficient Ks3 . We denote by x = (Q,Ks3) the random vector of size d = 2. From
expert knowledge, Q and Ks3 are considered as independent random variables
whereQ (m3 s−1) follows the normal distributionN (4031, 400) andKs3 (m1/3 s−1)
follows the uniform distribution U(15, 60).

MASCARET provides as output the water height over 463 cross-sections for
the Garonne case. In this work, we focus on the water height at M = 14 stations
evenly distributed along the 50 km reach, among which Marmande at a = 36 km.
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Fig. 1: Garonne River case study (South-West France). (a) Reach between Ton-
neins (upstream, ain = 13 km) and La Réole (downstream, aout = 62 km) with
Marmande located at a = 36 km. (b) Bathymetry profile along the curvilinear
abscissa a (km) between Tonneins and La Réole. The Strickler friction coefficient
Ks spatially varies as a constant piecewise function; the changes in the value of
Ks are indicated by vertical dashed lines.

We denote by h the vector of M observed water levels for one realization of MAS-
CARET. Note that the UQ methods we present in Sec. 3 are highlighted in this
work for M = 14 but they can easily be applied to a case where the size of the
state vector M is much larger than the size of the training set N .

A database noted DNref
and containing Nref = 100,000 MASCARET simula-

tions was compiled as a reference for the study. Each simulation corresponds to a
different pair of inputs (Q,Ks3) resulting from a MC random sampling following
Q ∼ N (4031, 400) and Ks3 ∼ U(15, 60). In the present study DNref

is partly used
to build the PC and GP surrogates via the training set DN = (X , Y) ⊂ DNref

of
size N ; it is fully used to validate them a posteriori over a large ensemble (Sec. 3.4).
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3 Surrogate Models

Two types of surrogate models are used in the present work to approximate the
behaviour of MASCARET with respect to x = (Q,Ks3) (the size of the input un-
certainty space is d = 2): PC expansion on the one hand, GP regression combined
with Proper Orthogonal Decomposition (POD) further denoted by pGP on the
other hand. The common idea of PC and pGP approaches is to design for each
curvilinear abscissa a ∈ {a1, · · · , aM} a surrogate water level with a weighted
finite sum of basis functions:

ĥa (x) =
r∑

i=0

γa,i Ψi (x) , (6)

where the coefficients γa,i and the basis functions Ψi are calibrated by the training
set DN . For PC expansion, the maximum order of the decomposition and the basis
functions are first chosen, then a spectral projection strategy is implemented to
compute the decomposition coefficients in the polynomial basis. The pGP strategy
is two-fold: the first step consists in transforming the sampled output space to an
orthogonal one, eventually reducing its dimension; the second step consists in
interpolating with a GP approach the principal components of this new space to
express water level in the basis for any friction and discharge values. It should be
noted that the GP model could be replaced by any other interpolator. The main
difference between PC (Sect. 3.1) and pGP (Sect. 3.2) approaches stands in the
nature of these models: pGP interpolates the training points and captures local
variations, while PC is a regression method focusing on the global behaviour of
the model. Basis functions and calibration methods also differ between these two
approaches.

3.1 Polynomial Chaos (PC) surrogate model

The algorithm to build the PC surrogate proceeds as follows:

1. choose the polynomial basis {Ψi}i≥0 according to the assumed PDF of the
inputs x = (Q,Ks3),

2. choose the total polynomial degree P according to the complexity of the phys-
ical processes,

3. truncate the expansion to rpc terms to keep the predominant information given
by the forward model using standard truncation strategy (rpc depends on d
and P ),

4. apply spectral projection strategy (i.e. Gaussian quadrature rule) to compute
the coefficients {γa,i} i∈Nd

|i|≤P

for each curvilinear abscissa a using N = (P + 1)d

snapshots from the simulation database DNref
,

5. formulate the surrogate model Mpc at each curvilinear abscissa a, which can
be evaluated for any new pair of parameters x∗ = (Q∗,K∗s3).

Note that we use standard truncation and projection strategies presented in Le Maitre
and Knio (2010) and Xiu (2010).
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3.1.1 Polynomial basis

Each component of the random vector x defined in the input physical space is stan-

dardized and noted ζ in the following way: ζi = xi−µi

σi
where µi = N−1∑N

k=1 x
(k)
i

and σi =

√
(N − 1)−1

∑N
k=1

(
x
(k)
i − µi

)2
. Assuming that the SWE solution is of

finite variance, each component ha of the water level vector h can be considered
as a random variable for which there exists a polynomial expansion of the form (6)
that represents how the water level ha varies according to changes in Q and Ks3 .

ha is projected onto a stochastic space spanned by the orthonormal polyno-
mial functions {Ψi}i≥0. These functions are orthonormal with respect to the joint
density ρ(ζ), i.e. ∫

Z

Ψi(ζ)Ψj(ζ) ρ(ζ) dζ = δij , (7)

with δij the Kronecker delta function and Z ⊆ Rd the space in which ζ evolves. In
practice, the orthonormal basis is built using the tensor product of 1-D polynomial
functions: Ψi = Ψi,1 . . . Ψi,d where i is the multi-index (i1, . . . , id) ∈ {0, 1, · · · , P}d.
The choice for the basis functions depends on the probability measure of the ran-
dom variables. According to Askey’s scheme, the Hermite polynomials form the
optimal basis for random variables following the standard Gaussian distribution,
and the Legendre polynomials are the counterpart for the standard uniform dis-
tribution (Xiu and Karniadakis 2002).

3.1.2 Truncation Strategy

In practice, the sum in Eq. (6) is truncated to a finite number of terms rpc. Using a
standard truncation strategy rpc is constrained by the number of random variables
d and by the total polynomial degree P as:

rpc =
(d+ P )!

d!P !
, (8)

meaning that all polynomials involving the d random variables of total degree less
or equal to P are retained in the PC expansion. The PC approximated water level
at curvilinear abscissa hpc(a) is formulated as:

ĥpc,a(x) :=Mpc,a(ζ) =
∑

i∈Nd
|i|≤P

γa,i Ψi (ζ) . (9)

Note that for small d, advanced truncation strategies that consist in eliminating
high-order interaction terms or using sparse structure (Blatman 2009; Migliorati
et al. 2013) are not necessary.

3.1.3 Spectral projection strategy

We focus here on non-intrusive approaches to numerically compute the coefficients
{γa,i} i∈Nd

|i|<P

in Eq. (9) using N snapshots from DN . The spectral projection relies
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on the orthonormality property of the polynomial basis. The ith coefficient γa,i is
computed using Gaussian quadrature as:

γa,i =< ha, Ψi >∼=
N∑

k=1

h(k)a Ψi(ζ
(k))w(k), (10)

where h(k) = M(x(k)) is the snapshot DN corresponding to the MASCARET
simulation for the kth quadrature root x(k) of Ψi (in the physical space), and
where wk is the weight associated with x(k). (P + 1) is the number of quadrature
roots required in each uncertain direction to ensure an accurate calculation of the
integral < ha, Ψi >. Hence, N = (P +1)2 for the PC surrogates built in this study.

3.2 POD-based Gaussian Process (pGP) surrogate

The algorithm to build a Gaussian Process surrogate relies on a POD and proceeds
as follows:

1. choose the size of the training set N ,
2. draw N samples (or snapshots) in the input random space x = (Q,Ks3) with

Halton’s low discrepancy sequence1 from the simulation database DN ,
3. formulate the centred snapshot matrix Y from the N water level snapshots,
4. achieve a POD on Y using the snapshot method to derive the basis vectors
{Ψi} and the corresponding coefficients {γa,i} (any snapshot can be expressed
as a linear combination of the basis vectors and coefficients),

5. replace each basis vector {Ψi} associated to the N snapshots by a basis function
via Gaussian Process regression for any x∗,

6. formulate the surrogate modelMgp for water level at each curvilinear abscissa
a, which can be evaluated for any x∗.

Note that we follow the choices made by Braconnier et al. (2011).

3.2.1 Snapshot method

The key idea of the snapshot method (Sirovich 1987) is to achieve a POD of the
centred snapshot matrix Y ∈ MM,N (R), which gathers the water level computed
at each curvilinear abscissa for the N snapshots, from which the sample mean is
subtracted. For simplicity purpose, the water level anomaly at curvilinear abscissa

a is denoted h in the following. Thus, Y =
(
h
(j)
ai

)
1≤i≤M

1≤j≤N

. The snapshots correspond

to the column vectors; the kth snapshot of size M = 14 is denoted by h(k).
Based on many observations of a random vector, the POD gives the orthogonal

directions of largest variances (or modes) in the probabilistic vector space in order
to reduce the vector space dimension (Chatterjee, Anindya 2000). Note that for
simplicity purpose, the adjective centred is dropped in the following when referring
to the centred snapshot matrix Y.

1From a Halton sequence, the nearest points (standardized Euclidean distance) of the
database DN are chosen.
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The POD of the snapshot covariance matrix C = N−1 YT Y ∈ MN (R) is
equivalent to the Singular Value Decomposition (SVD) of the snapshot matrix Y:

Y = U Λ VT =

rp∑

k=1

λk uk vT
k , (11)

where U ∈ MM (R) is an orthogonal matrix diagonalizing YYT (uk, the kth
column of U, is a left singular vector of Y), where V ∈ MN (R) is an orthogonal
matrix diagonalizing YTY (vk, the kth column of V, is a right singular vector
of Y), and where Λ ∈ MM,N (R) is a rectangular diagonal matrix including rp =
min(M,N) singular values on its diagonal. The singular values {λk}1≤k≤rp are
the square roots of the eigenvalues of C. Note that in this study, we do not reduce
further the rank of the snapshot matrix Y. Since the number of stations (M = 14)
is lower than the size of the training set N , the rank of Y is here rp = M .

For a given curvilinear abscissa a, any snapshot ha(x(k)) can then be retrieved
as a linear combination of rp modes {Ψi}1≤i≤rp :

ha(x(k)) = (U Λ VT)ak = Ua:(Λ VT ):k =

rp∑

i=1

γa,i Ψi(x
(k)), (12)

where for any i ∈ {1, . . . ,M}, γa,i := Ua,i and Ψi(x
(k)) := (ΛVT )i,k.

In the present study, the size of the state vector M is smaller than the size of
the training set N , implying that there are rp = M non-zero singular values. This
is usually not the case, but this does not change the methodology. As the objective
is to compare PC and pGP and as there is a limited number of stations M , all
modes are kept to avoid the loss of information, there is no need to reduce the
rank of the singular matrix. Note that when moving to 2-D or 3-D cases (beyond
the scope of the present work), the size of the state vector could be of the order
of thousands components, making dimension reduction necessary.

3.2.2 Regression Procedure

Our objective is now to generalize the data set {Ψi(x(k))}1≤k≤N associated with
the design of experiments X to any new input vector x∗, in order to approximate
the model output ha at any curvilinear abscissa a. We thus propose the following
surrogate model based on GP regression and Eq. (12):

ĥpgp,a(x∗) =

rp∑

i=1

γa,i Ψgp,i(x
∗), (13)

where Ψgp,i is a GP model calibrated from the training set
{

x(k), Ψi(x
(k))

}
1≤k≤N

as detailed in the following.
As stated by Rasmussen and Williams (2006), a GP is a random process (here

the mode Ψi) indexed over a domain (here Rd), for which any finite collection of

process values (here
{
Ψi(x

(k))
}
1≤k≤N

) has a joint Gaussian distribution. Con-

cretely, let Ψ̃i be a Gaussian random process fully described by its zero mean and
its correlation πi:

Ψ̃i(x) ∼ GP
(

0, σ2
i πi(x,x

′)
)
, (14)



Comparison of PC and GP surrogates for steady 1-D open-channel flows 15

with πi(x,x
′) = E

[
Ψ̃i(x)Ψ̃i(x

′)
]
. In our case, the correlation function π (or kernel)

is chosen as a squared exponential:

πi(x,x
′) = exp

(
−‖x− x′‖2

2 `2i

)
, (15)

where `i is a length scale describing dependencies of model output between two
input vectors x and x′, and where σ2

i is the variance of the output signal. Then
the surrogate model of interest is the mean of the GP resulting of conditioning Ψ̃i

by the training set
{
Ψi
(
x(k)

)}
1≤k≤N

. For any x∗ ∈ Rd,

Ψgp,i(x
∗) =

N∑

k=1

βk,i πi
(
x∗,x(k)

)
, (16)

where βk,i =
(
Πi + τ2 IN

)−1
(
Ψi
(
x(1)

)
. . . Ψi

(
x(N)

))T
with Πi =

(
πi
(
x(j),x(k)

))
1≤j,k≤N

,

and where τ (referred to as the nugget effect) avoids ill-conditioning issues for the
matrix Π. The hyperparameters {`i, σi, τ} are optimized by maximum likelihood
applied to the data set DN using a basin hopping technique (Wales and Doye
1997).

3.3 Statistical Analysis

In the following, the water level at curvilinear abscissa a estimated with either the
PC surrogate or the pGP surrogate is denoted for simplicity purpose by ĥa, while
ha denotes the water level obtained using the MASCARET forward model.

3.3.1 Statistical moments and PDF

Using a standard MC approach on the reference sampling DNref
, the water level

mean value and standard deviation (STD) at a given curvilinear abscissa a noted
(µha

, σha
) are formulated as:

µha
=

1

Nref

Nref∑

k=1

h(k)a , (17)

σha
=

√√√√ 1

Nref − 1

Nref∑

k=1

(
h(k)a − µha

)2
. (18)

The covariance matrix of the simulated water level denoted by C ∈ MM (R) is
stochastically formulated as:

C =
1

Nref − 1

Nref∑

k=1

(
h(k) − h

)(
h(k) − h

)T
, (19)

with h(k) =M(x(k)) the kth sample in DNref
containing the water level at the M

observed curvilinear abscissas and with h = N−1
ref

∑Nref

k=1 h(k) the ensemble mean.
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Using the PC surrogate method, the statistical moments can be derived ana-
lytically from the coefficients {γa,i} i∈Nd

|i|<P

such that at a given curvilinear abscissa

a, the water level mean and STD (µhpc,a
, σhpc,a

) read:

µhpc,a
= γa,0, (20)

σhpc,a
=

√√√√
∑

i∈Nd
|i|<P,i6=0

γ2a,i. (21)

The covariance matrix Cpc can also be directly computed from the coefficients:

Cpc = (cov (hpc,am , hpc,an))1≤m,n≤M , cov (hpc,am , hpc,an) =
∑

i∈Nd
|i|<P,i6=0

γam,i γan,i,

(22)
with cov (hpc,am , hpc,an) the matrix component corresponding to the water level
covariance at grid points am and an.

Using the pGP surrogate method, both statistical moments and covariances
are stochastically estimated as in the MC approach, meaning that h is replaced
by the surrogate hpgp in Eqs. (17)–(19).

For the MC random sampling method as well as for the PC and pGP surrogate
methods, the PDF of the water level at each of theM = 14 stations is reconstructed
using a kernel smoothing procedure on a large enough stochastic sampling of M,
Mpc or Mgp, respectively (Hastie et al. 2009; Wand and Jones 1995).

3.3.2 Sensitivity Analysis

Sobol’ indices (Saltelli et al. 2007; Sobol 1993) are commonly used for SA based
on variance analysis. They provide the quantification of how much of the variance
of the quantity of interest is due to the uncertainty in the input parameters as-
suming these random variables are independent and the random output is squared
integrable. The water level (simulated either by MASCARET ha or by the PC or

pGP surrogate ĥa) variance at curvilinear abscissa a decomposes as:

V[ĥa] =
d∑

i=1

Vi(ĥa) +
d∑

j=i+1

Vij(ĥa) + · · ·+ V1,2,...,d(ĥa), (23)

where Vi(ĥa) = V
[
E(ĥa|xi)

]
, Vij(ĥa) = V

[
E(ĥa|xixj)

]
− Vi(ĥa) − Vj(ĥa) and

more generally, for any I ⊂ {1, . . . , d}, VI(ĥa) = V
[
E(ĥa|xI)

]
−
∑
J⊂I s.t. J 6=I VJ(ĥa).

The Sobol’ indices for water level at curvilinear abscissa a with respect to the ith
and jth components of the random input vector read:

Sai =
Vi(ĥa)

V(ĥa)
, Saij =

Vij(ĥa)− Vi(ĥa)− Vj(ĥa)

V(ĥa)
. (24)

Sai is the first order Sobol’ index corresponding to the ratio of output variance
due to the ith input parameter uniquely, and Sij is the second-order Sobol’ index
describing the ratio of output variance due to the ith parameter in interaction
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with the jth parameter. Also the total Sobol’ index that corresponds to the whole
contribution of the ith input parameter reads:

SaTi
=

∑

I⊂{1,...,d}
I3i

SaI . (25)

For both MC and pGP approaches, the Sobol’ indices are stochastically esti-
mated. The conditional variances are estimated using Martinez’ formulation. This
estimator is stable and it provides asymptotic confidence intervals for first order
and total order indices (Baudin et al. 2016).

For the PC approach, Sobol’ indices can be directly derived from the PC co-
efficients. For the ith component of the input random variable x, the Sobol’ index
reads:

Sapc,i =
1

σ2
hpc,a

∑

j∈Nd s.t. |j|<P,

ji>0 and jk 6=i=0

γ2a,j , (26)

with σhpc,a
the STD computed in Eq. (21).

3.4 Error Metrics

In the present study, three error metrics are used to assess the quality of the
surrogate water level at a given curvilinear abscissa ĥa: the Q2 predictive coeffi-
cient (Marrel et al. 2009), the Kolmogorov-Smirnov test to evaluate the similarity
between PDF (Clarke et al. 1992) and the Root Mean Square Error (RMSE). The
validation is carried out over a full database DNref

of size Nref.

Predictive coefficient Q2

At a given curvilinear abscissa a, the Q2 predictive coefficient reads:

Q2,a = 1−

Nref∑

k=1

(
h(k)a − ĥ(k)a

)2

Nref∑

k=1

(
h(k)a − ha

)2
. (27)

Kolmogorov-Smirnov statistical test

Let TF (resp. TG) be a random variable with cumulative distribution function
(CDF) F (resp. G). Let Fn (resp. Gm) be its empirical CDF built from n (resp.
m) independent realizations of TF (resp. TG). Then, let us define the test statistics:

D = sup
x
|Fn(x)−Gm(x)|. (28)

The null hypothesis for the Kolmogorov-Smirnov statistical test supposes that TF
and TG are identically distributed, i.e. F = G. The Kolmogorov-Smirnov test leads
us to reject this hypothesis with a type I error α ∈]0, 1[ when:

D > c(α)

√
n+m

nm
, (29)
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with c(α) a tabulated value found in the literature (Smirnov 1939). In the present
study, using α = 0.05 and n = m = Nref, the null hypothesis is rejected if D >
6,082 · 10−3.

Root mean square error (RMSE)

The RMSE is used to evaluate the accuracy in the estimation of the correlation
matrix and of the Sobol’ indices with respect to the MC stochastic estimation over
the data set DNref

, i.e.

RMSE =

√√√√ 1

M

M∑

a=1

(�a −�mc,a)2. (30)

where � designates one component of the correlation matrix or one Sobol’ index
at the given curvilinear abscissa a.

3.5 Numerical implementation and validation

Due to the increasing interest in UQ over the last decade, a significant number
of UQ-dedicated tools/libraries are now available for the scientific community.
OpenTURNS (see www.openturns.org) is an open-source (GNU LGPL) scientific
library developed since 2005 by EDF, Airbus, Phimeca and IMACS and usable as
a Python module dedicated to uncertainty treatment and reliability analysis in a
structured industrial approach (Baudin et al. 2015). OpenTURNS offers a wide
catalogue of features for UQ (e.g. PC expansion, Dutka-Malen et al. 2009) and
benefits from a well-organized developers’ and users’ community (forum, training,
user guides). It can either be used as a Python module or as a component within a
coupling platform. For further information on the OpenTURNS library, the reader
is referred to the online reference and use case guides.

In the present study, MASCARET and OpenTURNS are both integrated com-
ponents of the SALOME platform developed at EDF (see www.salome-platform.org).
This integrated framework allows for an efficient use of MASCARET as a Python
function for simulating an ensemble of water levels and for building the PC surro-
gate models using the methods implemented in OpenTURNS. The pGP surrogate
models rely on the use of the JPOD Python tool developed at CERFACS (Bra-
connier et al. 2011) since 2007 and recently augmented with OpenTURNS’ UQ
capabilities (Roy 2016). It acts as a Python platform that is able to interact with
an external simulation code, i.e. generate a design of experiment, run the cor-
responding simulations and perform statistical analysis of the outputs. The GP
implementation relies on the package Scikit-learn (Pedregosa et al. 2012).

Both PC and pGP strategies were validated on: (i) classical optimization
functions with scalar output such as Ishigami (Ishigami and Homma 1990) and
Michalewicz (Molga and Smutnicki 2005); and (ii) for a functional output case
using simplified 1-D open-channel flow equations (backwater curves) (El Moçayd
et al.; Roy 2016). JPOD has been successfully tested and validated on industrial
configurations during the European SimSAC and ALEF (FP7) projects.
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4 Comparison of Polynomial Chaos (PC) and Gaussian Process (pGP)
surrogates

4.1 Reference Monte Carlo (MC) results

We first present the results obtained using the MC reference sampling (Nref =
100, 000 in DNref

) in terms of water level mean, STD, PDF, correlation matrix
as well as Sobol’ indices associated with Q and Ks3 . These results are used as
reference to evaluate the accuracy of the PC and pGP surrogate models.

Figure 2a displays the water level PDF computed fromDNref
data set integrated

with a MC approach for the M = 14 stations along the curvilinear abscissa a ∈
[ain, aout]. The mean water level (Eq. 17) is represented with a thick black line;
the interval between two STD (Eq. 18) is represented with dotted lines; and the
minimum and maximum water level values are represented with dashed lines. The
upstream part of the river is under the influence of the upstream forcing, the spread
of the ensemble tends to increase. The downstream part of the river is under
the influence of the downstream boundary condition where the water level and
discharge are related by the local rating curve RC, the spread of the ensemble tends
to decrease near the downstream boundary condition. At Marmande (a = 36 km),
the flow is complex due to strong variation of the local bathymetry (Fig. 1b), the
ensemble spread is larger and the PDF plotted in Fig. 2b features two main modes
due to the change in backwater curves solutions for subcritical flow.
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Fig. 2: Reference PDF of the water elevation obtained with the Nref = 100, 000
snapshots in DNref

derived from MC random sampling: (a) at the M = 14 sta-
tions along the 50 km river reach; (b) at Marmande. The solid line indicates the
mean water level with respect to the curvilinear abscissa; the dotted lines indicate
the spread corresponding to 2 STD; the dashed lines indicate the maximum and
minimum water level values; and the vertical dotted line indicates Marmande’s
location.

The Sobol’ indices for the water level SQ and SKs3
computed from DNref

with respect to Q and Ks3 are presented in Fig. 3a along the curvilinear ab-
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scissa a. These indices confirm the previously mentioned spatial sensitivity. The
water level variance is mostly explained by the upstream discharge variability for
a = [0; 30 km]. It is then mostly explained by the Strickler coefficient variance
for a = [30; 60 km]. Near the downstream boundary condition, the water level is
related to the discharge by the local rating curve RC, the very last part of the
network is thus under the influence of the discharge. First and total order indices
are equal, meaning that there is no correlation between the errors in the input
parameters.

Figure 3b displays the water level correlation matrix along the 50 km reach
(derived using Eq. 19) that is estimated from DNref

. The nth column of the matrix
describes the water level error correlations between one given location on the
channel an and the rest of the channel am with am ∈ [ain, aout]. By definition, the
correlation is equal to 1 on the diagonal, it decreases when the distance between
an and am increases. We first analyse the correlation function for a point located
upstream of the river (ai = 15 km) where SQ = 0.9 and SKs3

= 0.1. Water level
errors are strongly correlated in the upstream part of the river, which is under
the influence of the upstream discharge boundary condition, where SQ is large.
Errors between a = 15 km and the rest of the river tends to decorrelate when
the influence of Ks3 increases (i.e. where SKs3

is larger). We then analyse the
correlation function for Marmande (a = 36 km) where SQ = 0.15 and SKs3

= 0.85.
The correlation between water level errors at Marmande and the rest of the river
is large in the vicinity of Marmande, where the influence of Ks3 prevails. It then
decreases for upstream and downstream locations that are under the influence of
the upstream discharge and the downstream rating curve RC (where SQ is large),
respectively.
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Fig. 3: Measures of importance using MC random sampling. (a) Reference Sobol’
first order indices along the 50 km reach. Dashed-dotted line corresponds to the
Sobol’ index associated with the upstream discharge Q. Dotted line corresponds to
that associated with the Strickler coefficient Ks3 . (b) Reference spatial correlation
matrix Cmc associated with the spatially distributed water level h.
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4.2 Convergence Analysis for Surrogates

We now use the same metrics as for the MC random sampling approach in Sec. 4.1
to evaluate the accuracy of both PC and pGP surrogates. The surrogate models
are built using a training set (X ,Y) of size N that is much smaller than that of
the reference sample Nref; they are then validated with respect to the reference
MC results. The PC surrogate is built using a Gaussian quadrature rule with
N = (P + 1)2 particles in the training set (P is the total polynomial degree to
be determined). The pGP approach is built using an approximate low-discrepancy
Halton’s sequence of the same budget as for the PC approach. This is approximate
in the sense that we consider the closest values to the standard Halton’s sequence
that are part of the data set DNref

. The sensitivity to the value of P and thus to
the size of the training set N is investigated.

Both surrogates are computed with a fixed budget N of 49 and 121 MAS-
CARET evaluations. For PC, this value of N corresponds respectively to P = 6
and P = 10. The pGP and PC response surfaces at Marmande are presented
in Fig. 4. The design of experiment is represented by black dots. The colour
map is evaluated by sampling each surrogate over the full data set DNref

made
of Nref = 100, 000 particles. It is found that the water level increases with in-
creasing discharge Q and decreasing Strickler coefficient Ks3 , consistently with
MASCARET behaviour. Due to the quadrature rule, increasing the number of
snapshots (from P = 6 in Fig. 4c to P = 10 in Fig. 4d) allows to build a higher
order PC surrogate valid on a wider input range for Q that is described by a Gaus-
sian PDF. For P = 10, some of the quadrature roots are outside of the MC sample
and require additional MASCARET evaluations to build the PC surrogate Mpc.
Looking at the pGP design of experiments, the input space interval for Q has
been arbitrarily fixed to optimally represent the PDF. Since we consider a Gaus-
sian distribution, its range has been bounded to [3000; 5000 m3 s−1 ]. Following
Chebyshev’s theorem, this leads to a 90 % confidence interval.

The distribution of the particles in the design of experiments used by PC and
pGP differs. This is done on purpose based on previous performance tests carried
out with respect to the training set size N and evaluating the surrogate accuracy,
see (El Moçayd et al.) and (Roy 2016), respectively. On the one hand, the design
of experiments for the PC surrogate is constrained by the PDF of the uncertain
inputs. We use here a quadrature-based PC since it was found to be more cost-
effective than regression-based PC for a small dimensional problem (d = 2) on
the Garonne case (El Moçayd et al.). On the other hand, using the approximate
Halton’s sequence is known to be accurate for pGP surrogate (Damblin et al. 2013).
This is indeed useful to cover the uncertain space without any bias and to have
low discrepancy, meaning that most of the quantity of interest variance is captured
and that a good Q2 criterion is achieved. The choice of the design of experiment
will be driven in future work according to the study objectives. For instance, DA
usually relies on the assumption of Gaussian PDF for the input parameters, so the
design of experiments can use this prior information. For risk analysis, threshold
values are paramount and a design of experiment accounting for parameter space
extrema is required.
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20 40 60

Ks

(
m1/3

s

)
2500

3000

3500

4000

4500

5000

5500

Q
( m

3 s

)

16.000

17.020

18.041

19.061

20.082

21.102

22.122

23.143

24.163

25.184

Z
(m

)
(a) pGP - 49 snapshots.

20 40 60

Ks

(
m1/3

s

)
2500

3000

3500

4000

4500

5000

5500

Q
( m

3 s

)

16.000

17.020

18.041

19.061

20.082

21.102

22.122

23.143

24.163

25.184

Z
(m

)

(b) pGP - 121 snapshots.

20 40 60

Ks

(
m1/3

s

)
2500

3000

3500

4000

4500

5000

5500

Q
( m

3 s

)

16.000

17.020

18.041

19.061

20.082

21.102

22.122

23.143

24.163

25.184

Z
(m

)

(c) PC - 49 snapshots.
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(d) PC - 121 snapshots.

Fig. 4: Water level response surface at Marmande computed at DNref
. Top: pGP

using (a) N = 49 snapshots and (b) N = 121 snapshots. Bottom : PC using
(c) N = 49 snapshots and (d) N = 121 snapshots. Black dots represent the
design of experiments used to construct the surrogate models. The colour map
corresponds to the evaluation of the surrogate over the full data set DNref

.2

The Q2 error between the surrogate water level and the forward model water
level for DNref

averaged over the river is given in Table 1 for different sizes of
training set N varying between 49 and 256. The error remains below 10−3, even
for N = 49 snapshots; it is only slightly improved when the number of snapshots
N increases to 256 and beyond.

2Scaling of (d) was set in order to show the entire design of experiments. This allows to
grasp the fact that the parameter space is evaluated in regions that are not evaluated by the
Monte-Carlo sampling.
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Table 1: Q2 error for pGP and PC surrogates computed with respect to the MC
reference. The error corresponds to the average over the M stations with increasing
number of snapshots N from 49 to 256.

N pGP PC

49 0.99965 0.99983
121 0.99514 0.99993
256 0.99143 0.99962

The water level PDF estimated with the PC and the pGP surrogate models
based on 49, 121, 256 snapshots are compared in Fig. 5 at the curvilinear abscissa
a = 15 km (near upstream boundary condition) and a = 36 km (Marmande). In
the upstream part of the river, the PDF is uni-modal and is well represented with
a small number of snapshots for both surrogates. On the contrary, at Marmande,
the dynamics of the flow is more complex and the PDF is bimodal. Both PC and
pGP surrogates are able to retrieve the overall shape of the PDF at a = 15 km and
a = 36 km. The shape is more accurate when the number of snapshots N increases.
This is quantified using a Kolmogorov-Smirnov statistical test, which measures
the fit between the water level CDF computed from each surrogate model and
that computed from the reference MC. Table 2 indicates that the null hypothesis
(Eq. 29) is rejected for both surrogates computed with 49 snapshots (when D >
6,082 · 10−3) and accepted when at least 121 snapshots are used. For N = 49,
Fig. 5b–d show that the location of the first mode is shifted compared to MC
reference. Increasing N to 121 enables the PC approach to correctly locate this
mode, while it enables the pGP approach to represent the second mode with
an accurate amplitude, leading to an accepted null hypothesis. Each approach
presents a particular limitation: the first mode is not well positioned by the pGP
approach; the second mode is not captured by the PC approach. As for the tail of
the PDF, it is correctly represented by the PC surrogate, while the pGP surrogate
slightly oscillates around the shape of the reference MC PDF.

Table 2: Two-sample Kolmogorov-Smirnov statistical test for pGP and PC surro-
gates with respect to the MC reference at Marmande with increasing number of
snapshots N (49, 121, 256). The null hypothesis is rejected if D > 6,082 · 10−3.

Surrogate Snapshots Statistics D p-value

49 7,95 · 10−3 0.004
pGP 121 3,97 · 10−3 0.409

256 3,02 · 10−3 0.751

49 7,15 · 10−3 0.012
PC 121 4,95 · 10−3 0.172

256 4,93 · 10−3 0.175

The RMSE for the Sobol’ indices for both pGP and PC with a fixed compu-
tational budget of N = 121 simulations is of the order of 10−2 when computed
over the 50 km reach. Figure 6 displays the squared error for the Sobol’ indices



24 P.T. Roy, N. El Moçayd et al.
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Fig. 5: Comparison of water level PDF obtained with pGP (top panel) and PC
(bottom panel) (a)–(c) At a = 15 km (near upstream boundary condition). (b)–
(d) At a = 36 km (Marmande). The comparison is carried out for different sizes
of training set N (49, 121, 256); the MC result is provided as reference in solid
black line.

along the curvilinear abscissa (Eq. 30); the spatial pattern is similar for both sur-
rogates and the squared error for each index is larger where the Sobol’ indices are
larger. The RMSE for the correlation matrix for both pGP and PC with N = 121
simulations are equal to RMSEpc = 3,67 · 10−4 and RMSEgp = 4,59 · 10−3. The
spatial distribution of the squared error is plotted in Fig. 7. These results confirm
the good behaviour of both PC and pGP surrogates with respect to MASCARET.
For both Sobol’ indices and correlation matrices, the PC surrogate slightly out-
performs pGP.
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Fig. 6: Squared error of the spatial Sobol’ indices along the 50 km reach for (a) pGP
and (b) PC surrogate models built using N = 121 snapshots in the training set.
Dashed lines correspond to the Sobol’ index associated with Ks3 ; solid lines cor-
respond to that associated with the upstream discharge Q.

(a) pGP – 121 snapshots (b) PC – 121 snapshots

Fig. 7: Squared error of the correlation matrix for (a) pGP and (b) PC surrogate
models built using N = 121 snapshots.

5 Discussion and Conclusions

The purpose of this work was to compare two popular strategies for building sur-
rogate models, Polynomial Chaos (PC) and POD-based Gaussian Process (pGP).
Both methods were applied to a hydraulic case corresponding to a spatially dis-
tributed open-channel steady flow along the Garonne River depending on the up-
stream discharge Q and on the Strickler friction coefficient Ks3 , with the long-term
objective to determine which surrogate strategy could be useful in the framework
of ensemble-based data assimilation. It is important to show how surrogate models
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could be used to estimate some statistical quantities in a cost-effective way. This is
useful for sensitivity analysis studies to evaluate the impact of physical parameters
and external forcing on the river state. This is also useful for data assimilation to
estimate correlation matrix and PDF related to the spatially distributed river state
for the Ensemble Kalman Filter (EnKF) and the Particle Filter (PF), respectively.

We carried out a convergence study based on the following metrics: water level
statistical moments, correlation matrix, PDF as well as Sobol’ indices representing
the contribution of the upstream discharge and the Strickler friction coefficient on
the water level variance. The accuracy of the PC and pGP surrogates were mea-
sured by their ability to retrieve the reference metrics obtained with a converged
Monte Carlo (MC) random sample (including 100,000 MASCARET simulations).
An in-depth comparison of these metrics was done using the same computational
budget: 121 MASCARET snapshots. The sensitivity to the number of snapshots
was carried out to ensure that 121 simulations were enough to make this compar-
ison valuable.

Results showed that both surrogate models can be used in place of the MAS-
CARET forward model for uncertainty propagation without loss of accuracy. None
of the two surrogate models clearly outperforms the other. In both cases, the PC
and pGP surrogate models are able to correctly retrieve all physical information.
The PC strategy seems to be more precise to compute the spatially distributed cor-
relations as well as the Sobol’ indices, with the advantage that these indices do not
need any further MASCARET evaluation as they are analytically computed from
the PC expansion. Still, the multimodal water level PDF at Marmande (which is
an important observation station along the Garonne River in operational context)
was better captured by the pGP strategy that requires an additional sampling of
the surrogate. Indeed, even increasing the number of snapshots to 256 and beyond
was not enough to retrieve the second mode of the PDF using the PC surrogate
model, while this was already captured with 121 snapshots by the pGP surrogate
model. Still, it should be mentioned that the PC model better positions the first
mode than the pGP model when using the MC approach as reference. Last but
not least, the PC strategy requires some insight about the uncertain inputs of the
system. We may not have access to this information in practice, leading poten-
tially to a poor robustness of the PC surrogate. The quantity of interest may also
feature non-linearity and exhibit extrema, which could be difficult to account for
using quadrature points that could miss some physics. Alternative (for instance
sparse) projection strategies could be investigated in the future to overcome these
limitations.

Conclusions for the present test case highlight the validity of both quadrature-
based PC and POD-based GP surrogate strategies for SWE in permanent flow
for a small dimensional problem (the size of the uncertain space is d = 2). The
ranking between PC and pGP approaches will need to be further investigated when
moving to open-channel unsteady flow modelling used for instance in the context of
operational flood forecasting. The first challenge lies in the extension of the PC and
pGP surrogates to larger uncertain dimension d, especially to address parameters
that vary in space or over time or both such as the bathymetry spatial field and
the time series of the upstream discharge. This may require the evaluation of
more advanced strategies to reduce the size of the basis, the uncertain dimension
(for instance through the Karhunen-Loève transformation) and the number of
snapshots N in the training set. For instance, the quadrature method used to build
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the PC surrogate is known to suffer from the curse-of-dimensionality. This will
have to be revisited for a larger size d of the uncertain space. The second challenge
lies in the validity of the surrogate model over successive data assimilation cycles. It
may be necessary to adjust the coefficients of the surrogates to track the changes in
the river state behaviour over time. Those are crucial steps for the complementary
use of surrogate models within data assimilation algorithms.
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